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Abstract 
Polygon intersection (clipping) and difference are among 

the most fundamental operations in computer graphics. To 
the uninitiated, these problems appear trivial; in fact, they are 
extremely difficult to perform reliably by computer. 
Although the graphics literature already provides algorithms 
for polygon set operations, they have two significant 
weaknesses: (1) they may fail because they are specified 
ambiguously for some configurations of subject polygons, 
and (2) small arithmetic errors, an unavoidable artifact of 
floating-point calculations, can cause significant aberrations 
in the result. 

This paper presents and provides the rationale for a new 
polygon-intersection algorithm whose input polygons may 
have holes and, recursively, fillers within holes, holes within 
fillers within holes, etc. The logical underpinnings of the 
algorithm enable it to tolerate arithmetic errors due to finite
precision floating-point arithmetic. Polygon set difference is 
shown to be a small modification of the intersection algo
rithm. 

Researchers in computational geometry consider these 
and similar problems with the intention of formulating algo
rithms whose correctness can be assured through formal 
proofs. The goal of this paper, however, is practical gui
dance for implementation based on accessible, intuitive argu
ments. 

1. Introduction 

This paper revisits the problem of polygon intersection, 
one of the most fundamental operations in computer graph
ics. The intersection of polygons A and B is the polygonal 
boundary of the region(s) common to both A and B. 
Polygon difference, A -B , is the polygonal boundary of the 
region(s) of A not also contained in B. To the uninitiated, 

these problems appear trivial; in fact, they are very difficult 
to solve reliably by computer. When tested carefully, most 
polygon intersection routines based on the right-turn rule fail 
almost immediately. 

Researchers in computational geometry are worting to 
develop algorithms for these set operations whose correct
ness is assured through formal proofs, e.g ., [HOFFMAN & 
HOPCROFf], [HOPCROFT & KAHN] , [MILENKOVIC 
A], [MILENKOVIC B], [SEGAL & SEQUIN]. The goal of 
this paper, however, is practical guidance for implementing 
reliable polygon set operations based on accessible, intuitive 
arguments. 

In practice, polygon intersection is usually computed 
with some variant of the "right-turn" rule (e.g., [WEILER & 
A THERTON]). In essence, this rule states that the intersec
tion of two polygons is computed by tracing the contours of 
the polygons in clockwise fashion, switching from one 
polygon to the other where the contours intersect. This pro
cess begins by tracing one contour starting at an intersection 
where the contour crosses into the interior of the other 
polygon, as shown in Figure 1.1. 

start! finish here polygon A 

~ . --... 
polygon B • 

intersection 

... ., 

/ 
make 'right turn' at contour intersection 

Figure 1.1 Intersection via the Right Turn Rule 

There are two problems with the right-turn rule. First, 
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the rule is frequently ambiguous when a vertex of one 
polygon lies on the contDur of the other, as shown in Figure 
1.2. Although an intersectDr may be patched tD process these 
configurations as special cases, confidence in the underlying 
rationale for the intersection procedure - turn right at an 
intersection - diminishes as each new problem configuration 
is discovered and another patch is added tD the algorithm 

~ _ polyvon. A and B overlap 

~ exactly 

DJ 
B 

Figure 1.2 Difficult Configurations for the Right-Turn Rule 

The second and more insidious problem with the right
turn rule is that it depends on perfectly correct detection of 
contDur intersections, which cannot be guaranteed with 
floating-point arithmetic. The difficulty is that some contDur 
intersections may not be detected, while some false intersec
tions may be "found." The fallibility of contDur-intersection 
calculations is analogous tD the fallibility of the human 
visual system; as relationships between contDurs become 
more difficult tD see, the risk of error increases. For exam
ple, the intersection of two nearly perpendicular contDur 
edges near their midpoints, shown in Figure 1.3, is more 
likely tD be detected correctly that the intersection (or lack of 
intersection) between the two edges in Figure 1.4. To over
come this ·problem, some implementations attempt tD iden
tify geometric configurations that may lead tD computational 
inaccuracies and distDrt the subject polygons as needed to 
avoid the difficulties. Unfortunately, a distDrtion intended to 
avoid one inaccuracy may lead tD the potential for another, 
requiring yet further distDrtion. Ultimately, the effects of the 
distortions may become visually perceptible. 
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intersection easy 
to detect 

Figure 1.3 An Obvious Intersection 

~~---- Is this an intersection? 

Figure 1.4 A Difficult Intersection tD Detect 

Section 2 of this paper describes a new polygon
intersection algorithm which accommodates directly the 
inaccuracies inherent in finite-precision floating-point arith
metic. The presentation is informal, in an effort to be readily 
accessible, but it is sufficiently detailed tD allow implementa
tion directly from this paper. 

Making the algorithm immune tD floating-point errors is 
the most difficult challenge. The approach here is to reason 
directly about the possible effects of floating-point errors, 
accept that no algorithm can be perfect in the presence of 
such errors, and develop an algorithm whose output error 
will be bounded in a satisfactory way. Specifically the error 
will be sufficiently small that its effects on a rendered image 
will be visually imperceptible. 

Section 3 presents a small modification of the polygon
intersection algorithm which yields an algorithm for polygon 
difference. 
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2. Reliable Polygon Intersection 

Polygon intersection is conSll'Ucied from three basic 
geometric procedures: Inside, Intersect, and Surround . 
These procedures are unusual in that fioating-point error 
affects their output in a predictable way. In the descriptions 
below, A 8Dd B are polygons, El 8Dd E 2 are polygon 
edges, e 8Dd eSlurotutd are error quantities, P is a point, and 't 
is a tolerance. Inside (P ,A ,'t) is a predicate that determines 
if P lies within A. More exactly, if Inside (P ,A .'t) returns 
true, then P lies within A and is more than distance 't from 
the border of A; if the procedure returns raise, P lies more 
than distance 't outside of A. Inside (P ,A ,'t) may also 
return close, which implies that P is less than distance HE 
from the contour of A. Note that Inside is allowed to return 
either true or close for any point inside A that is more than 
distance 't but less than distance 't+E from the contour of A . 
The procedure is allowed to return either raise or close for 
any point more than distance 't but less than distance 't+E 
beyond A . The behavior of Inside (P ,A ,'t) is illustrated in 
Figure 2.1. 

I se or close " -fal •• 

close I-- --cl os. 

I o~e 

rue 

polygon 

Figure 2.1 TheInside Predicate 

Intersect (E 1'£ 2) determines the point of intersection 
of two polygon edges. (Edge E extends from vertex E' to 
vertex E'.) The procedure returns either raise or a parame
ter a in the range 0 to 1. If Intersect (E I,E 2) ret\lIlls false, 
then Eland E 2 do not intersect. If the procedure returns a 
value for ex. then E 2 comes within distance E of the point 
(l-a)Ei +aE~. Note that in some circumstances, the 
returned values of raise or a parameter value are both 
correct. Figure 2.2 illustrates the behavior of Intersect. 

Surround(A,B ,'t) determines whether polygon A sur
rounds polygon B . If Surround (A ,B , 't) returns true, then 
all points in B are less than distance 't+Es..n-..d beyond the 
boundary of A. If the predicate returns raise, then some 
point of B lies more than distance 't beyond A. The 
behavior of Surround (A,B ,'t) is illustrated in Figure 2.3 . 
As this figure shows, both true and raise maybe returned 
correctly by Surround for certain arguments. Appendix A 
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outlines how to implement Surround in terms of Inside 
and IlIIersect . 

lntersect(EJ,E2 1-f~. or Cl , such that Cl -QEls + ClE :: 
is within , of E < 

__ ~ __ -r-____ E;t 

[,' ] I' 
E:: 

,~ ~(EJ,E21 -faa. 

Figure 2.2 The Intersect Predicate 

In the intersection algorithms presented below, E and 
EsllT70wuI are very small actual distances that cannot be per
ceived in a rendered image. A value for E is determined by 
assuming that all data to be processed are transformed into 
some normalized coordinate system, say (-1,-1) to (+1,+1), 
and then taking E to be the smallest value which can be 
assured by the implementations of Intersect and Inside . 
Ideally, an exhaustive analysis of the implementations of 
Intersect, Inside and Surround would be performed to 
calculate the correct value for E. In most circumstances, 
however, this is not practicable. The pragmatic approach is 
to perform a conservative, approximate analysis and then 
increase the estimate of E by a decimal order of magnitude. 
Happily, this approach yields values for the error bounds -
typically 0.001 in a normalized coordinate system ranging 
from (-1,-1) to (+1,+1) - that are comfortably under the 
threshold of perceptibility for high-resolution graphics. Note 
that EslU'l'Ow is a similar error bound for Surround, and it 
depends on E as described in Appendix A. 
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Figure 2.3 The Surround Predicate 

2.1 Polygon-Edge Intersection 

As a preliminary step to polygon intersection, consider 
the problem of finding the intersection of a polygon and an 
edge. In the general case of a polygon with concave vertices, 
the intersection will comprise 0 or more segments of the 
edge, as illustrated in Figure 2.4. Each endpoint of these 
segments is either an endpoint of the edge or a point of inler
section between the edge and the contour of the polygon. 

The first step toward computing the required intersecting 
segments is to compile a superset of their endpoints. The 
Inside procedure, with 't=O, is used to test the edge end
points for inclusion in the polygon. If Inside reports true or 
close for either edge endpoint, it is included in the superset 
Next, Intersect is used to compare the subject edge with 
each contour edge of the polygon and any intersection points 
are added to the superset The problem now is to identify, in 
the superset, pairs of endpoints that describe the intersecting 
segments. 

To find the intersecting segments, the superset of end
points is sorted along the original subject edge. This is done 
by using the parameter returned by Intersect as a sort key. 
(As a result of imperfect arithmetic, the sorted list may not 

170 

be in strictly correct order; however, any errors will be 
imperceptible and will DOt affect the behavior of any algo
rithms developed below.) Next, beginning at one end of the 
sorted list, each sequential pair of endpoints is examined (see 
Figure 2.5). To determine if a segment lies within the 
polygon, hence is part of the polygon-edge intersection, 
Inside is used, with 't=2£+J,1. to examine the midpoint 
between the end points. (Here t=2£+J,1. because the loca
tions of the endpoints are known only to within E, the pro-
cess of computing the midpoint may introduce further error, 
taken to be very much less than £, and evaluating the expres
sion for t may introduce a very small error, bounded by J.1.) 
If Inside returns true, the segment is part of the intersec
tion. If Inside returns 'abe, then the segment is not part of 
the intersection. 

Figure 2.4 Intersection of Polygon and an Edge 

c::!![J/1 '\ -~ 7 
Cl - 0.0 

Cl- 1.0 

Figure 2.5 Contiguous Segments Along an Edge 

Of course, Inside might return close, and the status of 
the span would be undecided. If this happens, one or more 
additional locations between the endpoints must be tested 
until Inside provides an unambiguous result or it is deter
mined that the segment is everywhere very close to the con
tour of the polygon. The latter happens when Inside returns 
close for all locations sampled at intervals of length 
5poly'oll .... d,. between the endpoints. In case the segment is 
everywhere very close to the polygon contour, it is included 
as part of the intersection. The rationale for this conclusion 
is that by making 5poly,oll--'l. sufficiently small. no part of 
the segment will be perceptibly beyond the contour of the 
polygon. 
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This algorithm for polygon-edge intersection is part of 
the polygon-intersection algorithm presented below, in Sec
tion 2.2. In that algorithm, polygon-edge intersection may 
be performed less exactly: only a superset of the intersecting 
segments is required. Therefore, any candidate segment 
whose midpoint is either inside or close to the subject 
polygon is treated as part of the intersecting-segment super
set - there is no need to test multiple points along any candi
date. While there is a performance penalty associated with 
extraneous intersecting segments in the superset, the cost of 
eliminating them by testing multiple sample points may be 
prohibitively high. 

2.2 Ordinary Polygon Intersection 

Consider the intersection of two ordinary polygons, i.e., 
polygons without holes. The conlOur(s) of the intersection 
region(s) can be composed from components of the contours 
of the two polygons, as shown in Figure 2.6. For any two 
polygons, A and B , the required components of the contours 
can be constructed from the segments of the edges of A that 
intersect B and the segments of the edges of B that intersect 
A. The polygon-edge intersection technique from Section 
2.1 can be used 10 find a superset of these segments. 

To construct the contour(s) of the intersection of A and 
B, the superset of intersecting edge segments is treated as 
the edges of a specialized geometric multigraph, referred to 
as an edge-segmenJ graph (see Figure 2.7). Unlike an ordi
nary geometric graph, two edges in an edge-segment graph, 
X and Y, are connected if one endpoint of X is within dis
tance 2f+J.l of an endpoint of Y . This aggressive connection 
rule is needed because, as a result of Hoating-point error, the 
calculations of the endpoints of the intersecting edge seg
ments are guaranteed only to be within E of their true loca
tion, and the process of measuring the distance between end
points may be in error by less than J.l. Note that in an edge
segment graph, edges X and Z might not be connected, even 
if X is connected to edge Y and Y is connected to Z, as 
shown in Figure 2.8. 

By interpreting each non-crossing edge cycle of length 
greater than 2 in the edge-segment graph as a polygonal con
tour, a superset of the contours required to describe the inter
section of polygons A and B is found . This superset may 
contain, in addition to the required contours, some incorrect 
contours that do not lie within the intersection of A and B as 
well as some contours that are redundant (see Figure 2.7). 
Any incorrect and redundant contours must be identified and 
eliminated. 

To filter out incorrect contours, each constructed contour 
is compared to both A and B , using the Su"ound predicate 
with t~. Here t~, since the vertices of the constructed 
contours are known only to within E of their correct posi
tions. Only those constructed contours that are surrounded 
by both subject polygons are in the intersection. 
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Redundancies are eliminated by comparing each pair of 
intersection contours with 't=2f+J.I.. Any contour that is sur
rounded by another con lOur may be eliminated. When elim
inating redundancies, 't=2f+J.l since corresponding vertices 
of "identical" regions may deviate by £ in opposite directions 
from their true location. 

2.2.1 Rationale 

The logical basis for this intersection algorithm can be 
established by working backwards from the desired result 
Assume a process that generates a superset of the contours of 
the intersection of polygons A and B. To identify only the 
contours that lie within the intersection, compare each gen
erated contour to both A and B. If a generated contour lies 
within both polygons, it lies within their intersection, but 
some of these contours might be redundant, i.e., they might 
lie within other generated contours that also lie within the 
intersection. To remove the redundant contours, compare 
pairs of intersection contours and remove any contour that 
lies within another contour. 

The required superset of intersection contours can be 
generated from a collection of edges containing at least each 
segment of each edge of polygon A that intersects polygon 
B and each segment of each edge of polygon B that inter
sects polygon A . If all elements of this collection are com
bined in all possible ways to create polygonal contours, the 
contours of the intersection of A and B certainly will be 
generated. In addition, some contours that do not lie in the 
intersection, and some some that are in the intersection but 
are redundant, may be generated as well. 

The set of edges required to create the intersection con
tours can be generated with the polygon-edge intersection 
algorithm described in Section 2.1 to find a superset of the 
intersections of all edges of polygon A with polygon B and 
the intersections of all edges of polygon B with polygon A . 

2.3 Polygon-Polygon Intersection with Holes 

Consider now the more complicated case in which two 
polygons, A and B, have holes. A polygon's outer contour 
will be referred to as a + contour and a hole will be referred 
to as a - contour. 

The intersection technique for polygons with holes is 
similar to that for ordinary polygons. One difference is how 
the edges in the edge-segment graph are generated. For 
polygons with holes, the intersection of every hole edge, as 
well as every outer-contour edge, of polygon A with 
polygon B , and vice versa, is needed. 

The polygon-edge intersection procedure with holes is 
also slightly different from that presented in Section 2.1. 
When . computing the superset of edge-segment endpoints, 
Intersect is used to find the intersection of the subject edge 
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Figure 2.6 Intersection of two Ordinary Polygons 

with every hole edge, as well as with every outer-contour 
edge, of the subject polygon. The Inside procedure, which 
is used to determine whether an edge endpoint or segment 
lies within a subject polygon, is applied in the ordinary way, 
i.e., it considers only the outer contour of the subject 
polygon. Figure 2.9 shows the intersection of two polygons 
with holes, complete with intersecting edge segments and 
edge-segment endpoints. 

As in the simpler case for ordinary polygons described in 
Section 2.2, the contour-construction technique applied to 
the edge-segment graph will certainly produce all the con
tours, both + and -, required to describe the intersection 
region(s), but it may also produce some incorrect or redun
dant contours. As before, the correctness of constructed con
tours needs to be verified and any redundant contours need to 
be removed. In addition, the sign ( + or - ) of a constructed 
contour must be determined. 
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Only constructed contours that lie within the outer con
tours of both subject polygons are correct and considered 
further. If a correct contour is surrounded by any hole of 
either subject polygon, it is a - contour; otherwise, it is a + 
contour. Among the correct contours, any + contour that lies 
within another + contour or any - contour that lies within 

2 cycles defining 
correct, rut redmdant 
cx:ntrurs 

.. 

8 cycles defining 
incorrect ccntours 

ed:Je segrent fron pol ygon A 

ed:Je segrent fron polygon B 

Figure 2.7 Edge-Segment Graph for Figure 2.6 

another - contour is redundant and should be removed. 

2.3.1 Rationale 

The logical basis for this algorithm, beyond that 
presented in Section 2.2.1., relies on semantics of + and - as 
used to characterize contours. For polygon X, each point 
within its + contour is within polygon X unless the point 
also lies within a - contour of X, while each point within a -
contour of X is unequivocally not within polygon X. The
contour is the more definitive characterization. 

Any contour, + or -, used to describe the intersection of 
A and B must necessarily be surrounded by the + contours 
of A and B. Hence, the algorithm discards as incorrect any 
generated contours that do not meet this requirement. 

Each correct contour is characterized as + or - with 
respect to both subject polygons. To characterize a contour, 
C, with respect to a subject polygon, X, the relationship of 
C to every contour of X is examined. If C is surrounded by 
a - contour, it is a - contour with respect to X, otherwise, it 
is a + contour with respect to X. Recall the semantics of + 
and - and consider what + or - with respect to X means. If 
C is + with respect to X , each point in C is within polygon 
X unless it also lies within some - contour of X. If C is
with respect to X , each point in C is absolutely not within X. 
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Figure 2.8 Connection of Edges in Edge-Segment Graph 
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Figure 2.9 Intersection of two Polygons with Holes 

If C is - with respect to either subject polygon then C is 
- with respect to the intersection of the subject polygons, 
i.e., each point in C is not within at least one of the subject 
polygons, hence not within their intersection. If C is + with 
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respect 
to both subject polygons, it is + with respect to their intersec
tion, i.e., every point in C is within the intersection of the 
subject polygons unless it also lies within some - contour of 
the intersection. 

Now consider more carefully a + contour, Cl+> of an 
intersection. If P is a point within CI + that also lies within 
some - contour, CX-t of a subject polygon, X, then the 
intersection of the subject polygons is required to also have a 
- contour containing P . What guarantee is there that this -
contour will be present in the intersection? Since Plies 
within both subject polygons and P is contained in Cx ...... the 
contour-generation process will generate a fragment of Cx ...... 
Cl ...... that contains P . Since Cx- surrounds C/-t CI _ will be 
classified - with respect to X, and hence - with respect to 
the intersection. 

2.4 Intersection with Holes and FiUers 

The final treatment of polygon-polygon intersection con
cerns polygons that may have holes and, recursively, fillers 
within holes, holes within fillers, etc. Such polygons can be 
described with a tree, the root of which is the polygon's 
outer contour. The contours of the holes and fillers are 
arranged at alternating levels in the tree, as shown in Figure 
2.10. 

AJ 
A2 

Figure 2.10 Polygons with Holes and Fillers 

The intersection procedure is an extension of that 
described in Section 2.3 for polygons with holes only. Once 
again, the contours generated from the edge-segment graph 
may include, in addition to the needed contours, some con
tours that 'are incorrect or redundant. Further, the sign of 
each contour must be decided. 
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For a constructed contour to be correct, it must lie within 
the outer contours of both subject polygons. The sign of a 
constructed contour is decided by finding the smallest con
tours (outer, hole, or filler) of both subject polygons in which 
the constructed contour lies. If both surrounding contours 
are +, the constructed contour is a + contour; otherwise (at 
least one surrounding contour is a - contour), the con
structed contour is a - contour. 

13 

12 

Figure 2.11 The Intersection of the Polygons in Figure 2.1 0 

Redundant contours are eliminated as part of assembling 
them into a tree-structured description of the intersection, as 
in Figure 2.11. A directed graph is constructed in which 
nodes represent generated contours, and an edge goes from 
X· to Y if and only if X surrounds Y, X il:Y, and there is no 
contour Z such that X surrounds Z and Z surrounds Y. 
Next, for each outer contour (a node in the digraph to which 
no edge leads), the contours that it immediately surrounds 
(nodes accessible via a path of length 1) are identified. If 
any of these surrounded contours has the same sign (+ or-) 
as the surrounding contour, then the surrounded contour is 
redundant and should be eliminated. This process is applied 
recursively to eliminate all redundant contours. The final 
result is one or more trees in which the root is the outer con
tour of a region of intersection. Every path from an outer 
contour alternately visits - contours (holes) and + contours 
(fillers). This graph is the required description of the inter
section of A and B. The logical basis for this algorithm is 
essentially the same as that for the algorithm in Section 2.3. 
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3. Polygon Set Difference 

Polygon set difference can be computed by a simple 
variant of the procedure in Section 2.4 for finding the inter
section of two polygons with holes and fillers. To find the 
area of polygon A not also contained in polygon B, first 
construct a new polygon, BiAvm., from the rectangle and B . 
This rectangle is the outer contour of Bilruru and the outer 
contour of B and the fillers of B become the holes of 
BillY.,.., while the holes of B become the fillers of Bj""me, 
i.e., the signs of the contours of B are changed. The inter
section of A and BillY.,.,., found using the procedure 
described in Section 2.4, is the set difference of A and B . 

4. Conclusions 

Reliable geometric procedures can be developed only if 
the inherent limitations of finite-precision floating-point 
arithmetic are accommodated. This paper addresses direcUy 
these limitations in presenting accessibly new algorithms for 
polygon intersection (clipping) and difference which operate 
on input containing holes, and recursively, fillers within 
holes, holes within fillers, etc. 
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