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Abstract 

A novel spatial data structure called the orientation 
adaptive quadtree (OAQ) is presented. The data 
structure takes advantage oflarge second-order moments 
of inertia of planar objects by aligning the quad tree axes 
with the object's principal axis of inertia. This provides 
a reduction in the number of leaf nodes necessary to 
store the quadtree compared to quadtrees aligned with 
the object coordinate axes. An efficient method for 
constructing OAQs for planar graphs described by edge 
vertices is given, along with a discussion of some test 
results. 

Keywords: spatial data structures, quadtrees, 
adaptive encoding, optimal encoding. 

Introduction 

Quadtrees [Samet, 1984] provide a natural decomposition 
of two dimensional space which have been used in a 
wide variety of applications [Bentley and Stanat, 1975; 
Samet and Rosenfeld, 1980; Yerry and Shepard, 1983; 
Samet et al, 1985; Andersson, 1988]. An overview paper 
by Samet and Webber [1988] focusses on the uses of 
the quad tree and other hierarchical data structures for 
computer graphics. 

The motivation for this work stems from using the 
quadtree structure to represent planar directed graphs 
(of even degree) embedded in the plane. Such graphs 
are commonly used to represent the boundary of planar 
objects. Edge-based data structures such as the doubly­
connected edge list [Muller and Preparata, 1978] or 
winged-edge structure [Weiler, 1985] are commonly used 
to represent planar graphs, but quadtree representation 
is better suited if the processing expected is truly of 
an "area" nature. For example, if a "point-in-polygon" 
query is posed for an object represented using edge­
based structures, the response time will be O(n), for 

n = number of edges in the planar graph, whereas th e 
response time to the same query for a planar graph 
represented as a quadtree will be O(d), for d = maximum 
depth of the quadtree. For objects which are naturally 
aligned to the object space axes and whose eccentricity 
is small, the standard quad tree encoding is sufficient. 
When objects do not align themselves to the object space 
axes, and may have a large eccentricity (see the example 
in Figure 1), the standard quadtree encoding gives a large 
number of leaf nodes. 

Figure 1. Example of standard quad tree 
encoding of an object not aligned to the 
quadtree axes. There are 4 original vertices, 
and the quadtree coordinate space is of size 64 
by 64. 

A better approach would be to pOSItIOn the quadtree 
axes centred at the object's centroid and aligned with t.h e 
object's principal axis of inertia. This paper documents 
a general-purpose approach to generating these so-called 
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orientation adaptive quadtrees (OAQs). 

Determining the Orientation of Planar 
Objects 

In general, the two dimensional (p + q )th order moments 
of some function I(x, y) defined on the Cartesian plane 
are given in terms of the following integral [Hu, 1962]: 

(1) 

for p, q = 0,1,2, .... For the case of an embedded planar 
graph of even degree, I( x, y) represents the area inside 
the edges, and the moments are computed using I(x, y) 
= 1, with the integration taking place over the bounding 
rectangle of the graph. 

The central moments are defined as 

J.!pq = l: l: (x - x)P (y - y)q I(x, y) dx dy (2) 

for p, q = 0,1,2, ... , and where (x, y) represent the 
coordinates of the centroid. In terms of moments, the 
centroid is computed as 

_ m10 
x=--, 

moo 

where mOO is the area. 

_ mOl 
y=­

mOO 
(3) 

The central moments can also be expressed in terms of 
the ordinary moments [Hu, 1962j Beer and Johnston, 
1962] as 

1100 = mOO = 11 

1110 = 1101 = 0 
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Figure 2. Simple planar graph embedded in the 
plane. 

The second order moment m02 of the area under the line 
segment (XO,yo) - (X1,yl) can be defined as 

m02 = y2 dy dx = _ y3 dx 1""1Y' 1"" 1 o 0 0 3 
(6) 

The equation of the line segment is y = yo +bx, where b is 
the slope. Assuming t = bx, then x = i, dx = 4!-, and for 
x = 0, t = Oj x = Xl, t = bX1. Applying this substitution 
to the above equation, the line segment equation becomes 
y = yo+t, and the integral is evaluated between the limits 
[0, bxt]. This leads to 

= (7) 

= (8) 

Now, yo + bX1 = Y1, and the second moment for the area 
under line segment (xo, yo) - (Xl, Y1) is 

1 1 (4 4) m02 = - Y1 - Yo 12b 
(9) 

A similar derivation can be carried out to compute the 

1111 = m11 -I1XY 
-2 

(4) second moment under line segment (XO,yo) - (X2,Y2) , 
which results in 

1120 = m20 -l1x 

1102 = -2 m02 -I1Y 

The orientation 8 of the principal axis of inertia is 
computed as [Beer and Johnston, 1962] 

tan28 = 21111 
1120 - 1102 

(5) 

In computer vision, the second order moments are usually 
computed using numerical integration. This numerical 
approach has the drawback of requiring significant 
computations to obtain accurate results. We decided to 
evaluate the integrals in equation (1) for m20 and m02 
directly. Consider the planar graph depicted in Figure 2. 

2 1 (4 4) 
m02 = 12b Y2 - Yo (10) 

The second order moment under line segment (Xl, yJ) -
(X2, Y2) can be derived by taking the difference m~2-m&2' 
which gives 

1,2 1 (4 4) 
m 02 = 12b Y2 - Yl (11) 

This equation shows that the second order moments of 
an area under aline segment of the boundary of a planar 
graph is dependent only on the slope of the line segment 
and its end-point coordinates. In general, the second 
order moment for line segment (x"y;) - (x'+1,y,+l) can 
be stated as 

(12) 
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If the slope b is zero or close to zero, as shown in 
Figure 3, an alternative formulation is used to avoid ill­
conditioning. 

y 

x 

Figure 3. Planar graph embedded in the plane 
with b = O. 

Evaluating the second order moment here under line 
segment (xo, yo) - (Xl, yI) gives 

m02 = y2 dy dx = _ y3 dx 1"'1 Y

' 1'" 1 
° 0 ° 3 

(13) 

Using the line segment equation y = yo + bx with h = 0 
results in 

(14) 

A similar derivation for line segment (xo, yo) - (X2' Y2) 
leads to 

210 1 3 ( ) m 02 = "3YoX2 15 

The difference m~~ - m~~ gives the second order moment 
m~22h under the horizontal line segment (Xl, YI) - (X2' Y2) 
as 

(16) 

since Yo = YI = Y2. The general expression for horizontal 
line segments (Xi, Yi) - (Xi+l, Yi+I) can now be written 
as 

(17) 

The second order moments for a complete planar object 
represented by an embedded graph of even degree is 
computed by adding the contributions of all the edges, 
taking into account whether or not the edge is horizontal 
or vertical . After similar derivations to those shown 
above, the complete second and first order moments for 
a planar object are as follows: 

m02 = t{ I ( • .) for hi ;/; 0 T2b; Yi+l - Yi 
(18) 

'h~(Xi+1 - Xi) for hi = 0 

m20 = t { iHx1+1 - xn for hi ;/; 00 
(19) 

~Xr<Yi+1 - Yi) for hi = 00 i=l 
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Figure 4. Object space and image space. 

I ( 3 3) for bi ;/; 0 60; Yi+l - Yi 
(20) 

~Yt(Xi+1 - Xi) for bi = 0 

~(Xr+l - xT) for bi ;/; 00 
(21 ) 

~ Xt(Yi +1 - Yi) for bi = 00 

for bi of: 0 

for bi = 0 
(22) 

where n = the number of vertices, vertex n+ 1 == vertex 1, 
ai+l = (Y~, + 2yo, Y,+l + 3yt+I)' ai = (y~, + 2YO,Yi + 3yt), 
and bi is the slope Y'±'-Y' . Notice that the expression 

%i+1-.%i 

for mll necessarily involves the intersection Yo, of the 
ordinate axis with the line segment (Xi, Yi) - (Xi+l, Yi±d. 
The orientation of any planar object represented by the 
coordinates of its edge vertices can be computed using 
these equations in conjunction with equat.ions (4) and 
(5). 

Conversion from Edges to OAQs 

Once the orientation (} has been determined, the edge­
based structure is converted to a quad tree whose axes 
are aligned with this direction . Figure 4 depicts the 
two spaces involved; i .e. the original object space and 
the differently oriented image space. One edge of the 
original object is also shown. The dashed lines represent 
unit increments in the image space coordinate frame . 
Conversion of planar graphs of even degree to OAQs 
proceeds via the following five steps: 

1. Convert 

2. 

3. 

all edge vertices from object coordinates to image 
coordinates using an orthogonal transformation . 

Use the Bresenham algorithm [e.g. Foley and 
Van Dam, 1982; Rogers, 1985] to obtain a rast.er 
representation of the graph in image space. 

Obtain the tightly closed boundary 
(TCB) representation of this raster represenatat.ion 
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vertex - record 
x,y real 

end; 
pqtree - -qtree; {pointer to a quadtree} 
qtree z record {node of a quadtree} 

colour: (B,W,G); 
NW,HE,SW,SE : pqtree; 
parent : pqtree 

end; 
OAQ - record 

qt : pqtree; 
{Orientation Adaptive} 
{ Quadtree } 

orientation: real; 
centroid : vertex 

end; 

Figure 5. Pascal record structure for an 
orientation adaptive quad tree. 

using the augmentation algorithm of Merrill [1973]. 
This ensures topological consistency in that one can 
always infer directly from the TCB whether a point 
is interior to the object represented by the graph or 
not. 

4. Sort the TCB lexicographically using the y 
coordinate as the principal sort field . This produces 
a run-length coded (rlc) description of the graph. 

5. Using this rlc description , generate the quadtree 
corresponding to it using a modified Moreton matrix 
approach [Samet, 1980]. The modification made 
here is that the decision about whether an image 
space point is interior to the object is inferred from 
the rlc description . This obviates the requirement 
to store a binary array of size (m,m), where m is the 
maximum image space coordinate. 

Once this process is complete, the OAQ structure is 
identical to the ordinary quadtree, except for the storage 
of the orientation (and centroid) at the root. The Pascal 
record structure for an OAQ is given in Figure 5. The 
• stands for the normal Pascal 1 pointer type. The five 
steps listed above are also used to compute th.e standard 
quadtree, except that the transformation of step 1 does 
not require a rotation . 

Test Results 

The long skinny object shown in Figure 6 was encoded 
using both OAQs and standard quadtrees. This object 
was rotated by increments of _10° from 0 to -50°. Image 
space sizes of 16 by 16 up to 512 by 512 were used to 
encode the object. The results are shown in Table 1. 
Notice that the number of nodes for the OAQ is constant 
for varying image size and orientation, but the number 
of nodes for the standard quadtree basically doubles for 
every doubling of the image space coordinate range. 
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Figure 6. Example test object encoded as 
an OAQ (rotation 20°). The non-rotated 
corner coordinates are (-0.5,5), (0.5,5), (0 .5,-
5),(-0.5,5) . 

Table 1. Number of nodes for Figure 6 object 
encoded as an OAQ and as a standard quad tree 
(St .Q) . 

OAQ Image Size 
. () 16x16 32x32 64x64 128x128 256x256 512x512 
0 65 181 181 181 181 181 

-10 65 181 181 181 181 181 
-20 77 181 181 181 181 181 
-30 77 181 181 181 181 181 
-40 45 181 181 181 181 181 
-50 65 181 181 181 181 181 

St .Q Image Size 
() 16x16 32x32 64x64 128x128 256:<256 512x512 
0 53 181 181 181 181 181 

-10 73 141 245 525 1053 2117 
-20 65 131 285 573 1149 ·2341 
-30 73 141 309 613 1237 2493 
-40 61 101 333 621 1261 2597 
-50 69 137 317 613 1285 2565 
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Table 2. Number of nodes for the road object 
encoded as an OAQ and as a standard quad tree 
(St.Q). 

Image Size 
16x16 I 32x32 64x64 128x128 256x256 

OAQ 73 I 133 365 681 1365 
St.Q 85 I 185 401 857 1841 

To evaluate the OAQ performance with real data, a 
section of the centerline of a road from a map was 
used. An even degree graph representing the road was 
established by forming a polygonal band around the 
centerline, and using the vertices of this polygon to form 
the graph. The OAQ orientation (J was computed as -
22.52°, and the OAQ and standard quadtree encoding 
were done for various image sizes. Figure 7 shows both 
the OAQ and standard encoding of the road object for 
an image space size of 64x64. 

The number of nodes required for different image sizes is 
shown in Table 2. Although the savings in nodes as not 
as dramatic as for the rectangle of Figure 6, there is, on 
average, a 25% savings in the number of nodes required 
for the OAQ compared to the standard quad tree. 

Conclusions 

The orientation adaptive quadtree takes advantage of 
large eccentricity in an object and accounts for any 
rotation of the principal axis of inertia. In this sense, 
it provides an optimal (in terms of space) quadtree 
encoding of a connected planar object. Computing the 
second order moments necessary to obtain the orientation 
requires O(n) time, for n = number of edges in the 
original object description. This extra time does not 
add significantly to the overall time of converting edge 
structures to quadtree structures which is O(n2), for n = 
image space coordinate range. 
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