
196

Exploiting Temporal Coherence III Ray Tracing

J. Chapman
T . W . Calvert

School of Computing Science

J. Dill
School of Engineering Science

Simon Fraser University
Burnaby, British Columbia

Abstract

The majority of images being rendered on sys­
tems today are portions of contiguous sequences of
frames yet the usual practice is to render each frame as
an isolated image. These frames exhibit a high degree
of temporal coherence, i .e. each frame is usually very
similar to immediately preceding and succeeding frames .
An adaptation of the basic ray tracing algorithm is
presented which exploits this temporal (image space)
coherence to reduce the computational cost of image
generation in sequences. A theoretical and empirical
analysis of the proposed algorithm is given . In addition
a statistical analysis of ' real world ' image sequences is
presented .

Keywords: ray tracing, image space, coherence, tem­
poral

1. Introduction

Ray tracing is an extension, of the Appel1 ray
casting technique, due to Whitted. 2 Ray tracing is an
attractive method of rendering images because of its
simplicity , elegance, and the realism of the images it is
capable of producing. Ray tracing is based on a model
of a pinhole camera; a ray is cast from a viewing point
and passes through an element of a regular mesh over­
laid on the image plane. The value given to the image
plane at the mesh element is determined by using the
ray to point sample as it interacts (reflecting, diffusing,
refracting) with the environment being modelled. As
rays are cast from the viewpoint through each of the
mesh elements a raster image of the scene is generated.
In addition it is often possible to extract clues to the
realistic rendering of new phenomena from the physical
method of image generation upon which the rendering
process is modelled . As a rendering technique the major
drawbacks to ray tracing are a large computational cost,
due mainly to calculating ray-object intersections, and
difficulties in the generation of realistic diffuse reflection
phenomena, e.g . colour bleeding.

The majority of work on ray tracing has been
either to expand the range of phenomena which it can
successfully render, e.g. Amanatides,3 Cook,4 Kajiya,5
Peachey ,6 and Fournier,7 or to reduce the rendering
time by reducing the cost of ray-object intersections.
Reducing the cost of intersection calculations generally
requires either substituting geometrically simpler primi­
tive objects for more complex ones or restructuring the
data in some way so as to eliminate unnecessary inter­
section tests. The former can range from the work of
Kay8 which has provided faster intersection algorithms
for objects with convex hulls to Bouville's9 work in
finding more efficient bounding volumes for intersection
testing. In the latter area significant results have been
achieved in the hierarchical structuring of the data, not­
ably the application of Octrees by Glassner10 which
employ space partitioning of the data so that a ray is
tested against objects in the order in which it would
encounter them, and the idea of hierarchically nested
bounding volumes by Rubin ll and Whitted2 which
employ object partitioning to provide bounding volume
intersection tests at increasing levels of detail in the
object. Weghorst12 has further investigated the relative
computational advantages of bounding volume selec­
tion, hierarchical environment descriptions and visible
surface preprocessing.

As in scanline rendering algorithms, attempts
have been made to exploit coherence of various types in
ray tracing algorithms. Heckbert13 has introduced the
notion of 'beams' which exploit the image coherence of
polygonal surfaces to perform antialiasing and reduce
rendering time. Rather than cast individual rays Heck­
bert casts beams with the initial beam covering
(corresponding to) the en tire image plane. As the beam
strikes objects it is subdivided and the process continues
recursively in a manner reminiscent of Warnock. 14

Aliasing is reduced since we are no longer simply point
sampling. Since coherence is maintained through
reflection by a polygonal (planar) surface, duplicate
reflection calculations are avoided (as compared to
several discrete rays which strike the same object). A

Graphics Interface '90

perhaps more subtle approach to using coherence is
made by Joyt5 in the calculation of ray intersections
with parametric surface patches. The calculation is
made by a quasi-Newton iterative method and informa­
tion from the previous ray intersection is used to pro­
vide the initial values for the iteration. Hubschman 16

has attempted to take advantage of frame-to-frame
coherence in reducing calculations. In his model the
only movement allowed is that of the view point and
objects are required to be convex. Preprocessing occurs
for the initial frame to determine object visibility and
succeeding frames are then generated after determining
which objects have changed their visibility status thus
reducing redundant visibility tests.

Each of the above methods relies on some form of
object space coherence. In its simplest form ray tracing
generates a single image from a kinetically static, three
dimensional, model. The sampling process proceeds in
a regular manner with adjacent pixels being rendered
sequentially. In any scene significant portions of the
image exhibit coherence due simply to the " physical"
coherence of the objects being modelled .

If a temporal dimension is added to the process
the ray tracer can generate a sequence of frames; this is
usually done by generating each frame sequentially to
produce a contiguous sequence of frames. There is a
great deal of image space (frame-to-frame) coherence in
such a sequence. If this were not so the human viewer
would be unable to make sense of the image sequence
being presented. This is perhaps the most obvious form
of coherence to exploit in generating an image sequence.
We are thus led to ask if we can construct an algorithm
where prior knowledge of (only) the pixel values of
frame 1 and frame n can be used to reduce the rendering
time of frame m (1 < m < n). The algorithm described
in this paper is an attempt to address this problem .

2. An Analysis of Image Coherence in Com­
mercial Animation

One immediate question is whether or not there is
sufficient image space coherence in typical animation
sequences to warrant investigation of an algorithm
which exploits this coherence. Since the types of images
usually produced in a graphics research environment
tend to be atypical when compared to those generated
by production houses it was decided to aquire anima­
tion sequences from a commercial environment. Six
sequences of animation, each consisting of sixty frames
(two seconds of animation), were obtained from a local
production house and subjected to simple statistical
analysis. In order to prevent experimenter bias the only
instructions given to the donors (other than number of
frames and sequences desired) were to select sequences
which they felt were typical of their work and to avoid

197

including initial and final portions of a sequence (to
prevent bias created by boundary conditions).

Figure 1 shows four frames from one such
sequence. The results of the analysis are shown in
figures 3 to 7. A ' pixel-event ' is the time period over
which the value of a pixel remains constant . Figure 3 is
a plot of the number of pixel-events versus the duration.
The mean duration of a pixel-event was 7.23 frames
with a standard deviation of 16.27. The results shown
in Figure 3 indicate that the pixel-events fall into three
general categories: very short duration pixel-events (the
overwhelming majority) , pixel events which span the
entire sequence of frames, and the remaining pixel­
events which are more or less uniformly distributed by
duration . While this may appear to imply that there
are too few pixel-events of sufficiently long duration to
produce significant savings by exploiting image-space
temporal coherence, the next figure provides a different
view.

A pixel-event can be visualized as a three dimen­
sional volume having one temporal and two spatial
dimensions. Figure 4 is a graph of the volume of pixel­
events (as a percentage of the total image-space volume)
versus the duration . Figure 4 shows that even though
the vast majority of pixel-events are of very short dura­
tion (figure 3) they account for a very small portion of
the image-space volume and that more than half the
image-space volume is accounted for by the relatively
few (less than 10%) long term pixel-events.

The frame-to-frame coherence is defined as the
number of pixels which maintain the same value
between two adjacent frames, i .e. the number of pixel­
events which span both frames. The average frame-to­
frame coherence was found to be 88% with a minimum
of 43% and a maximum of 99%. Figure 5 shows which
pixels have changed between the fram es shown in Fig­
ures 1 band 1c. White areas indicate pixels whose value
has not changed and black areas indicate those pixels
which have changed. The (long term) coherence was
also measured between the first frame of each sequence
and all succeeding frames in the same sequence; Figure
6 shows the coherence between the first frame and all
succeeding frames averaged over all sequences analyzed.
The average long term coherence was 77% with a
minimum of 43% and a maximum of 99%. Figure 7
shows which pixels have changed value at some point in
the animation from which the frames in Figure 1 were
taken; again white areas indicate no change and black
indicates change. It is clear from these results that
there is sufficiently high image space coherence, both
short and long term, that an algorithm which efficiently
exploits either or both types of coherence should run
significantly faster than a traditional ray tracer.

Graphics Interface '90

Figure 1. Figures la (top) to Id (bottom) show frames
1, 30, 31 and 60 from a commercial animation sequence.

198

Figure 2. Figures 2a (top) to 2d (bottom) show frames
1, 30, 31 and 60 from a test animation (described in sec­
tion 5).

Graphics Interface '90

o~------------------------------

o

If)

-+-'~

~O
>~

w
I·
-0
Q>~
X

n::~
o

O~TT~"~~rrrrrrrrTTTTTT~~~
~o 20 40 60

Du ration of Pixel- Events

Figure 3. Number of pixel-events .vs. duration.

Q)

E
:J

o
>
o

-+-'
o

f--

'+-
o

-+-'
C
Q)
(J
l..­
Q)

10'.-----------------------------~

10

Q. 10 - , frnmTrTTTrrrrTTTTTT"""TTT1rrrnmTmTrrrrrrrrrrrrrrrr.,.".l
o 1 0 20 30 40 50 60

Duration (# of frames)

Figure 4. Percent of pixel-event volume. vs. duration.

-
/ '

Figure 5. Pixels which differ between figures 1 b and le.

199

Q>
(J

C
Q>
.....
Q>

.£:
0
0
....,
c
Q>
(J
Cl)

CL

100

eo

70

60

Long Term Coherence

4
Frame Number

Figure 6. Coherence between first and succeeding frames
in commercial animation.

Figure 7. All pixels which change during sample anima­
tion sequence depicted in figure 1.

3. Image Coherence: Frame Differencing

One immediate consequence of viewing ray trac­
ing as a four dimensional rendering process is that gen­
erating pixels primarily in the spatial dimension(s) in a
temporally sequential manner is no longer a constraint;
image generation can occur sequentially in time first
and secondarily in space. In other words we may con­
centrate on the complete rendering of a given pixel at
all points in time, exploiting the temporal coherence of
the image, before turning to the rendering of spatially
adjacent pixels. If we are able to place an upper limit
on the maximum visual frequency of phenomena in a
sequence of frames then we may make the following
assertion : if a pixel P has the same value in both frame
i and frame i+n (where n, the bin width , is determined
from the maximum visual frequency) then P must have

Graphics Interface '90

the same value in all intervening frames. So only those
pixels not meeting this criterion need have their values
calculated by actual ray tracing, while the remainder
merely have their previous values replicated in frames
i+l through i+n-l. We already make a similar asser­
tion when we select the frame rate at which a given
sequence is to be produced. For a given sequence of
frames fl, (l, we compute the values pL, pL, ... ,
P~j of pixel P~j. The time dependent values of all pix­
eIs, for n frames, are calculated as follows:

notation:

Pi is the collection of all pixel values for frame i.
Pi [x] is the value of pixel x in frame i.

algorithm:

Procedure RenderSequence(n)
1. SI = { xl x is a pixel in frame 1 }
2. Sn = { xl x is a pixel in frame n }
3. PI = RayTrace(l, Sd
4. Pn = RayTrace(n, Sn)
5. Search(Sl> 1, n)

Procedure Search(S, I, r)
1. IF I=r THEN return
2. S' = S - { xl xE Sand PI[x] =1= Pr[x] }
3. FOR i=l+l to r-l DO
4. FOR each s E S' DO Pi[s] = PI[s]
5. S" = SCS'
6. j = (l+r)/2
7. PAS"] = RayTrace(j,S")
8. Search(S", I, j)
9. Search(S' " j, r)

10. return

Procedure RayTrace(n, S)
1. Ray trace all pixels for frame n that are in set S
2. return

Procedure RenderSequence first ray traces every
pixel in the first and last frames of the sequence (lines
1-4) and then invokes Search to render intervening
frames in the sequence. Search is passed a set S denot­
ing the pixels it may need to render and the numbers of
the 'left' and 'right' frames which bound the sequence of
frames to be generated. It then constructs the set S'
which denotes all the pixels in S whose values do not
differ in the left and right frames (line 2). Then these
unchanging pixel values are merely copied into the
appropriate positions of the intervening frames (lines 3-
4). S", the set of all pixels in S whose values differ in
the left and right frames, is constructed (line 5) and
these pixels are ray-traced for a frame chosen to lie mid
way between the left and right frames (lines 6-7).
Search is then recursively invoked, only for those pixels
differing between the left and right frames, on the

200

frames between the left and middle frames (line 8) and
the frames between the middle and right frames (line 9).
In effect we are performing a binary search, in the tem­
poral domain, for the points at which each pixel
changes value. Since it IS entirely image
dependent/driven this method will function correctly
even with/during changes , to lighting and viewing
parameters.

There are implications for an implementation of
this algorithm. Care must be taken in choosing the bin
width, ni if n is very small then the computational sav­
ings may be unnecessarily minimized while if it is too
large high frequency phenomena may go undetected,
e.g. Pl=PnPi' l<i<n. Additionally, the scene data
structure must allow data extraction for any time
(frame) in the span to be rendered. This will clearly
exact some space penalty although not necessarily one
which is significant or prohibitive (see empirical results
below). In practice it may be more efficient to treat a
whole row, or area, of pixels at a time in this manner,
rather than a single pixel at a time, to provide some
optimisation in the same spirit as loop unrolling.

4. Algorithm Analysis

A natural question to ask is 'what savings can be
expected from this algorithm?'. Performance will be
maximized if every frame is identical to its predecessor.
In this case the performance ratio P is given by:

nt n
P = - =-

2t 2
(1)

where t is the time required to render a single frame in
it's entirety. However, normally the bin width will be
less than the total number of frames to be rendered. In
this case the performance ratio will be:

P = Nt N

1
N-l +--

n

(2)

assuming N, the total number of frames, is
one more than an exact multiple of n. P will tend to n
as N grows large. It is easily seen that even for small n
the performance increase is significant. A more realistic
assumption is that all frames are not identical. If we let
d denote the mean value of the fraction of pixels which
differ between any pair of frames then the relative work
for n frames is 1+(n-2)d+l , i .e. we ray-trace all pixels
in the first and n rh frames and an average of d of the
pixels in each of the intervening frames. If we also
remove the constraint of N-l being an integral multi­
ple of n, equations 1 and 2 become:

Graphics Interface '90

nt
p =

(2+(n-2)d)t

and

p = Nt
(a+b)t = N

a+b

n
2+(n-2)d

where a = 1 + l N-1 j -- (1+(n-2)d)
n-1

and

0
if r em

b=

(N-1) if rem (rem -- -l)d + 1
n-1

(3)

(N-1) =0
n-1

(~) n-1
iO

respectively, glvmg the expected average performance
ratio. The part of the denominator in equation 3
involving the floor function accounts for the portion of
the sequence which is an integral multiple of the bin
width; the remaining portion of the sequence must be
rendered at a smaller bin width which is accounted for
by the term involving the remainder function. Figure 8
is a graph of equation 3 for several bin widths using a
fixed value of N=100; the rapid change of slope at some
points is produced by the floor term described above.

16.00 ,--------------------------------,

Theoretical Performance

d=O.05
o

:;; 12.00
o

n:::
Q)
u d=O.10 c B.OO
0
E d=O. 15 '-
0

d=O.20 -'-Q) ~ .OO = a..

o 25 50 75

Bin Width

Figure 8. Performance ratio. vs. bin width for 100 frame
sequence. d = 1 - (average coherence between any two
frames).

An obvious question is how to choose n, the bin
width . Its value depends on the visual frequencies in
the image sequence to be generated. If n is too large
visual phenomena may not be rendered at all. A patho­
logical case is that of an object occupying a field of view
equivalent to a single pixel in the generated images.
Suppose the object occupies pixel P ~j in the first frame,

201

pixel P i+k,j+1 in frame n, and moves linearly between
them in the intervening frames. Using a bin width of n
the algorithm will detect the changes at pixels P ~j and
P i+k,HI and so (after searching) will correctly render
P ~j and P i+k,HI in the intervening frames. However,
while all the pixels along the path from P ~j to P i+k,HI

will (should) change value at some time between frame
1 and frame n the algorithm will find that these pixels
have the same value at the boundary frames and so will
not search the intervening fram es thus producing an
incorrect result. This is precisely an aliasing problem
produced by too low a sampling rate of the image
sequence.

There are several feasible solutions to this prob­
lem. At video frame rates it may be possible to use
small values for the bin width and accept the errors
since they will occur over such a short period of time
that they may well be unnoticed by the viewer.
Another possible solution is to try and construct an
envelope around each (spatial) group of changing pixels
and re-render all pixels within the envelope. A more
promising alternative is to determine which parts of the
image are changing rapidly and to use different bin
widths for different portions of the image. The images
could first be rendered using a simple, but rapid , scan
line algorithm and then efficiently compared to deter­
mine rates of change in the image sequence. Alterna­
tively the images could first be rendered using a stan­
dard ray tracer (or beam tracer) but on a coarser raster
and again a determination would be made as to rates of
change for sub-regions of the image sequence. If the
images were ray traced on a raster with one eighth the
horizontal and vertical resolution of the desired final
images (one pixel correspond ing to an eight by eight tile
of the original raster) most phenomena of the type
described above would be recognized (subject to normal
ray tracing a1iasing problems) and yet the total render­
ing time would be increased by less than 2%. This is
similar in nature to the multi-grid method, used to find
numerical solutions for systems of differential equations,
due to Brandt.17

5. Empirical Results

The basic algorithm described above has been
implemented on a variety of machines including Sun
workstations and a Silicon Graphics IRIS 4D. A
hierarchical data structure is employed to represent the
model. Each primitive object, or group of objects,
which moves has three associated polynomials, one for
each spatial dimension, describing the movement of the
object(s) with respect to time. The coefficients of these
polynomials are stored in the appropriate positions of
the data structure. When it is desired to render pixels
for time t a procedure traverses the data structure
evaluating the polynomials and adj usting the data
structure appropriately . In this manner the model is

Graphics Interface '90

input only once, regardless of the number of frames to
be generated, and multiple copies of the data structure
are not required. Even if every primitive object in a
scene moves independently (thus requiring a unique set
of coefficients for each object) the space penalty is nei­
ther prohibitive nor a function of the number of frames
to be rendered.

A series of three test animations were constructed
using three different models in three-space: a) a sphere,
background polygon and single light source; a dozen
spheres of varying colour and size with a background
polygon and single light source; c) a terrain composed of
20,000 polygons and a single background polygon. The
three resulting test animation sequences were: a) the
single sphere moving toward the viewer and diagonally
right and downward with a mean frame-to-frame coher­
ence of 95.06 (minimum of 91.57; maximum of 97.48)
and a mean long term coherence of 92.55 (minimum of
88.41; maximum of 97.48) ; b) the dozen spheres moving
with random trajectories and velocities from a loose
cluster near the centre of the modelled space (see figure
2) with a mean frame-to-frame coherence of 86.03
(minimum of 81.71; maximum of 93.77) and a mean
long term coherence of 70.47 (minimum of 60.11; max­
imum of 84.4); c) the 'camera' position following a tra­
jectory over the terrain with a mean frame-to-frame
coherence of 81.77 (minimum of 80.29; maximum of
82.4) and a mean long term coherence of 40.99
(minimum of 38.48; maximum of 80.29);

These sixty fram e animation sequences were
repeatedly rendered using a number of bin widths. Fig­
ure 9 shows the results given as a function of bin width .
Column two shows the relative (compared to traditional
frame-by-frame ray tracing) cpu time required . Column
three is the theoretical lower bound on the relative cpu
time as determined by equation 4 with d derived from
the animations; column four is the ratio of actual per­
formance ratio to the theoretical performance ratio
given by equation 4. The difference between the actual
and predicted performance ratios can be accounted for ,
at least in part, by the fact that equation 4 makes the
(clearly invalid) assumptions that the manipulation of
sets and replication of pixel values require zero time and
that the time required to ray-trace a pixel is constant
over all pixels in the scene. Column five is the fraction ,
of the total number of pixels, that were actually ray
traced; column six is the total number of pixels whose
value differs from that produced by the traditional
method expressed as a percentage of the total number of
pixels in the sequence - note that, even for the worst
case (in figure 9c), less than three percent of the pixels
differ from those in the "correct" sequence. Figure 10
plots both the measured and predicted relative cpu
times as well as the measured percentage of pixels in
error (columns two, three and six of figure 9) as a func­
tion of bin width .

202

In an informal experiment the animation
sequences for bin widths up to ten were videotaped and
shown to an audience. Each sequence was paired with
the "correctly" rendered sequence, i.e. rendered with a
bin width of two. The order of the sequences within
each pair was chosen randomly and the audience viewed
the resulting twenty-seven pairs in a random order to
prevent subjects from discerning any trend. The sub­
jects were told nothing about the the sequences (other
than that they would be shown in pairs) and were asked
to (individually) indicate on a questionaire whether the
two animation sequences in each pair appeared to be
identical. Figure 11 is a table of the results obtained
from this experiment; the second, third and fourth
columns correspond to the first, second and third ani­
mation sequences. The first number in each entry
denotes the number of individuals reporting the
sequences as identical while the second denotes the
number reporting a perceived difference; the number of
responses reported in each cell of figure 11 is not con­
stant (over the table) due to the fact that some indivi­
duals reported no choice for a particular pair. It is of
interest to note the number of subjects reporting the
three pairs of identical sequences (bin width of 2) as
being non-identical .

Bin ReI. Theor- CPU/ Pixels %
CPU etical Theo. Traced Error

2 1.0 1.0 1.0 1.0 0.0

3 0.43 0.54 0.79 0.54 0.02

4 0.31 0.38 0.81 0.39 0.042

5 0.26 0.3 0.85 0.31 0.05

6 0.21 0.26 0.84 0.26 0.063

7 0.2 0.22 0.89 0.23 0.075

8 0.18 0.21 0.87 0.22 0.081

9 0.18 0.19 0.94 0.2 0.089

10 0.17 0.18 0.95 0.19 0.1

Figure 9a. Results for first animation (d = 0.05).

Bin ReI. Theor- CPU/ Pixels. %
CPU etical Theo. Traced Error

2 1.0 1.0 1.0 1.0 0.0

3 0.58 0.58 1 0.6 0.036

4 0.45 0.44 1 0.47 0.074

5 0.39 0.37 1.1 0.4 0.1

6 0.37 0.33 1.1 0.36 0.14

7 0.33 0.3 1.1 0.34 0.18

8 0.32 0.28 1.1 0.33 0.23

9 0.33 0.27 1.2 0.31 0.29

10 0.29 0.25 1.2 0.3 0.59

Figure 9b. Results for second animation (d = 0.14).

Graphics Interface '90

Bin Rel. Theor- CPU/ Pixels %
CPU etical Theo. Traced Error

2 1.0 1.0 1.0 1.0 0.0

3 0.74 0.6 1.2 0.68 0.1

4 0.7 0.47 1.5 0.6 0.26

5 0.67 0.4 1.7 0.55 0.49

6 0.67 0.36 1.9 0.53 0.77

7 0.65 0.33 2 0.52 1.2

8 0.64 0.32 2 0.5 1.6

9 0.65 0.3 2.2 0.49 2

10 0.63 0.29 2.2 0.48 2.4

Figure 9c. Results for third animation (d = 0.18).

Figure 9. Test animation measurements.

1.20 .------------------,

Empirical Results. Animalion 1. d-.05

1.00

0.80 ~lIQSured CPU

Theoretical CPU

0.60 Percent Error

0.40 '-

" "
0.20 _---
o.oo~~~~~~~~~~~~~~~~

0 .00 2.00 4.00 6.00 8 .00 '0.00 12.00

Bin Width

Figure lOa. Results for first animation .

1.20 .".------------------,

1.00

0.80

0.60

0.40

O.ZO

Empirical Results. Animation Z. d-0. 14

~_ured CPU

Theoretical CPU

0 .00 ~""~~~~~~~~~~~~~~
0.00 2.00 4 .00 6.00 8 .00 , 0 .00 12.00

Bin Width

Figure lOb. Results for second animation.

203

2.50 -::r------------------,

2.00

1.:SO

1.00

O.:SO

Empirk:ol Resutts, AnimaUon 3,

~

Mecsurod CPU

T~r9tk:ol CPV

Percent Error

\
\

....
'- --- ------

0.00 ~~~~~~~~~~~~~~~~
0 .00 2.00 4 .00 6 .00 8 .00 , 0 .00 12.00

Bin Width

Figure 10c. Results for third animation.

Figure 10. A comparison of empirical and predicted per­
formance increase for three test animations.

Bin Animation Animation Animation

1 2 3

2 14,3 12,4 11,6

3 12,4 13,4 14,3

4 14,3 12,5 8,8

5 12,5 8,9 12,5

6 12,5 14,3 12,5

7 14,3 10,7 Hl,7

8 13,4 10,7 10,7

9 11,6 9,8 9,8

10 5,12 8,9 14 ,3

Figure 11. Audience survey results.

6. Discussion and Summary

Concurrent with the research presented in this
paper, Badt18 described an image space algorithm simi­
lar in spirit to the algorithm presented here but stochas­
tic in nature. Unfortunately, since Badt provides no
theoretical analysis and did not implement his proposed
algorithm (and thus provides no empirical data) it is
difficult to compare the two approaches. However, one
feature of his algorithm is that it would seem to require
that both the values of all pixels for all frames and the
data structure representing the model be capable of
being sampled/examined on an essentially random basis
with respect to both spatial and temporal coordinates.
This implies a rather large space penalty for an actual
inplementation of Badt's algorithm . In contrast the
algorithm presented here imposes negligible space penal­
ties since, while frames are not generated in sequential
order, all the pixels for any given frame are generated as
a group before pixels for another frame are produced.

Graphics Interface '90

Empirical evidence has been presented which
demonstrates that substantial performance increases
may be obtained by an algorithm which can successfully
exploit image space coherence. A candidate algorithm
has been presented and an empirical and theoretical
analysis performed. Ray-tracing a sequence of images
has been divided into two disjoint tasks: 1. ray-tracing
a minimal set of pixels and 2. determining which pixels
can be excluded from that set. The latter problem is
potentially of lower computational complexity than
simply determining the correct value of the pixels con­
cerned. The algorithm presented can also be applied to
rendering schemes other than ray tracing. When
applied to ray tracing the results show that significant
performance increases can be obtained with this algo­
rithm. Although it is possible for the algorithm, as
implemented, to produce "incorrect" results, in some
situations, several potential solutions have been postu­
lated. Ongoing research also includes the investigation
of algorithms designed to directly exploit spatia­
temporal coherence in ray-object intersection calcula­
tions.

7. Acknowledgements

The authors wish to express their gratitude to
Marcus Tessman and Icon Computer Graphics Ltd. of
Vancouver for providing the authors with raw data in
the form of sequences of commercial animation pra­
duced by Icon Computer Graphics.

References

1.

2.

A. Appel, "Some Techniques for Shading
Machine Renderings of Solids," Proc. AFIPS
JSCC, vo!. 32, pp. 37-45, 1968.

T. Whitted, " An Improved Illumination Model
for Shaded Display," CA CM, vo!. 23, no. 6, pp.
343-349, June 1980.

3. J. Amanatides, "Ray Tracing with Cones," Com­
puter Graphics, vo!. 18, no. 3, pp. 129-135, July
1984.

4. R. L. Cook, T. Porter, and 1. Carpenter, "Distri­
buted Ray Tracing," Computer Graphics, vo!.
18, no. 3, pp. 137-145, July 1984.

5. J. T . Kajiya and B. P . VonHerzen , "Ray Tracing
Volume Densities," Computer Graphics, vo!. 18,
no. 3, pp. 165-175, July 1984.

6. D. R. Peachey, "Modelling Waves and Surf,"
Computer Graphics, vo!. 20, no . 4, pp. 65-74,
August 1986.

204

7. A. Fournier and W . T. Reeves, "A Simple Model
of Ocean Waves," Computer Graphics, vo!. 20,
no. 4, pp. 17-27, August 1981.

8. T. L. Kay and J. T . Kajiya, "Ray Tracing Com­
plex Surfaces," Computer Graphics, vo!. 20, no.
4, pp. 269-278, Aug. 1986.

9. C. Bouville, "Bounding Ellipsoids for Ray­
Fractal Intersection," Computer Graphics, vo!.
19, no. 3, pp. 45-52, July 1985.

10. A. S. Glassner, "Space Subdivision for Fast Ray
Tracing," IEEE CGA, vo!. 4, no. 10, pp. 15-22,
Oct. 1984.

11. S. M. Rubin and T. Whitted, "A 3-Dimensional
Representation for Fast Rendering of Complex
Scenes," Computer Graphics, vo!. 14, no. 3, pp.
110-116, July 1980.

12. H. Weghorst, G . Hooper, and D. P. Greenberg,
" Improved Computational Methods for Ray
Tracing," ACM TOG, vo!. 3, no. 1, pp. 52-69,
January 1984.

13. P. S. Heckbert and P. Hanrahan, "Beam Tracing
Polygonal Objects," Computer Graphics, vo!. 18,
no. 3, pp. 119-128, July 1984.

14. J. Warnock , "A Hidden-Surface Algorithm for
Computer Generated Half-Tone Pictures," TR
4-15, University of Utah Computer Science Dept.,
1969.

15. K. I. Joy and M. N. Bhetanabhotla, "Ray Trac­
ing Parametric Surface Patches Utilizing Numeri­
cal Techniques and Ray Coherence," Computer
Graphics, vo!. 20 , no. 4, pp. 279-285, Aug. 1986.

16. H. Hubschman and S. W. Zucker, "Frame to
Frame Coherence and the Hidden Surface Com­
putation: Constraints for a Convex World,"
ACM TOG, vo!. 1, no. 2, pp. 129-162, April
1982.

17. A. Brandt, " Multi-level adaptive solutions to
boundary value problems," Mathematical Com­
putation, vo!. 31 , no. 138, pp. 333-390, 1978.

18. Sig Badt Jr., "Two algorithms for taking advan­
tage of temporal coherence in ray tracing," The
Visual Computer, no. 4, pp. 123-132, 1988.

Graphics Interface '90

