
213 

Voxel Occlusion Testing: A Shadow Determination 
Accelerator for Ray Tracing 

Andrew Woo t 
John Amanatides t 

Department of Computer Science 
University of Toronto 

Toronto. Ontario 
M5S IA4 

1. Abstract 

A shadow determination accelerator for ray tracing is 
presented. It is built on top of the uniform voxel traversal 
grid structure. The accelerator proves to be rather efficient. 
requires little additional memory and the worst case scenario 
per shadow determination just reduces down to traditional 
voxel traversal. It can also be extended to model linear. area 
lights. as well as atmospheric shadows. 

Keywords: grid. intersection culling. occlusion. penumbra. 
ray tracing. shadows. umbra. voxel traversal. 

2. Introduction 

The presence of shadows in a scene IS Important in 
conveying realism and aiding depth perception [Wo089b]. It 
is seen as a comparative darkness within an illuminated area 
caused by the interception of light by another object. The 
dark region produced can provide information such as the 
approximate shape and relative proximity of the intercepting 
object(s). It can also indicate the approximate location, inten
sity and size of the light sources. 

Hard shadow determination algorithms for opaque sur
faces have been categorized into six general classes: shadow 
generation during scanout [Appe68] [Bouk70]. shadow 
volumes [Crow77] [Brot84] [Berg86] [Max86]. shadow 
volume binary space partition tree [Chin89], area subdivision 
[Nish74] [Athe78]. depth buffer [Wi1i78] [Hour85] [Reev87]. 
and ray tracing [Appe68] [Gold71] [Whit80]. The first four 
approaches have the general constraint that only planar 
polygons can be easily handled. The depth buffer approach 
[Will78] does not have this constraint but introduces addi
tional aliasing artifacts. However, the aliasing artifacts have 
been reduced by filtering. as in the work done by [Hour85] 
[Reev87]. 

t Andrew can be reached at SAS Institute Canada Inc., 225 Duncan Mill 
Road, Don Mills, OnLario, Canada, M3B 3K9. 
* John can be reached at DepaI1ment of Computer Science, York 
University, North Yorlc, OnLario, M3J IP3. 

3. Shadow Determination in Ray Tracing 

Ray casting [Appe68] [Gold71] was introduced as an 
elegant method for visibility calculations and a simple shadow 
determination approach without the previous shadow algo
rithm limitations. Ray tracing. as popularized by Whined 
[Whit80]. uses the ray casting technique to model reflections 
and refractions. 

The principle behind shadow determination in ray trac
ing is simple. A shadow ray is shot from the visible point 
(point to be shaded) to the light source. If the shadow ray 
intersects any objects between the visible point and the light 
source. then it is in shadow; otherwise it is not. Each intersec
tion check is very floating-point intensive and the naive ray 
tracing approach requires such checks with all objects in the 
scene. Since each ray-surface intersection check is very 
expensive, there is a need to calculate a small candidate set of 
objects that can possibly intersect the ray to reduce computa
tion time. This is referred to as intersection culling. 

4. Intersection Culling Algorithms 

There has been a great deal of research in this aspect of 
ray tracing acceleration. One class of intersection culling 
algorithms uses spatial subdivision, of which there arc two 
general approaches: voxel traversal [Glas84] [Fuji86] 
[Aman87] [Snyd87]. and hierarchical bounding volumes 
[Rubi80] [Kay86] [Gold87] . 

Since the new shadow determination accelerator is 
built on top of the uniform voxel traversal grid structure *, it 
is necessary to go over the fundamentals of voxel traversal. 
Space encompassing all objects is placed in a grid of unit 
cubes called voxels. Each voxel contains a list of all objects 
which reside in that voxel. Each ray traverses the grid inorder 
and tests for intersection only with objects residing in the vox
els traversed (inorder). until an intersection is found or the ray 
has completely traversed the grid. 

• There are basically two variations of voxel traversal: variable sized 
voxels using hierarchical data structures [Glasg4] [Fujig6]. and uniform· 
ly sized voxels using a grid structure [Fujig6] [Amang7] [Snydg7j. Uni
fonn voxellraversal is used in the implementation of the accelerator. 

Graphics Interface '90 



214 

Voxel traversal culls all ray types (including shadow 
rays) and tends to provide small candidate set of objects that a 
ray needs to intersect with. However; many of the intersec
tions performed when applied to shadow rays are still 
unnecessary and savings related to shadow calculations can 
prove to be valuable. Thus shadow ray cullers need to be 
looked into. 

S. Shadow Ray Cuning 

Dealing only with opaque objects and hard shadow 
generation. shadow determination is just a binary decision. It 
is not concerned with information about object(s) that occlude 
it. Thus many intersection checks can be avoided. There 
have been only two attempts at shadow ray culling in ray trac
ing: light buffer and hybrid shadow testing. 

5.1. The Light Buffer 

An observation made by Haines et al. [Hain86) is that, 
in many scenes, shadow determination may dominate the ray 
tracing processing time. This is especially true when multiple 
light sources are involved. The light buffer [Hain86) is con· 
structed to lower the processing cost of shadow determina· 
tion. 

Figure 1 

Light Source Frustum 

Light Buffer 

The light buffer consists of six grid planes forming a 
box surrounding the light source origin (point light source is 
assumed). The cells of the buffer contain information on the 
smallest full occlusion (completely fills cell) distance from the 
light source, and sorted approximate depth values of candi
date occlusion objects obtained by projecting objects onto the 
surface cells during preprocessing. See figure I,' where the 
four spheres within the light frusturn are stored in the cell's 
data structure of candidate occlusion objects. 

. For each intersected point in question, if the depth 
value of the corresponding cell is greater than the smallest full 
occlusion distance, then the intersection point is in shadow. 
Similarly, if the cell is void of projected objects, then the sur
face is not in shadow. Otherwise, shadow determination 
requires intersection tests with candidate or;clusion objects of 
the cell, performed inorder with respect to the depth values 
until either an intersection hit is found (in shadow) or the 
depth value of the candidate occluding object is greater than 
the intersection point (not in shadow). 

Haines et al. report a substantial improvement in the 
shadow determination phase. However, large memory space 

is required: O(N2n) per light source, whereNxN is the resolu
tion of one grid plane of the light buffer, and n is the total 
number of objects. The preprocessing is also expensive: 
O(max(EnN2 , N 2nlogn» per light source, where E is the 
average number of edges per polygon, EN 2 accounts for the 
scan-conversion cost per object, and nlogn represents the sort
ing required per cell. 

5.2. Hybrid Shadow Testing (HST) 

Hybrid Shadow Testing (HST) [Eo89] is another 
approach to accelerate shadow determination. It applies a 
shadow polygon approach [Crow77] [Brot84] [Berg86) 
[Max86] and voxel traversal [Glas84] [Fuji86] [Aman87] 
[Snyd87]. The shadow polygons are placed in the voxel 
traversal grid structure, and the shadow count is kept up-to
date as the ray is traversed. No shadow rays are generatcd for 
this scheme, but intersection calculations with the shadow 
polygons, if encountered in a traversed voxel, are nccessary. 
When the closest intersected surface is found, the shadow 
count is checked. If the count is 0, then the surface is not in 
shadow; otherwise it is in shadow. 

Eo et al. [E089] realize that the number of shadow 
polygons are large. Thus cach ray may potentially need to 
intersect many shadow polygons . As such, the traditional 
shadow ray approach applying voxel traversal is used if many 
such shadow polygons need to be intersect.cd . The storage 
and run time complexity for the HST algorithm is O(EN 3n) 
per light source, where E is the average number of edges per 
polygon, n is the number of objects in the scene and NxNxN 
is the resolution of the grid structure. 

6. A New Shadow Determination Accelerator 

The new shadow determination accelerator, voxel 
occlusion testing [W0089a). possesses favourable properties 
in that it uses a data structure already built for fast ray tracing, 
requires little additional storage, models directional and 
extended light sources, and has a good worst case scenario. 

The implementation of the accelerator is built on top of 
uniform voxel traversal, i.e. each voxel is the same size. 
Given the uniform grid structure, an extra 2-bit field needs to 
be added per light source in each voxel. Its value indicates 
the level of opaque occlusion of the voxel with respect to each 
light source: full. null and complicated occlusion. Note that 
the remainder of the process description assumes only one 
light source, though the process is to be performed for each 
light source in the scene. 

As a preprocessing step following object placement 
within the voxel data structure, all empty voxels are marked 
with null occlusion and non-empty voxels are marked with 
complicated occlusion. For each object, the shadow umbra 
[Crow?7] is projected down to the relevant voxels. The voxels 
which reside solely within the shadow umbra are marked with 
full occlusion; the voxels that contain the shadow umbra 
edges are marked with complicated occlusion. Refer to figure 
2, where the dotted voxels represent complicated occlusion, 
and the remainder of the voxels are marked with full occlu· 

Graphics Interface '90 



sion. 

Figure 2 

: Shadow Volume 
I--t--+--t----, 

V oxel Structure 

215 

When a ray intersects a surface in a voxel that has 
either full or null occlusion (a 2-bit comparison), then any 
intersected surface in the voxel is ensured to be in shadow or 
not in shadow, respectively. No shadow ray nor intersection 
checks need to be performed; this is referred to as first pass 
voxel occlusion testing. If complicated occlusion is the voxel 
occlusion value, then the fastest method is to resort back to 
voxel traversal (and intersection checks with candidate set of 
objects) of the shadow ray. However, as each voxel is 
traversed, its occlusion value is also checked (another 2-bit 
comparison). If the occlusion value is either full or null 
occlusion, then traversal can be halted and the intersected 
point is ensured to be in shadow of this light source or not, 
respectively; this is referred to as intermediate voxel occlusion 
testing. 

At worst, no known occlusion values will be found 
during traversal. As a result, considering the negligible 2-bit 
comparisons, the worst scenario per shadow determination is 
the same as for voxel traversal. Refer to the below pseudo 
code for the different shadow determination procedures under 
voxel traversal and voxel occlusion testing. 

/* Voxel Traversal's Method for Shadow Determination *f 

VoxelTraversalShadow (point,light) 
{ 
voxel = CalculateCurrentVoxel (point); 
ray = GenerateShadowRay (point,light); 

while «voxel = TraverseNextVoxel (ray»!= outside grid) 
if (IntersectObjectsInVoxel (ray, voxel) == hit) 

return (in shadow); 
return (not in shadow); 
J 

1* Voxel Occlusion's MethOd for Shadow Determination *f 

VoxelOcclusionShadow (point, light) 
{ 
/* First Pass Voxel Occlusion Testing 0/ 
voxel = CalculateCurrent Voxel (point); 
if (voxel occlusion value == full occlusion) 

return (in shadow); 
else if (voxel occlusion value == null occlusion) 

return (not in shadow); 

/* Intermediate Voxel Occlusion Testing 0/ 
ray = GenerateShadowRay (point, light); 
while «voxel = TraverseNextVoxel (ray» != outside grid) 

{ 
if (voxel occlusion value == full occlusion) 

return (in shadow); 
else if (voxel occlusion == null occlusion) 

return (not in shadow); 

if (lntersectObjectsInVoxel (ray, voxel) == hit) 
return (in shadow); 

return (not in shadow); 
} 

6.1. Overhead for Preprocessing 

The additional storage necessary is 2N 3 bits per light 
source, where NxNxN is the resolution of the grid. Note that 
the storage necessary is independent of the number of objects. 

The preprocessing mainly involves projections of sha
dow umbrae onto voxels. The silhouettes of the objects are 
projected, then scan-converted to determine the voxel occlu
sion values. Thus the complexity is O(EnN 3

), where n is the 
number of objects, E is the average number of vertices per 
object and EN 3 accounts for the projection and scan
conversion costs per object. This preprocessing is simple for 
polygons since the vertices can be projected, then joined to 
form the projected silhouette. However, the silhouette is 
more difficult to identify for quadric surfaces. Detailed pro
jection mathematics for polygons and quadric surfaces are 
discussed in [Wo089aJ. 

6.2. Non-Occluded Regions 

If the exact definition of null occlusion is considered, 
this occlusion value can never be found in a voxel that con
tains a surface, even if the surface is completely unoccluded. 
Complicated occlusion will always be found in such voxels 
and thus first pass occlusion testing will fail. This can be par
tially solved for the case of only one object residing in the 
voxeJ. The voxel can be marked null one if the voxel is not 
already marked with other occlusion values. This indicates 
null occlusion for first pass occlusion testing, and complicated 
occlusion for intermediate occlusion testing. Thus. shadow 
rays do not need to be generated for voxels that contain only 
one convex object. If the object were concave, an intersection 
test against itself needs to be done before the occlusion status 
is determined. 

Graphics Interface '90 



216 

With more populated voxels, it is inevitable that the 
occlusion value may be marked with complicated occlusion 
(to handle the case of occlusion from ()bjects within the same 
voxel). For first pass occlusion testing, the ray bounding box 
approach [Snyd87] is used to reduce intersection checks 
within the initial voxel. Then hopefully, intermediate voxel 
occlusion testing can be used to determine the occlusion later 
on. 

6.3. Non-Opaque Objects 

Shadows as a result of transparent objects are much 
harder to deal with t. It needs the information of all occlud
ing objects to generate coloured shadows. In addition, due to 
refraction, a single linear shadow ray is not sufficient to gen
erate the correct results. The compromise commonly taken in 
ray tracing is to assume no refraction in the transparent 
occluding objects. This is also the assumption made in this 
shadow determination accelerator. 

A new occlusion value full transparent occlusion can 
be added. However, upon reaching such a voxel, shadow 
determination cannot be stopped since information about all 
occluding objects are needed. Only transparent objects need 
to be checked for intersection. However, this has little advan
tage and requires the number of bits per voxel to increase to 
three. It is generally recommended that complicated occlu
sion be marked for the shadow umbrae of transparent objects. 

7. Implications of the Accelerator 

7.1. View Independence 

In a rendering technique to calculate radiosity 
[00ra84], view independence can be achieved. Ray tracing is 
generally a view dependent rendering technique since its 
illumination calculations are dependent on the ray shot from 
the eye. But since shadows from opaque objects are only 
fractional value occlusions multiplied with intensity calcula
tions, they can be view independent if desired. In this paper, 
voxcl occlusion testing provides a view independent approach 
for shadow calculations in ray tracing. Thus the 2-bit voxel 
occlusion values need only be generated once and can be 
retained for future frames in any fly-by animation. In addi
tion, changes in the power or spectral description Of any light 
source require no change in the voxel occlusion values since 
the fractional occlusions are still the same. 

7.2. Shadows on Bump-mapped Surfaces 

As stated in [Wo089b], shadows on bump-mapped sur
faces look perfectly smooth because the shadow ray is not 
perturbed to reflect the bumpiness. An analytic solution to the 
perturbation of the shadow ray was proposed in [Wo089bl, 
but is expensive in general. However, the perturbation of the 
shadow ray only needs to be done near the silhouette of the 
shadow; the region in the middle usually ends up with the 
same shadow results. Thus, when the voxel occlusion value is 

t Actually, these In: not shadows. but filtering ollight [Woo89bl. 

full occlusion, it is assumed that it is not near the silhouette 
region and no work is done to perturb the shadow ray . When 
the voxel occlusion value is complicaIed occlusion, then the 
shadow ray is perturbed. This should save some computa
tions in perturbation of the shadow rays. 

7.3. Voxel Occlusion may not Accelerate 

Our testing suggests that voxel occlusion testing 
should not be used on low resolution images, e.g. 64x64. The 
preprocessing time may dominate the rendering process. 
However, the larger the resolution or the higher the sampling 
rate, the better the improvement of the runtime performance 
since the preprocessing is independent of resolution and 
becomes much less dominant compared to the actual render
ing process. 

Even at reasonable resolutions, this accelerator may 
not provide accelerated runtime performance over voxel 
traversal at times (on a single frame basis). Some additional 
work should go into a quick check whether as to use voxel 
occlusion testing during the preprocessing stage (on a single 
frame basis). This can be done since the algorithm is just a 
simple attachment onto the voxel traversal approach after the 
grid structure is produced. 

A simple solution to this problem is to evaluate the 
scene after the grid initialization for voxel traversal is done. 
The equation to be evaluated is presented below, where n 
represents the total number of objects, the numerator 
represents the total region occupied by the objects, and when 
divided by the grid resolution N 2

, represents a percentage of 
the total volume used: 

~ ± number of voxels occupied by ob jecl i 
nN i=1 

and voxel occlusion testing is not to be used if the above is 
below some threshold value (empirically derived), assuming 
that the small objects do not project a large shadow umbra. 
Note that this is only a quick check and may not be valid all 
the time. 

8. Testing and Analysis 

8.1. Some Numerical Results 

Testing has been done on a SUN 31280 with fpa, and 
the algorithm was implemented on a ray tracer at the Univer
sity of Toronto: optik. The voxel traversal implementation in 
optik is described in [Aman87]. All test images are rendered 
at a resolution of 512x512 with one sample per pixel. 

Table 1 illustrates the effectiveness of voxel occlusion 
testing. A couple of images were taken from the procedural 
database [Hain871. Note that in the column grid, a grid subdi
vision level of NxNxN is assumed. In addition, Voxel and Occ 
indicate the total CPU time in seconds taken to render the 
image using voxel traversal and voxcl occlusion, respectively. 
Finally, %Shad represents the percentage of shadow rays over 
all ray types. 

Graphics Interface '90 



217 

In terms of the savings acquired, table 2 is given for 
the identical images in table 1. %Known is the percentage of 
shadow determination requests that does not require shadow 
ray generation. In addition, #Trav and #Int is the total 
number of traversals and intersection tests saved for using 

. voxel occlusion testing, respectively. Finally, #Intermed is 
the total number of successes using intermediate voxel occlu
sion testing. 

Table 1 

Image #light Grid #Obj Voxel Oee %Shad 

Graph 2 40 12 1518.2 1220.3 63% 

Quadrie 3 50 15 1057.2 880.6 54% 

DGP I 20 21 797.5 658.7 41% 

Bars I 30 88 1419.6 1052.6 49% 

Flakes 3 50 92 3234.7 2970.9 70% 

Tetra I 40 4096 747.5 985.1 10% 

Table 2 

Image %Known #Trav #Int #Intcnned 

Graph 58% 11209198 347883 129073 

Quadrie 67% 7071098 333625 44227 

DGP 74% 7016086 174635 131 38 

Bars 68% 662781 14314895 16099 

Flakes 36% 1066370 21094921 214037 

Tetra 1% 12872 97692 10756 

8.2. Voxel Occlusion vs. Voxel Traversal 

In this section, a synopsis of the comparison between 
the two methods is given. A more indepth analysis can be 
found in [Wo089a] . 

Voxel occlusion testing, on average, shows a good 
improvement over voxel traversal: about 15% improvement 
per light source on the total CPU time on our selected 
images. The ratio of shadow rays over all ray types tends to 
play a large role in the improvement level. The larger the per
centage, the better the improvement. In particular, the addi
tion of more light sources, thus more shadow rays, exhibits 
approximately linear rate of improvement. 

For a small number of objects (less than 250 objects), 
different subdivision levels seem to hamper voxel traversal 
much more than voxel occlusion testing. Thus the necessi ty 
to find the optimal subdivision level with voxel occlusion is 
less important; an educated guess may be sufficient. In addi
tion, the optimal subdivision level for voxel traversal is usu
ally larger compared to voxel occlusion testing. Grid sparse
ness with small densely populated regions also seems to 
hamper voxel traversal much more than voxel occlusion test
ing. This variable is important to analyze since it gives voxel 
traversal a great deal of trouble: a deep subdivision level will 
require extensive traversal, but a not deep enough subdivision 
level may require intersection checks with many objects. 

However, the above paragraph's observations are not 
true for large number of objects. Grid sparseness causes 
intersection savings to be few if the subdivision level is small. 
By increasing the subdivision level, the storage cost increases 
further to cause swapping problems. This is onc prime reason 
to perform a quick check to determine if voxel occlusion test
ing should be used on top of voxel traversa1. However. a 
better solution to deal with this problem is proposed in §9.2. 

8.3. Voxel Occlusion vs. Light Buffer 

As compared to the light buffer. voxel occlusion seems 
to perform better under some informal analysis. The lighting 
frustum, which encompasses all candidate objects per cell in 
the light buffer, grows larger as it gets farther away from the 
light. Thus the probability of finding known occlusion gets 
much smaller as the distance to the light source increases. 
This also results in a larger candidate set of objects to inter
sect with. 

Voxel occlusion relics on the grid structure to locate 
candidate sets of objects to intersect with. The candidate sets 
tend to be much smaller since it does not grow as it gets 
farther away from the light source . For the same reason. the 
probability of finding known occlusion in a voxel should be 

higher when compared to the light buffer. 

Another disadvantage of the light buffer is the need for 
large storage requirements. Haines et a1. report improvement 
factors of 4-10. However. this is misleading since it is com
pared to traditional ray tracing without intersection culling 
(and the additional storage requirements of the culling 
approach). Voxel occlusion. at 2 bits per voxel. requires a lot 
less memory. 

8.4. Voxel Occlusion vs. HST Algorithm 

As can be seen, voxel occlusion testing just reduces 
down to voxel traversal at the worst case. Hybrid Shadow 
Testing (HST) attempts to acquire this upper bound also by 
switching between shadow polygon and traditional shadow 
ray. However. this upper bound cannot be guaranteed. 

On average. the number of intersections required 
seems to favour voxel occlusion testing: the HST algori thm 
deals poorly with hierarchy of shadow volumes. A point sha
dowed by many objects needs to intersect against each of 
those objects, whereas our approach only requires checking a 
single occlusion value. In addi tion, it must be noted that HST 
requires a much larger memory capacity. 

9. Proposals for Improvement 

9.1. Complex Surfaces 

This accelerator needs to project objects with known 
silhouettes (less exact silhouettes can generally be acquired 
though). Thus, implicit and parametric surfaces present a 
problem if numerical iteration (direct rendering) is used to 
render them. Approximate shadow projections have to be 

considered; i.e. have a known shadow region. and a small. 
uncertain shadow region around the silhollette. 

Graphics Interface '90 



218 

Another method to render such surfaces would be 
polygonization. This does not provide a problem for our 
accelerator since it is just projection of polygons. However, 
the silhouette of the shadows appear polygonal-like. Perhaps 
approximate shadow projections (as discussed above) can be 
used so that the silhouette region can be smoothed out. 

9.2. Lazy-Evaluation Occlusion Testing 

The voxel occlusion preprocessing done might be a 
waste if many of the voxels are not even traversed during ray 
tracing. On the other hand, the voxel may be too large to con
tain any useful information; i.e. mostly complicated occlu
sion. As such, a lazy-evaluation approach should be con
sidered, perhaps along the lines of the work done by Jevans et 
al. [Jeva89]. Initially, a small subdivision grid formation is 
created and preprocessed with the voxel occlusion informa
tion. When calculating shadows, if the voxel occlusion at the 
visible point is complicated occlusion, then further subdivi
sion of the voxel is required. The newly created voxels are 
then processed with occlusion information and used for the 
current and future shadow calculations. 

9.3. Soft Shadow Generation 

Thus far, the discussion has been applied to hard sha
dows of opaque objects. The domain of light sources to gen
erate this type of shadows are directional and point light 
sources (assuming no inter-reflections of light) . However, 
higher dimensional lights (linear, area lights) should produce 
soft shadows. Thus the problem is no longer a binary deci
sion as to whether a point is in shadow or not, the fraction of 
occlusion needs to be calculated. The traditional methods for 
soft shadow generation in ray tracing can be seen in work 
done by Cook et al. [Cook84] and Amanatides [Aman84]. 
However, both approaches tend to be very expensive compu
tationall y. 

Nishita et al. [Nish85] propose a method to identify the 
umbra and penumbra regions on the projected plane emanat
ing from a light source. This can be applied to voxel occlu
sion testing in the following manner: identify the umbra 
region on the voxel planes and mark the enclosed voxels as 
full occlusion, then mark the penumbra region as complicated 
occlusion. The umbra region can be detected using voxel 
occlusion. as before. The penumbra regions cannot be 
preprocessed per voxel since the level of penumbra is dif
ferent for each point. Thus some shadow rays need to be shot 
to deiermine the level of penumbra, and distributed ray trac
ing [Cook84] along with intermediate voxel occlusion testing 
seems to be the most obvious choice. 

9.4. Atmospheric Shadows 

Sunlight scattering in the air causes the atmosphere to 
glow. This glow is particularly visible in a shadowed 
environment. Thus for a ray shot to calculate the closest visi
ble surface. the critical problem is not only to determine 
whether the intersection point is in shadow. Identifying the 
segments of the viewing ray which are visible from the light 

is just as crucial. This information is necessary to acquire 
atmospheric shadows assuming only a single scattering model 
for light diffusion. See figure 3, where the two arrowed lines 
indicate the illuminated segments of the incident ray, thus 
atmospheric illumination needs to be taken into account. 

Max [Max86] and Nishita et al. [Nish87] use shadow 
volumes to calculate the ray segments that are visible from the 
light. Similarly, our accelerator can be extended for voxel 
occlusion testing: the voxel occlusion values are checked as 
the ray traverses through the voxels. Null occlusion voxels 
indicates full illuminance of the ray segment within the voxel, 
and complicated occlusion indicates partial illuminance of the 
ray within the voxel. The fraction of illuminance of compli
cated occlusion voxels requires some additional partial sam
pling. 

Figure 3 o 
Shadow Ray 

Incident Ray 

10. Acknowledgements 

The first author wishes to thank Pierre Poulin, Caroline 
Houle and Alain Foumier for providing some very useful 
suggestions towards this paper. The authors are also grateful 
to NSERC and ITRC for their financial support. 

11. Conclusions 

A new shadow determination accelerator is proposed. 
This accelerator, on average, outperforms voxel traversal and 
existing shadow ray cullers. However. as with all intersection 
culling algorithms. the accelerator performs well under some 
circumstances and poorly under other circumstances. Lazy
evaluation voxel occlusion methods proposed should improve 
the situation when the basic approach performs poorly. The 
accelerator can also be extended to model linear, area lights, 
as well as atmospheric shadows. 

12. References 

[Aman84] 1. Amanatides, --Cone Tracing", Computer Graph
ics (Proc. SIGGRAPH 84), 18(3), July 1984, pp. 109-
115. 

[Aman87] 1. Amanatides, A. Woo, "A Fast Voxel Traversal 
Algorithm for Ray Tracing", Conference Proceedings 
of EuroGraphics '87, August 1987, pp. 1-10. 

Graphics Interface '90 



219 

[Appe68) A. Appel, "Some Techniques for Shading Machine 
Renderings of Solids", Proc. AFIPS JSCC, vol. 32, 
1968, pp. 37-45. 

[Athe78) P. Atherton, K. Weiler, D. Greenberg, "Polygon 
Shadow Generation", Computer Graphics (Proc. SIG
GRAPH 78),12(3), August 1978, pp. 275-28l. 

[Berg86] P. Bergeron, "A General Version of Crow's Shadow 
Volumes", IEEE Computer Graphics and Applications, 
6(9), September 1986, pp. 17-28. 

[Bouk70] W. Boulmight, K. Kelley, "An Algorithm for Pro
ducing Half-Tone Computer Graphics Presentations 
Shadows and Movable Light Sources", AFIPS Conf. 
Proc. vol. 36,1970, pp. 1-10. 

[Brot84] L. Brotman, N. Badler, "Generating Soft Shadows 
with a Depth Buffer Algorithm", IEEE Computer 
Graphics and Applications, 5(12), October 1984, pp. 
5-12. 

[Chin89) N. Chin, S. Feiner, "Near Real-Time Shadow Gen
eration Using BSP Trees", Computer Graphics (Proc. 
SIGGRAPH 89), 23(3), July 1989, pp. 99-106. 

[Cook84] R. Cook, T. Porter, L. Carpenter, "Distributed Ray 
Tracing", Computer Graphics (Proc. SIGGRAPH 84), 
18(3), July 1984, pp. 109-115. 

[Crow77] F. Crow, "Shadow Algorithms for Computer 
Graphics", Computer Graphics (Proc. SIGGRAPH 77), 
11(2), August 1977, pp. 242-248. 

[Eo89] D. Eo, C. Kyung, "Hybrid Shadow Testing Scheme 
for Ray Tracing", Computer Aided Design. 21(1). 
January 1989. pp. 38-48. 

[Fuji86) A. Fujimoto. T. Tanaka. K. Iwata, "ARTS: 
Accelerated Ray-Tracing System". IEEE Computer 
Graphics and Applications. 6(4). April 1986. pp. 16-
26. 

[Glas84] A. Glassner. "Space Subdivision for Fast Ray Trac
ing", IEEE Computer Graphics and Applications. 
4(10), October 1984. pp. 15-22. 

[Gold7l) R. Goldstein. R. Nagel. "3-D Visual Simulation". 
Simulation, January 1971. pp. 25-3l. 

[Gold87] J. Goldsmith. J. Salmon. "Automatic Creation of 
Object Hierarchies for Ray Tracing". IEEE Computer 
Graphics and Applications. 7(5), May 1987. pp. 14-20. 

[Gora84) C. Goral, K. Torrence. D. Greenberg. "Modelling 
the Interaction of Light Between Diffuse Surfaces". 
Computer Graphics (Proc. SIGGRAPH 84). 18(3). July 
1984. pp. 213-222. 

[Hain86] E. Haines, D. Greenberg. 'The Light Buffer: A 
Shadow-Testing Accelerator", IEEE Computer Graph
ics and Applications. 6(9). September 1986. pp. 6-16. 

[Hain87] E. Haines. "A Proposal for Standard Graphics 
Environments". IEEE Computer Graphics and Appli
cations. 7(11). November 1987, pp. 3-5. 

[Hour85] 1. Hourcade. A. Nicolas. "Algorithms for Anti
aliased Cast Shadows". Computer and Graphics. 9(3). 

1985. pp. 259-265. 

[Jeva89) D. Jevans. B. Wyvill. "Adaptive Voxel Subdivision 
for Ray Tracing". Graphics Interface. June 1989. pp. 
164-172. 

[Kay86] T. Kay. J. Kajiya. "Ray Tracing Complex Scenes". 
Computer Graphics (Proc. SIGGRAPH 86). 20(4). 
August 1986. pp. 269-278. 

[Max86] N. Max. "Atmospheric Illumination and Shadows". 
Computer Graphics (Proc. SIGGRAPH 85). 20(4). 
August 1986. pp. 117 -124. 

[Nish74] T. Nishita. E. Nakamae. "An Algorithm for Half
Tone Representation of Three-Dimensional Objccts". 
Information Processing in Japan. vol. 14. 1974. pp. 
93-99. 

[Nish85] T. Nishita, I. Okamura. E. Nakamae. "Shading 
Models for Point and Linear Sources". ACM Transac
tions on Graphics. 4(2). April 1985. pp. 66-75. 

[Nish87] T. Nishita. E. Nakarnae. "A Shading Model for 
Atmospheric Scattering Considering Luminous Inten
sity Distribution of Light Sources". Computer Graphics 
(Proc. SIGGRAPH 87).21(4). July 1987. pp. 303-310. 

[Reev87] W. Reeves. D. Salesin. R. Cook. "Rendering Anti
Aliased Shadows with Depth Maps". Computer Graph
ics (Proc. SIGGRAPH 87). 21(4). July 1987. pp. 283-
29l. 

[Rubi80) S. Rubin. T. Whitted. "A 3-Dimensional Represen
tation for Fast Rendering of Complex Scenes". Com
puter Graphics (Proc. SIGGRAPH 80). 14(3). July 
1980. pp. 110-116. 

[Snyd87] 1. Snyder. A. Barr, "Ray Tracing Complex Models 
Containing Surface Tessellations". Computer Graphics 
(Proc. SIGGRAPH 87).21(4). July 1987. pp. 119-128. 

[Whit80] T. Whitted. "An ImproVed llIumination Model for 
Shaded Display". Communications of the ACM. 23(6). 
June 1980. pp. 343-349. 

[WiIl78] L. Williarns. "Casting Curved Shadows on Curved 
Surfaces". Computer Graphics (Proc. SIGGRAPH 78). 
12(3). August 1978. pp. 270-274. 

[Woo89a] A. Woo. "Accelerators for Shadow Determination 
in Ray Tracing". M.Sc. Thesis. Department of Com
puter Science. University of Toronto. 1989. 

[Woo89b) A. Woo. P. Poulin. A. Fournier. "A Survey of Sha
dow Algorithms". Department of Computer Science. 
University of Toronto. submitted for publication. 1990. 

Graphics Interface '90 



220 

Graph Image Flakes Image 

DGPImage Tetra Image 

Bars Image 

Graphics Interface '90 


