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1. Abstract 

Ray tracers that render CSG models should consider 
issues of regularization and numerical accuracy. The 
special case of rays originating on surfaces (shadow 
probes, reflections, and refractions) present a regular­
ization problem that is significant-even in ray 
tracers which are not explicitly based on the CSG 
scheme. An analysis of this problem yields a better 
solution than the epsilon tests incorporated in most 
ray tracers. 

2. Introduction 

Ray tracing is a simple and straightforward method 
of rendering images of solids described by the Con­
structive Solid Geometry scheme. This is because 
the problem of Boolean combinations of solids is 
reduced to one dimension. 

Two complications arise, however. Set operations 
on solids should be regularized [Requicha80], and 
finite-precision machine arithmetic introduces error 
into the ray-intersection calculation. Simple 
proximity-regularization rules can be developed 
which tolerate some inaccuracy, but these rules can 
produce unwanted side effects. 

Even in ray tracers which are not explicitly based on 
the CSG scheme, there is a regularization and accu­
racy problem that is important That is the case of 
rays originating on the surface of a solid (for sha­
dow calculation, reflection, or refraction). 

For these rays, proximity-regularization rules are not 
unlike fixes in many ray tracers (which eliminate 
intersections too close to the origin of the ray), but 
they can still result in some bad pixels. We develop 

more robust heuristics to improve the effectiveness 
of these regularization rules. 

3. Ray Intersection and Parametric Sequences 

In ray tracers, the primary geometric computation is 
finding the intersection of rays with a solid. The 
intersection of geometric sets with CSG-defined 
solids can be computed by recursive divide-and­
conquer algorithms [Tilove80], and this approach 
has been used to ray trace CSG models [Roth82].t 
The general idea is that if the intersection of a ray 
with two solids A and B is known, then the intersec­
tion with some Boolean combination (e.g., A vB, 
A (""lB, or A -B) can be inferred. 

To describe such an algorithm in more detail, we 
begin by developing representations of rays and their 
subsets. Given an origin point 0 (in an affine 
space) and a direction vector D, the points of a ray 
can be defined parametrically: 

R = {O+tD I O~t~oo} (1) 

The intersection of a ray R with a solid S will be 
some subset of the ray, which can be represented by 
a parametric sequence. In our notation, this is a 
non-decreasing sequence of ray parameter values tj 

corresponding to transitions between inside and out­
side the set R (""l S. 

t Fonnal trealmenU like Tilove's are based on the con· 
cept of classification, rather than intersection. The 
classification of a ray R with respect to a solid S is a parti­
tioning of the ray into RinS, RonS, and RoutS, which are 
poinu inside S, on iu boundary, or ouuide the solid. We 
will simply discuss the problem in tenns of ray intersection. 
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Figure 1. Rays Intersecting a Solid 

Figure 1 illustrates a number of interesting cases of 
ray intersection. The circle can be thought of as 
representing a solid sphere or a hollow bubble in a 
unbounded solid. In both cases, the object is 
closed. meaning that the boundary is part of the 
solid. The table below gives parametric sequences 
corresponding to the ray intersections shown above. 

Ray Ray n Sphere Ray n Bubble 
A 0 (0) 
B (0, (1) (0,0, (1) 

C (0,0) (0) 

D (0, (1) (/1) 

E (/!o (2) (0,/1' (2) 

Table 1. Parametric Sequences Associated with Ray 
Intersections 

In our notation, the first element of a parametric 
sequence always represents the first transition from 
outside R n S to inside. Thus, when ray E intersects 
the bubble, the first inside section begins at the ray 
origin where 1 = 0. In this case, [0, 11] represents an 
inside segment, the open interval (t 1 , (2) is outside, 

and [/2, 00] is inside. 

The two simplest parametric sequences are () , which 
represents an empty intersection, and (0), which 
represents the whole ray. 

An unusual case is the intersection of ray C with the 
sphere. The sequence (0, 0) indicates that a single­
point interval [0, 0] is inside the intersection 
(because the ray origin is on the boundary), and the 
interval (0, 00] is outside. 

In Roth's divide-and-conquer algorithm, the intersec­
tion of a ray with a Boolean combination A DB is 

inferred by merging the parametric sequences of the 
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intersections with A and B [Roth82]. 

Earlier ray tracers also rendered CSG models, but 
with less efficient algorithms based on point inter­
section [Goldstein71]. In its simplest form, the 
point-intersection algorithm must find all primitive 
intersections and sort them. At that point, it has 
often done about the same amount of work as Roth's 
divide-and-conquer algorithm. It must then make 
the additional effort of calculating point intersections 
to find the closest primitive intersection that is part 
of the CSG model. 

4. Regular Closure and ON/ON Ambiguity 

A formal analysis of solid representation introduces 
some complications in the divide-and-conquer inter­
section algorithm. Not all sets of points in space are 
what we naturally think of as "solid objects". A col­
lection of isolated points, lines or surfaces are not 
examples of solids, because they have no volume. 
Even connected subsets with a volume can be unsa­
tisfactory. For example, the object in Figure 2 has a 
dangling face: 

Figure 2. Solid with Dangling Face 

Using elementary concepts from topology, a 
mathematical definition can be found which matches 
our intuitive notion of a proper solid [Requicha80]. 
A set of points in space S c R3 is a regular solid. if 
it is equal to its regular closure. The regular closure 
of a set is the closure of its interior: 

S == S o (2) 

This is equivalent to removing the boundaryt of the 
set and then closing it-by adding a new boundary. 
In the case of the object pictured in Figure 2, remov-

t A point is on the boundnry of a set if every neighbor­
hood of the point is panially inside the set and panially out. 
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ing the boundary of the set would remove the dan­
gling face and leave an open cube. Adding a new 
boundary would leave a closed cube, which is what 
we want 

Regular solids will always be made from Boolean 
combinations of regular solids if the Boolean opera­
tions are "regularized", as for example: 

An*B =(AnB)O (3) 

In addition to maintaining regular closure, another 
important fonnal consideration is ONION ambiguity. 
Imagine two blocks, A and B, which can make face­
to-face contact in two ways: 

A 
p B 

CaseI Case 11 

Figure 3. Point on Common Boundary of Two 
Objects 

If the point P were in the interior or exterior of all 
primitive solids, then it is straightforward to decide 
whether it is in some Boolean combination of solids. 
However, when P is on the boundary of two solids, 
there is ambiguity about the result of regularized 
BQOlean combinations. 

Consider the example of A n B. If we ignore regu­
larization, then this intersection is always nonempty 
at point P. But the value of A n* B is nonempty in 
case I and empty in case 11. This is because, in case 
11, the nonregularized intersection results in a dan­
gling face. 

5. Some Topological Issues in Ray Tracing 

Two classes of problems in ray tracing will be dis­
cussed in this paper. First, there are topological 
issues that would need to be considered even if the 
ray tracing computation were perfonned with perfect 
accuracy. Secondly, there are problems that arise 
from the limited accuracy of machine arithmetic. 
The purely topological issues will be discussed in 
this section. 

Parametric sequences represent subsets of a ray, and 
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the ray is a one-dimensional subset of R3. In this 
I-D subspace (with its relative topology), regular 
closure will have the effect of removing isolated 
points. It would also remove isolated single-point 
gaps, but they should not arise from regularized 
Boolean operations on closed sets. I-D regular clo­
sure can be implemented by a rewrite rule for 
parametric sequences. The rule is simply to delete 
adjacent pairs of identical parameter values in a 
sequence. For example: 

( •.. tj -10 tj, tj, tj + 10 ••• ) (4) 

Regularization in a I-D subspace along the ray inter­
section is not equivalent to intersecting a ray with a 
regularized solid. That is, given a ray R and a solid 
S: 

RnS°cl=(RnS)O (5) 

The following figure shows examples of where I-D 
regularization works and where it fails. 

A A 
B B 

Case I .~ .. .. Case 11 V 

Case III 
Figure 4. Ray Intersecting with Boundaries and 
Corners 

In case I, a ray passes thru the common boundary 
between A and B. Assume that we wish to find the 
intersection of the ray with A nB. A properly 
designed divide-and-conquer intersection routine 
would yield a merged parametric sequences of the 
fonn (t 1 , t 1) representing the passage of the ray thru 
the dangling face in A nB, and I-D regularization 
would reduce this to the empty sequence O. That is 
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correct, because in this case An· B would be the 
empty set 

In case 11, the ray lies on the common boundary. 
The parametric sequence for the ray intersection 
with A nB is now a finite segment (tlo t2), and I-D 
regularization will not change it. This is incorrect; 
the sequences should be () as in case I. 

In case Ill, the ray passes thru a vertex point. The 
parametric sequence for the ray intersection would 
be (t lo t1), and I-D regularization would reduce this 
to the empty sequence O. That is incorrect, because 
the corner of C is a legitimate part of the regular 
solid. 

The failures of I-D regularization are due to ON/ON 
ambiguity. It would be possible to correct these 
failures by augmenting the parametric sequences 
with 3-D neighborhood representations [Reqicha85]. 
Case 11 could be corrected by including 3-D edge­
neighborhood representations (i.e., the contents of 
sectors of the cylinder surrounding the ray segment). 
Case III would require more complex vertex­
neighborhood information, in order to be corrected. 
Case I succeeded because the parametric sequence 
implicitly contained the necessary face-neighborhood 
information. 

Managing full 3-D neighborhood information in 
parametric sequences would greatly increase the 
complexity of the ray-intersection calculation. We 
agree with Roth that it is not practical or necessary 
to do this [Roth82]. The cases where I-D regulari­
zation fails are improbable (e.g., a ray lying on a 
dangling face). In addition, these failure cases 
should not have a major effect on the appearance of 
an antialiased image because they affect a zero­
measure subset of the viewplane. 

Finally, we would like to point out an important spe­
cial case of I-D regularization. In ray tracers sup­
porting Whitted's shading model [Whitted80], sha­
dows, specular reflection, and refraction are simu­
lated by casting secondary rays from points of inter­
section on the surface of objects. When these rays 
start from a surface and go outward, their intersec­
tions will result in parametric sequences of the form: 

(0,0, ... ) (6) 

As in Figure 1 (rays B and C), a pair of zeros begins 
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the sequence because the ray interseCts the solid that 
it originates on. This self intersection is not desired 
(we don't want a surface to shadow itself), and I-D 
regularization conveniently removes the pair of 
zeros. 

6. Some Numerical-Accuracy Issues in Ray Trac­
ing 

Of course, ray tracing programs do not perform cal­
culations with perfect accuracy. The use of finite­
precision machine arithmetic introduces errors in the 
results of ray intersection calculations. 

Plate 1 is a visualization of a typical situation of a 
numerical intersection of a ray with. a surface. Here, 
the neighborhood of an actual ray intersection is 
examined at the resolution of machine accuracy. 
The red sphere is the calculated point of intersection 
of a ray with an implicit surface F (x,y,z) = O. The 
white spheres represent points where a floating-point 
evaluation of F is exactly equal to 0.0. We see that 
the intersection point is not actually on the zero-set 
of the function, and we also see that the zero-set is 
not a well-behaved surface. 

This inaccuracy (and the discreteness of hardware 
floating-point numbers) makes it numerically (and 
topologically) impossible to realize the ideal regular­
ization of solids discussed above. For example, in 
Case I of Figure 4, the result of computing the ray 
intersection with A nB is likely to produce a 
parametric sequence like (tlo t1 +E), for some small 
E. 

One approach to this problem is to redefine regular 
closure in a way that allows from some error toler­
ance. Proximity regularization peels off an E-thick 
layer from the surface of a solid, and then adds an 
E-thick layer to the result. This is analogous to tak­
ing the interior and then closure of a set in regulari­
zation in R3. It is straightforward to define a I-D 
proximity regularization in terms of rewrite rules on 
parametric sequences: 

(7) 

Proximity regularization consists of applying this 
rewrite rule, first to inside intervals (where the tj 

value appears in an even-numbered position in the 
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sequence), and then to outside intervals. Some fonn 
of proximity regularization has been used in CSG 
ray tracing and in CSG z-buffer algorithms 
[Wyvill86, Rossignac86]. 

We make no recommendation on whether one 
should apply this 1-D regularization in general. 
There are many things wrong with proximity regu­
larization. The maximum value of e is difficult to 
detennine objectively, and often results from trial­
and-error. In addition, this type of regularization 
tends to remove or "erode" thin objects and thin 
parts of objects. 

However, a particular situation definitely requires 
some fonn of regularization-rays originating on the 
surface of objects. Ideally, intersection of such rays 
with the model should result in parametric sequences 
that begin with zero (see ray Band C in Figure 1). 
However, as Plate 1 suggests, they will rarely occur 
when shadow rays, reflection rays, and refraction 
rays are cast. Even when the best numerical 
methods are used, more typical situations are illus­
trated in Figure 5. 
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\ outside 
inside 

Figure 5. Secondary Rays from Inaccurate Surface­
Intersection Points 

The upper half of Plate 2 shows the result of per­
fonning shadow calculations with no regularization. 
The black spots on the surface are regions where the 
shadow rays happen to be like ray C in Figure 5. It 
intersects the surface that it was suppose to originate 
from, and so that part of the surface is in shadow. 

Similar problems can happen with refraction and 
reflection. All working ray tracers must have some 
fix for this problem. Usually, there is a test that 
rejects intersections that are 100 close to the origin 
of a ray. More fonnally, we would like the rays in 
Figure 5 to act as if they really originated from on 
the surface. The following special proximity regu­
larization rules can accomplish that: 

(0, e, .. . ) ~ (0,0, ... ) ~ ( ... ) 

(e, ... ) ~ (0,"') 

(8a) 

(8b) 

Rule (8a) deals with rays exiting a surface (e.g., ray 
C in Figure 5), such as shadow rays or external 
reflections. Rule 8b deals with rays penetrating the 
solid (e.g., ray B), such as internal reflections or 
refraction of an external ray into glass. The lower 
half of Plate 2 shows an image generated using these 
rules, and the defects have been repaired. 

7. Improved Heuristics for Proximity Regulariza­
tion 

The rewrite rules, (8a) and (8b), are adequate to give 
good behavior for shadows, reflections and refraction 
so long as the local neighborhood of the ray origin 
is fairly flat However, the upper half of Plate 3 
shows some bad pixels which occur in the vicinity 
of a corner inside a block of glass. 

outside 

inside 

Figure 6. Failure of Proximity Rules Near a Corner 

Figure 6 illustrates the problem that is occurring. 
We want the internal reflection of ray C to occur. 
But if B is 100 short, rule (8a) will throwaway the 
intersection with the top face, and some further 
intersection (if any) in the direction C' will be used 
instead. 

However, in the case of ray D, the same proximity 
rule was beneficial and allowed a refracting ray to 
exit the object as we would wish. The difference 
between ray B and ray D is that we "expect" ray D 
to give a parametric sequence of the fonn 
(0,0, ... ) because we know that it is starting on a 
surface and heading away from the solid. On the 
other hand, ray B is an internal reflection and we 
expect a parametric sequence of the fonn (0, ... ), 
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where some nonzero intersections may follow the 
first element in the sequence. 

The proximity rule (8a) should only be applied when 
we expect the ideal parametric sequence to be 
(0,0, ... ), and rule (8b) should only be applied 
when we expect (0, ... ). For shadow probes, 
reflections, and refractions, our expected result 
depends on whether the parent ray is on the inside 
of the solid (like ray A in figure 6) or on the outside. 

Given Expected 
parent shadow reflection refraction 

outside (0,0, . . . ) (0,0, . . . ) (0, .. . ) 

inside (0,0, . .. ) (0, ... ) (0,0, ... ) 

Table 2. Expected Form of Secondary-Ray Intersec­
tions 

It may not seem to make sense to have a shadow ray 
associated with an internal parent ray, but this is 
required to correctly compute transmission highlights 
(an extension to Whitted's model introduced by Hall 
and Greenberg [Ha1l83]). 

We have found that it is sufficient to execute the 
proximity rules only after intersection with the prim­
itive solids at the leaves of the CSG tree. It is 
important to keep track of set-difference operations. 
If an odd number of set-difference operators are 
above a primitive, then the inside/outside sense of 
the parent ray must be reversed. 

The lower half of Plate 3 shows how these new 
proximity rules eliminate the problem near the 
corner of the glass block. 

8. Conclusions 

We have taken another look at some fundamental 
topological and numerical issues in ray tracing. 
Parametric-sequence notation is introduced to facili­
tate the discussion of these issues in the context of 
ray tracing. 

We agree with Roth, that full 3-0 regularization 
with neighborhood representations is unnecessary in 
ray tracers. A 1-0 version of proximity regulariza­
tion can partially simulate true regularization, but we 
are not sure if the side effects of this approximation 
are better than the benefits. 
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It is necessary to apply some form of regularization 
to the case of rays originating on the surface of 
objects. This was the one regularization issue that 
caused real problems for us in the recent develop­
ment of a ray tracing system. We have found a 
more robust form of proximity regularization for this 
special case. This has allowed us to make good 
images using only single-precision arithmetic. 
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