
229

Pruned Bezier Curves

Phillip J. Barry
Computer Science Department

University of Minnesota
4-192 EE/CSci Building, 200 Union St. SE

Minneapolis, Minnesota 55455

Tony D. DeRose
Department of Computer Science and Engineering, FR-35

University of Washington
Seattie, WA 98195

Ronald N. Goldman
Computer Science Department

University of Waterloo
Waterloo, On tario
Canada N2L 3Gl

Abstract

The de Casteljau algorithm for evaluating Bezier
curves can be represented as a simple data-flow graph
where nodes represent either control points or linear in­
terpolation steps. By modifying this graph using an op­
eration called "pruning," we generate new curve schemes
called "pruned Bezier curves" that retain many proper­
ties of Bezier curves, but have smaller data-flow graphs,
and hence can be computed using fewer linear interpo­
lation steps. Many properties of pruned Bezier curves
can be determined simply by inspecting the shape of the
data-flow graph. In particular, we show that if the fron~
tier of the graph does not oscillate (in a certain easily
determined way), then the corresponding curve scheme
is variation diminishing.

Keywords: Bezier curves, the de Casteljau algo­
rithm, P6lya curves

1 Introduction

Bezier curves are used frequently in computer aided
geometric design because of their many attractive geo­
metric properties [6,9]. In this paper we introduce and
examine a related class of curves which we call "pruned
Bezier curves."

The Bezier curve with control points Po, ... , Pn is de-

°This work was supported in part by the National Science
Foundation under grant numbers DMC-8802949 and CCR-
8957323, the Digital Equipment Corporation under the Fac­
ulty Program I Incentives for Excellence, and the Natural
Science and Engineering Research Council of Canada, grant
number OGP 0036825.

fined by

n

B(t) = L Plcb~(t) tE[O,I]
1c=0

where b~(t) = (~)tlc(1 - t)n-Ic are the Bernstein basis
functions of degree n. An elegant method for evaluating
points on this curve is the de Casteljau algorithm [9].
To evaluate the curve at parameter value t, let

I1(t)=P" k=O, ... ,n

Pk(t) = (1 - t)p;-l (t) + tP;+; (t)

r=I , ... , n; k=O, ... ,n-r. (1)

Then B(t) = Pon(t). The de Casteljau algorithm can be
interpreted as a sequence of nested linear interpolations,
and can, in fact , be used as the definition of the curve.
That is, given a set of points {Plc}, the Bezier curve
they define is the curve consisting of the points pon(t)
generated by the algorithm .

The nested linear interpolation steps described by the
de Casteljau algorithm can be summarized nicely in a
triangular data-flow graph as in Figure 1 for the case of
cubic curves (n = 3).

Circles in the figure denote linear interpolations, while
squares denote constant values (the. control points).

In this paper we will show that,if certain linear inter­
polation steps are removed from the graph we still get in­
teresting curves; these curves retain many of the proper­
ties of Bezier curves, but are simpler than Bezier curves
in certain ways. We call these new curves "pruned
Bezier curves" because they arise from "pruning away"
parts of the graph associated with the de Casteljau al­
gorithm.

The class of pruned Bezier curves is quite large , con­
taining Bezier curves , a generalization of Ball's cubic

Graphics Interface '90

B(t)

-I

PO P1 P2 P3

Figure 1: A diagram of the de Casteljau algorithm
for the cubic case (n = 3).

curves [1], a curve scheme closely related to the power
representation, and many new curve representations.
Despite this generality, a substantial number of prop­
erties are shared by these schemes. Our study of this
class provides simple and uniform proofs for analyzing
these schemes. We show that many of the properties of
a pruned Bezier curve follow from simple examination of
its defining data-flow graph . For instance, an important
but generally difficult to prove attribute is the variation
diminishing property. We show that if the frontier (i .e. ,
the lower boundary) of the graph does not oscillate in a
certain easily determined way, then the curve scheme is
variation diminishing.

The purpose of this paper, therefore, is to introduce
and discuss pruned Bezier curves. Our motivation is the­
oretical rather than practical. Our goal is to continue
the work done by two of the authors in [4] in examin­
iIlg interesting generalizations of Bezier curves; we hope
that the study of these generalizations serves to unify,
simplify, and provide insight into the theory of curves in
computer graphics and related fields.

In Section 2, we define more rigorously the rules used
to prune the de Casteljau graph. We call a pruned
de Casteljau graph a "bush," a term motivated by the
shape of the frontier of the graph . In Section 3, we show
that pruned Bezier curves share many of the properties
of Bezier curves. In Section 4, we discuss a few conver­
sion algorithms for pruned Bezier curves. Section 5 con­
tains some specializations and possible generalizations.
Finally, in Section 6 we summarize our work.

2 Pruned B~zier Curves
Examine in more detail the graph of the de Casteljau

algorithm shown in Figure 1. The edges emanating from
each of the nodes refer to the left and right parents, and
the edges incident upon a node emanate from the left
and right children. The root of the graph is the node
with no parents; the leaves of the graph are the nodes

230

D(t)

Figure 2: The leaf l is pruned by removing its
parent p and the two downward edges out of p.

with no children; the internal nodes are the nodes with
exactly two children . Two nodes are said to be siblings
if they have a common parent. The depth of the graph
is defined to be the number of edges traversed in the
longest path from the root to a leaf. Control points
Po , .. . ,Pn are assigned left-to-right to the leaves of the
graph and are successively blended together using linear
interpolation until the point on the Bezier curve emerges
from the root.

We want to modify this graph in such a way that
we still obtain a degree n curve which possesses most
of the features that make Beziercurves so popular. At
the same time we wish to make the graph less complex
by pruning away a number of the linear interpolation
steps. The graphs resulting from careful pruning lead
to curve schemes that share many of the properties of
Bezier curves.

Pruning is an operation that reduces the number of
internal nodes (and hence the number of linear interpo­
lations) without altering the depth of the graph or the
number of leaves. To make these ideas more precise, we
say that a leaf l is eligible for pruning if:

(i) l has exactly one parent, and

(ii) l has a sibling which has exactly two parents.

An eligible leaf e is pruned as follows . Let p denote
the parent of l, and let s denote l's sibling (see Figure 2) .
To prune e, remove from the graph the node e and the
edges l -+ p and s -+ p_

A graph obtained by applying zero or more pruning
operations to a Casteljau graph is called a bush. The
rules for eligibility ensure that bushes generated from
a de Casteljau graph of depth '1. have the following at­
tributes:

(a) each bush has exactly n + 1 leaves.

(b) each bush has at least one leaf with the prop­
erty that a path from that leaf to the root
traverses exactly n edges.

Graphics Interface '90

P1

A
PO P1

(f)

231

Ott) Ott)

P1 P2 P1 P2

(a) (b) P1 · P2

Ott) (c)

Ott)

~ A
PO /' PS

P1 /~

A P2
P2

P3

(d)

Ott)

Pn-2

! /, /\VA
(g)

Figure 3: Valid and invalid bushes: figures (a) -
(f) are valid bushes, (g) and (h) are not.

Graphics Interface '90

Pn -1 Pn

(e)

(h)

P3

Figure 4: A schematic view of the frontier of an
arbitrary bush.

Some valid and invalid examples of bushes are given
in Figure 3. The term "bush" is motivated by the shape
of the frontier of the graph . Imagine tracing out the
frontier in left-to-right order (see Figure 4). Intuitively,
the trace initially follows a downward path that may
oscillate in the horizontal direction. At some point in
the traversal, however, the frontier can switch to follow
an upward path. Thus, there may be any number of
turning points in left-right motion, but there can be at
most one turning point in up-down motion .

Each of the nodes of a bush can be denoted by a pair
of integers (d, i), where d is the depth of the node, and i
is the number of edges oriented top left to bottom right
that must be traversed in a path from the root to the
node. For example, the leaves of the bush in Figure 3(a)
are denoted by (2,0), (3,1), (3,2), and (2,2).

Once we have done the pruning, if we assign control
points Po,. " ,Pn at the leaves by traversing the frontier
left to right, and then perform the sequence of linear
interpolations described by the bush, we obtain a point
at the root. We can then define a curve D(t) to have this
value at parameter value t E [0,1)' We define the class
of "pruned Bezier curves" to consist of all curves which
can be obtained from bushes. Attributes (a) and (b)
above insure that we get a degree n curve with exactly
n + 1 control points. Figures 5(a), 5(b), and 5(c) show
curves described by the bushes of Figures 3(a), 3(b), and
3(d), respectively.

3 Properties of Pruned Bezier Curves
Bezier curves have many important properties.

Among the more important ones are affine invariance,
the convex hull property, interpolation of the endpoints,
a simple explicit formula, non-degeneracy (i .e., the curve
does not collapse to a point unless all its control points
are located at a common point), the variation diminish­
ing property, simple differentiation formulas, and simple
algorithms for evaluation, degree elevation, and subdi-

232

.'

(a)

... .. , '

(b)

(c)

Figure 5: Pruned Bezier curves: the dotted curves
are Bezier curves for comparison purposes. The
solid curve of Figure (a) uses the bush of Figure
3(a), Figure (b) uses the bush of Figure 3(b), and
Figure (c) uses the bush of Figure 3(d).

Graphics Interface '90

233

VISIon. In this section we will investigate properties of
pruned Bczier curves.

To begin, notice that any pruned Bczier curve of de­
gree n can be written as

n

D(t) = L: P"di:(t) te[O,I]
"=0

where the Plc are the control points and the d;:(t) are
"blending functions." The function d;:(t) can be com­
puted by multiplying the labels on each path from the
leaf associated with Plc to the root, and then summing
over all paths. Each time a left edge is traversed a fac­
tor of 1 - t enters the product, and each time a right
edge is traversed a factor of t enters. Since for fixed
k all the products are the same, we can simply multi­
ply this product by the number of paths. For the bush
of Figure 3(c), for example, each of the two paths to
P3 encounters one left edge and three right ones; thus,
dHt) = 2t3 (1 - t). Many properties of the curve can be
proved by examining properties of the functions di:(t).

We now list and discuss the properties of pruned
Bezier curves:

Affine Invariance: Pruned Bczier curves are affine in­
variant, depending only on the relative geometry of their
control points and not on any external coordinate sys­
tem, because the computation of each node in the bush
involves only affine combinations. Since a curve scheme
is affine invariant if and only if its blending functions
sum to one, we deduce that L" d;:(t) = 1.

Convex hull: Since t e [0,1], computing a point at
any node consists of taking a convex combination of the
points at its children. Thus a point at any node is a
convex combination of the points at the leaves of the
subgraph rooted at that node. In particular, the curve
will always be a convex combination of its control points.

Interpolates endpoints: The curve always interpo­
lates the first control point Po at t = 0 and the last
control point, Pn, at t = 1. This interpolation occurs
because to reach the root from any point other than Po
we must traverse an edge labelled "t," and to reach the
root from any point other than Pn we must traverse an
edge labelled "1 - t."

Explicit formula: From the bush we can find explicit
formulas for the functions d;:(t). Although the formulas
will vary from bush to bush, each d;:(t) will always equal
a constant times a power of t times a power of (1 - t).
More specifically, a blending function d;:(t) associated
with a leaf (m", i,,) will be of the form

dn(t) = t i.(1 _ t)m.-i. = ~bm.(t)
"a" (7:) '. '

where a" is the number of distinct paths from the root
to the leaf (m", i,,).

Evaluation algorithm: Pruned Bezier curves have a
recursive evaluation algorithm. Indeed, this is how they

are defined. The algorithm for a pruned Bczier curve
cannot be written down in equation form as compactly
as the de Casteljau algorithm, but the evaluation algo­
rithm can be concisely programmed. Since bushes typi­
cally have fewer internal nodes than de Casteljau graphs,
pruned Bczier curves can be computed using fewer lin­
ear interpolation steps than required for ordinary Bczier
curves.

The de Casteljau algorithm can be implemented in
hardware to allow very rapid evaluation of a. large num­
ber of Bczier curves [8]. The basic idea is to use a differ­
ent processor to do the evaluations which occur at each
interior node, running ~hem in parallel pipe-lined fash­
ion to achieve high throughput. A similar technique will
work for pruned Bczier curves. Further, since there are
fewer interior nodes for a pruned Bezier curve, hard ware
implementation of the evaluation algorithm for these
curves can be less costly than the corresponding im­
plementation for Bezier curves.

Other evaluation algorithms for Bezier curves,such as
nested multiplication [13], can also be applied to pruned
Bezier curves, although nowhere near as neatly.

Differentiation: The major practical drawback of
pruned Bczier curves is that in general they do not share
the derivative properties of Bezier curves. Only certain
pruned Bczier curves share some of the properties. For
example, Bezier curves have the property that the first
derivative at t = 0 depends only on the first two con­
trol points. The reason for this dependence is that each
basis function b;:(t) = (;:)t"(1 - t)n-" is divisible by e
if k ~ 2. Only if we prune in such a manner that t2

divides d;:(t) for k ~ 2 will D'(O) depend only on the
first two control points. Analogous results hold for other
derivatives and at the other endpoint.

Degree Lowering: A degree n Bczier curve may ac­
tually be of degree less than n if its control points are
in certain configurations. It is not easy to tell by in­
spection whether or not a Bezier curve does have lower
degree or not. However, there is a result for pruned
Bezier curves which states a simple sufficient condition
for when a pruned Bczier curve is of lower degree:

Theorem 1 Let D(t) be a pruned Bezier curve defined
by a graph of depth n, and suppose that all the con­
trol points located at the leaves of deepest level coincide.
Then the curve has degree less than n.

Proof. Note that if all the points on any level are con­
stant and coincide, the points located at the nodes on
the next highest level are constant. Therefore the degree
of the curve is at most the deepest level whose points do
not coincide. In particular, a depth n curve, all of whose
level n control points coincide, has degree less than n .
o

Nondegeneracy: A pruned Bczier curve cannot col­
lapse to a single ·point unless all its control points coin­
cide. This is because the blending functions described

Graphics Interface '90

by bushes are linearly independent, as the next theorem
shows.

Theorem 2 The blending functions dg(t), ... , d~(t) de­
fined by a bush fJ of depth n form a basis for the poly­
nomials of degree n .

Proof. I Since there are the correct number of functions,
we must simply show that the functions are indepen­
dent. We use induction on the number of nodes pruned.
If no nodes are pruned the blending functions are the
Bernstein basis functions. Now suppose we prune the
eh leaf (mk' i k) from a bush fJ to obtain a new bush fJ'.
Let the basis functions for fJ be denoted by gj(t), and
the blending functions for fJ' by hj(t). Since only the
kth leaf is pruned, the explicit formulas for hj(t) and
9j(t) differ by at most a positive constant unless j = k.
Now in pruning the kth leaf we removed two edges, one
leading to the eh leaf, and one leading to either the
k - l't or the k + l't leaf (but not both). Suppose it
was "pruning from the right;" that is, suppose an edge
leading to the k - 1 ,t leaf is removed . Then

hk(t) = ctt i .-I (1 _ t)m.-i k

= Cl t ik (1 _ t)mk -ik + Cl t ik -I (1 _ t)mk -id I

where Cl is a positive constant. Notice that the first
summand in the right hand side is a positive multiple
of 9k(t) . The second summand is a nonzero multiple
of the product of the labels on any path in fJ from the
root to the node (mk, ik - 1) (which is in fJ since it is
the sibling of the pruned node). Now suppose we ran
the recursive evaluation algorithm for fJ with all control
poin ts associated with leaves which are descendents of
the node (mk' ik - 1) given the value 1, and all other
control points set to O. Then, because only affine com­
binations are used, the value at (mk' ik - 1) = 1. Thus
the resulting curve is both a non negative linear com­
bination of its basis functions and a positive multiple
of t ik - I (1 - t)mk-ik+l; these two expressions must be
equal. Therefore the matrix M such that

(ho(t) . .. hn(t)) = (90(t) .. . 9n(t))M

has positive entries on the diagonal, and zeros elsewhere
except in one column. Such a matrix is non-singular,
and the result follows. 0

Variation Diminishing: Bezier curves have impor­
tant shape preserving properties in that they mimic the
shape of the control polygon (the piece wise linear in­
terpolant to the control points). One of these shape
preserving properties is the variation diminishing prop­
erty. A curve scheme is said to be variation diminishing
if any line (or plane if the curve is a space curve) in­
tersects the curve no more often than it intersects the
control polygon .

Pruned Bezier curves are not always variation dimin­
ishing. (Construct, for example, a curve using the bush

I We thank a referee for suggesting this proof.

234

, , , ,

Figure 6: Variation diminishing counterexample
for bushes: the dotted line intersects the curve three
times and the control polygon twice.

from Figure 3(b) and the control points Po = (1,1)' PI =
(0,1), P2 = Pa = (0,0) . Then there exist lines such as
y = ¥x which intersect the curve three times, but the
control polygon only twice, as shown in Figure 6.) How­
ever, by strengthening the eligibility rules for pruning,
a subclass of bushes known as hedges can be generated
which always yield curves that are variation diminish­
ing. In particular, hedges result if a leaf f is considered
eligible for pruning when, in addition to conditions (i)
and (ii) above, we require:

(iii) l's sibling is also a leaf.

Once again, the term "hedge" is motivated by th e
shape of the fron tier of the graph . The fron tier of a
hedge is characterized by no turning points in left-righ t
motion, and at most one turning point in up-down mo­
tion, as shown schematically in Figure 7. The bushes of
Figures 3(a), 3(d), 3(e), and 3(f) are therefore hedges.

That the restriction to hedges is sufficient for the vari­
ation diminishing property is demonstrated by the next
theorem .

Theorem 3 Hedges yield pruned Bezier curves that are
variation diminishing.

Proof. Let M be the matrix which transforms the basis
functions b~(t) = (~)tk(1 - t)n-k for Bezier curves into
the functions d~(t) for a pruned Bezier curve associated
with a hedge. That is, let M be such that

(d~(t) . . . d~(t)) = (b~(t) . .. b~(t))M.

To prove the result, it suffices to show that M is strictly
totally positive [10] . (A matrix is strictly totally positive

Graphics Interface '90

Figure 7: A schematic view of the frontier of an
arbitrary hedge.

if all its minors are nonnegative, and at least one minor
of each order is positive).

We will do this in the following way. Let H[O] de­
note the de Casteljau graph which we pruned (using the
strengthened rules) to obtain the curve in question . Let
H[I] be the hedge after the first node is pruned, H[2]
the hedge after the first two nodes are pruned, and, in
general, H[i] the hedge after the first i nodes are pruned.
If q nodes in all are pruned, then the final hedge is H[q] .

Let Mi be the matrix transforming the blending func­
tions for H[i-l] to the blending functions for H[i). Then
M = Ml . .. M q • Since a product of totally positive ma­
trices is totally positive [12], it suffices to show that each
matrix Mi is totally positive.

Now let 9 j (t) be the blending functions from H [i - 1]
and let hj(t) be the blending functions from H[i], j =
0, . . . ,n. Suppose in going from H[i - 1] to H[i] we
remove the eh leaf of H[i - 1] . Since all other leaves
remain, gj(t) = hj(t) if j t= k -1, k, k+ 1 because we do
not pass through any of the removed edges to get from
the root to the corresponding leaves . Now in pruning
the eh leaf, we removed two edges, one leadi'llg to the
klh leaf, and one leading to either the k - 1'1 or the
k + 1 $I leaf (but not both). Suppose we pruned from
the right. The paths leading to the k + 1'1 leaves in H[i]
and H[i - 1] are then the same and hk+l(t) = gk+l(t).

Next consider hk_l(t). There are fewer paths leading
to the k - 151 leaf in H[i] than there are leading to the
same node in H[i-l], but the product of the labels along
any of these paths is the same, so hk-l (t) = cogk-l (t)
where 0 < Co < 1.

Now examine hk(t). From the explicit formula, there
exists a positive integer Cl and non negative integers T , S

such that hk(t) = cltr(1- t)' . Further, there exists a
positive integer C2 such that gk_l(t) = c2tr(1- t)'+l;
also gk(t) = Cltr+I(1- t)' since the only way to get to
the eh leaf of H[i - 1] is through the klh leaf of H[i] .

235

This implies that

Cl
hk(t) = -gk_l(t) + gk(t).

C2

Therefore the matrix Mi has positive entries on the
diagonal, one positive entry on the superdiagonal, and
zeros elsewhere. Such a matrix is totally positive.

The analysis is similar for pruning from the left where
an edge leading to the k+ 151 node in H[i -1] is removed.
Therefore the result follows. 0

4 Conversion Algorithms
Of the many possible conversions, we will restrict our­

selves to two: pruned Bezier to Bezier conversion, and
subdivision.

Conversion from pruned Bezier form to Bezier
form: It is possible to represent everY pruned Bezier
curve in standard Bezier form. In fact, the proof of The­
orem 3 provides an algorithm for the construction of the
matrix M that transforms the Bernstein basis into the
basis defined by a hedge. This same matrix transforms
the control points Po, ... , Pn for a pruned Bezier curve
(defined by a hedge) into Bezier control points Vo, ... , Vn
according to:

where superscript T denotes matrix transpose. The fac­
torization of M into q sparse matrices provides the ba­
sis for an iterative algorithm for the computation of the
Bezier polygon. If we set (pJol ... p!,ol) = (Po' .. Pn) and
compute (pJi+ll ... p!,i+ll) from (pJil ... p!,il) according
to

(p'li+ll pli+ll)T _ M _(p'lil plil)T o . .. n - q-. 0 . .. n ,

then (Vc, . . . Vn) = (pJql ... p!,ql). The structure of Mq_i
implies that there exists an inte~er k and constants a, b
summing to one, such that P;'+ = pJ'l if j t= k, and

{

aplil + bplil k-l k
pli+ll_ _

k - pl'l + bPi a k k+l

if H[q - i-I] is pruned
from the left

if H[q - i-I] is pruned
from the right .

Geometrically, the polygon (pJi+ll .. . p!,i+l l) is obtained

from (pJil ... p!,il) by "corner cutting", as shown in Fig­
ure 8 for the case of pruning from the left.

Unfortunately, Theorem 3, and hence the corner cut­
ting algorithm, is only appropriate for hedges, so it is
necessary to develop a method for computing the Bezier
representation of an arbitrary pruned Bezier curve. The
method we now present is based on a general explicit
expression for the components of the matrix M that
transforms the Bernstein basis into an arbitrary pruned
Bezier basis. The key ingredient in the construction is
provided by the next lemma.

Lemma 1 Let m ~ n, and let 0 ~ i ~ m . Then
n

br(t) = L: b'J(t)aji
j=O

Graphics Interface '90

P
li+1J (il -p b a
k·, k·'

Figure 8: Corner cutting from the left.

where

{

("j:.7)(';')
a)i = (j) if j = i, ... , n - m + i

° otherwise.

Proof. The proof requires nothing more than manip­
ulation of the explicit formula for Bernstein polynomi­
als together with the fact that Bernstein polynomials
form a partition of unity. The later fact implies that
bi(t) = bi(t) E;':-om bj-m(t). Explicit manipulation

reveals that bm(t)bn-m(t) - ("r)(,;,) bn ·(t) Thus
• J - i+j} '+J ' ,

The final result is obtained by re-indexing the summa­
tion so that j ranges from i to n - m + i rather than
from ° to n - m. 0

The en tries of M are essentially the coefficien ts found
in Lemma 1. To establish the precise relationship,
let dg(t), ... , d~(t) be the basis functions described by
an arbitrary bush of depth n having leaves denoted
by (mo,io), (ml,id, ... , (mn,i n). From the explicit for­
mula, the kth function d;:(t) is a multiple of b;::· (t).
That is, there exits a constant r:: such that d;:(t) =
f::b;::k(t). Using Lemma 1, there exist constants a)k

such that
n

d~(t) = if: L bj(t)a)k.
)=0

Therefore, the matrix M that transforms bg(t), ... , b~(t)
into dg(t) , ... , d~(t), and hence pruned Bezier control
points into Bezier control points, has entries M)k given
by

(2)

Subdivision: Subdivision, the computation of a con­
trol polygon to describe a part of a curve, is one of

236

the most useful techniques for rendering and analyzing
curves. It is well known that Bezier curves can be subdi­
vided using de Casteljau's algorithm [9]. In particular,
the points P~(t), P~(t), .. . , pon(t) computed in Equation
1 reproduce the portion of the Bezier curve B(t) traced
out on the interval [0, t). One possible way to subdivide
a pruned Bezier curve is to convert it to Bezier form,
subdivide the Bezier representation, then convert back
to pruned Bezier form. However, this does not take ad­
vantage of the special properties of p;uned Bezier curves;
also, it can involve a large number of computations.

Another possibility does exist for curves arising from
hedges. Pruned Bezier curves arising from hedges can
easily be represented as P6lya curves [5]. Therefore,
Polya curve algorithms [2,5]' including the Pblya su bdi­
vision techniques, can be applied to these curves. How
practical these algorithms are is an open question. We
will not discuss these techniques further here; however,
we will describe how to represent any pruned Bezier
curve arising from a hedge as a P6lya curve.

P61ya curves are defined by 2n parameters
O'o, .. . ,O'n_l, !3o, .. . , !3n-l , and n+ 1 control points.
Let T and s be the respective smallest and largest in­
tegers such that m) = n for r $ j $ s. A curve from
a hedge with the property that m) = mJ+I :} m) = n
can be represented as a P61ya curve with 13) = 00 j 2 T,

0') = 00 j 2 s , all other 0') = 0, 13) = 1, and the same
control points as the pruned Bezier curve.

There also exists a homogeneous variant of P61ya
curves where the O'i are replaced by pairs (O'i, wn and
the !3i by (!3i, w~) . Any curve arising from a hedge can
be represented by such a P61ya curve with (i) (0'), wj) =
(-1 , 0) if m) = m)+1 + 1, (ii) (O'),wj) = (0 , 1) else ,

(iii) (!3n-)-I,W~_)_I) = (1,0) if m) = m)+1 -1, (iv)

(!3n-)-I,W~_)_I) = (1,1) else, and (v) the P6lya con~
trol points equal to CkPk for some constants Ck.

5 Specializations and Generalizations
The properties discussed in Section 3 hold for any

pruned Bezier curve. The one exception to this is the
variation diminishing property which holds for hedges,
but not in general . Other special cases have additional
features. In this section we mention a couple notewor­
thy pruned Bezier curve schemes. It is also possible to
generalize pruned Bezier curves in several ways. A few
of these extensions are mentioned in this section as well .

Ball's basis: In [1) Ball used the following cubic basis
in the development of a software package for computer
aided design:

dg(t) = (1 _ t)2

di(t) = 2t(1 - t)2

d~(t) = 2(1 - t)t2

d~(t) = t2

The bush for this basis is shown in Figure 3(a) .
Some properties of curves generated with this basis

are (1) if PI = P2 then the curve is actually a quadratic,

Graphics Interface '90

(2) the derivative at t = 0 is 2(Pl - Po), and at t = 1 is
2(Pa - P2), (3) the curves are variation diminishing.

Ball's basis can be generalized to arbitrary degree n
by pruning all nodes in the subgraphs rooted at the
nodes a~l,O) and a~l, r~l) . The resulting
hedge for n = 5 is shown in Figure 3(d), and a curve
of this type is shown in Figure 5(c). These curves have
recently been studied in [11,14], although not in the con­
text of pruned Bezier curves. In particular, Goodman
and Said show that these curves are variation dimin­
ishing and that they can readily be converted to Bezier
form. (These results follow easily when these curves
are viewed as being defined by hedges.) Furthermore,
the kth derivatives, for k = 0, ... , L ¥ J, at t = 0 depends
only on the vertices Po, ... , Pk. An analogous result holds
at t = 1. This derivative behavior makes it easy to join
curve segments with either parametric or geometric con­
tinuity. For instance, cubic curves of this type can easily
be connected with al continuity and quintic curves can
easily be connected with a2 continuity.

237

Poor Man's Basis: Consider the curve with basis
functions d/:(t) = tk(l - t) for k < n and d~(t) = tn.
This is called the "Poor Man's Curve" since its bush
(actually a hedge) has a minimal number of nodes for
a degree n pruned Bezier curve. Alternatively, one
can let do(t) = (1 - t)n and d;:(t) = t(l - t)"-k for
k > 0 and also get a minimal node hedge. Diagrams of
these hedges are given in Figures 3(e) and 3(f). These
curves are variation diminishing since they are defined
by hedges, and they may be evaluated using a nested
multiplication algorithm similar to Horner's method.

Other less regular minimal bushes, such as the one
shown in Figure 3(b), also exist.

We now list some possible generalizations:

Surfaces: Both Bezier tensor product and triangular
patch surfaces have evaluation algorithms which gener­
alize the de Casteljau algorithm for Bezier curves. By
modifying these algorithms we can get pruned Bezier
surfaces. To some extent the properties of such surfaces
will be similar to the properties of Bezier surfaces.

Other Triangles: There are other curve schemes which
have evaluation algorithms which can be represented by
triangular data flow graphs. The graphs for these curve
schemes differ from de Casteljau graphs in that the la­
bels on the edges differ. B-spline segments, Lagrange
curves, and P6lya curves, as well as many other types
of curves, can be represented in this way [4]. We can
prune these graphs as well and generate new schemes
in this manner. In fact, most of the results in this pa­
per hold more generally for P6lya curves since the main
properties of Bezier curves that were exploited in our
proofs (namely, a two term recurrence formula, a simple
explicit formula, and a two term degree raising formula)
are also possessed by P6lya curves.

Other Modifications: We have applied one opera-

tion - pruning - to de Casteljau graphs and obtained
new curve schemes. There are other operations one
could apply to develop new curve schemes, for example
hooking graphs together. Depending on how we hook
the graphs together we could get piece wise polynomial
curves (hooking graphs together side by side), or curves
similar to those obtained by Catmull and Rom in [7]
(by attaching to the leaf of one graph to the root of
another)(see [3]).

We also need not restrict our attention to triangles .
There are other curve schemes which possess evaluation
algorithms which can' be diagrammed in different ways.
For example, Clenshaw'l' algorithm for orthogonal poly­
nomials can be diagrammed as a rectangular dataflow
graph. We could modify these diagrams as well to ob­
tain new curve schemes.

6 Concluding Remarks
Given a curve scheme, there are various ways to gener­

alize it to obtain interesting new curve schemes. In this
paper we began with Bezier curves and pruned the data­
flow graph of the associated de Casteljau algorithm. The
resulting curves do not retain all the properties pos­
sessed by Bezier curves; however, they do retain many
features, and these properties can often be derived by
simple arguments referring to the pruned de Casteljau
graph. These schemes also contain as specific cases not
only Bezier curves, but also a generalization of Ball's ba­
sis. For these reasons, they simplify, unify, and provide
insight into the theory of curves in computer graphics
and geometric modeling.

References:

[1] Ball, A.A., Con surf I: Introduction of the Conic
Lofting Tile, Computer-Aided Design, 6, 1974, 243-
249.

[2] Barry, P.J ., Urn Models, Recursive Curve Schemes,
and Computer Aided Geometric Design, Ph .D . dis­
sertation, Dept. of Mat h ., Univ. of Utah, Salt Lake
City, Utah, 1987.

[3] Barry, P.J. and Goldman, R.N., A Recursive Eval­
uation Algorithm for a Class of Catmull-Rom
Splines, Computer Graphics - Proceedings of SIG­
GRAPH '88, 22, 1988, 199-204.

[4] Barry, P.J. and Goldman, R.N., Recursive Polyno­
mial Curve Schemes and Computer Aided Geomet­
ric Design, Constructive Approximation, 6, 1990,
65-96.

[5] Barry, P.J. and Goldman, R.N ., Shape Parameter
Deletion for Polya Curves, submitted for publica­
tion.

[6] Bartels, R.H., Beatty, J.C., and Barsky, B.A.,
An Introduction to Splines for Use in Computer

Graphics Interface '90

Graphics and Geometric Modeling, Morgan Kauf­
man, Los Altos, California, 1987.

[7] Catmull, E. and Rom, R., A Class of Local In­
terpolating Splines, in Computer Aided Geometric
Design, R.E. Barnhill and R.F . Riesenfeld (eds.) ,
Academic Press, New York, 1974,317-326.

[8] Tony DeRose, Mary Bailey, Bill Barnard, Robert
Cypher, David Dobrikin, Carl Ebeling, Smaragda
Konstantinidou, Larry McMurchie, Haim Mizrahi,
Bill Yost, The Apex: Two VLSI Designs for Gener­
ating Parametric Curves and Surfaces, The Visual
Computer, 5, 1989,264-276.

[9] Farin, G ., Curves and Surfaces for Computer Aided
Geometric Design, Academic Press, San Diego,
California, 1988.

[10] Goldman, R.N., Markov Chains and Computer
Aided Geometric Design: Part I - Problems and
Constrain ts, A CM Transactions on Graphics, 3 ,
1984, 204-222.

[11] Goodman, T .N.T ., and Said, H.B., Shape Pre­
serving Properties of the Generalized Ball's Basis,
submitted for publication.

[12] Karlin, S., Total Positivity, Stanford University
Press, Stanford, California, 1968.

[1 3] Pavlidis, T ., Algorithms for Graphics and Im­
age Processing, Computer Science Press, Rockville,
Maryland, 1982.

[14] Said, H.B., Recursive Algorithm for the General­
ized Ball Curve, to appear in A CM Transaction s
on Graphics .

238

Graphics Interface '90

