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Abstract 
Researchers in computer graphics have long regarded 

the exploitation of image coherence as one of the funda­
mental opportunities for improving the efficiency of image 
rendering. We describe in this paper a theoretical and 
experimental investigation of the potential benefits of 
exploiting this phenomenon through the use of hybrid 
rendering strategies that combine area-sampling and point­
sampling techniques. We also examine the impact of a 
related phenomenon. intervisibility coherence, on the calcu­
lation of form factors for radiosity-based rendering. 

Although the prospect of exploiting image coherence to 
render many pUels simultaneously is intuitively appealing, 
this study indicates that the potential for reducing rendering 
time in this way is surprisingly limited in most cir­
cumstances . Nevertheless, the hybrid rendering algorithms 
we describe may be of some practical significance for 
high-resolution images that exhibit substantial image coher­
ence. A similar observation holds for the exploitation of 
intervisibility coherence to speed up radiosity-based render­
ing: the potential for reducing rendering time by exploiting 
this kind of coherence appears limited, but the hybrid algo­
rithm we describe may be of some practical use for very 
finely discretiz.ed scenes that exhibit substantial intervisibil­
ity coherence. 

Keywords: image rendering, image coherence, intervisibil­
ity coherence, projective rendering, ray tracing, radiosity. 

1. Introduction 

Consider an arbitrary pixel in a typical synthetic image. 
There is a high probability that this pixel depicts part of 
the same primitive surface descriptor, e.g., a polygonal 
face, as that depicted by the pixel's 8~ted neighbors. 
This phenomenon is known as image coheTence. 

The computer-graphics literature chronicles many 
anernpts to reduce rendering time by exploiting image 
coherence in several different ways. These efforts, which 
seek to render simultaneously all the pixels in a coherent 
region, previously have not been shown to be superior to 
other rendering algorithms, even when the image is highly 
coherent Nonetheless, the prospect of rendering many 
pixels simultaneously is intuitively appealing and the 
exploitation of image coherence is frequently cited as a 
fundamental oppornmity for improving the efficiency of 
image rendering. 

The most aggressive attempts to exploit image coher­
ence are area-sampling algorithms, which attempt to find 
the largest coherent regions in the image. Area-sampling 
algorithms have been developed by W &mOCk [W AR­
NOCK] , WeiIer and Atherton [WEILER cl ATIffiRTON] , 
and Heckbert and Hanrahan [HECKBERT cl HAN­
RAHAN], among others. The Warnock algorithm was the 
first and is among the most famous algorithms in computer 
graphics. It is described briefty below in terms of two 
coroutines: looker and thinJ:er. Rendering begins by set­
ting window equal to the entire screen and invoking looker. 

procedure looker: 

1. Invoke thinker with the cUlTent window as its argu­
ment. IT thinker succeeds, return immediately; other­
wise, go on to step 2. 
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2. Subdivide evenly the window into 4 subwindows. 

3. Call recursively the looker for each of the subwindows. 

procedure tblnker: 

1. If the window is empty. tile the window with the back­
ground color md return success. 

2. If the window contains a face. S. that completely fills 
the window and is everywhere in the window closer 10 

the viewer than the plane of any other face in the win­
dow. tile the window with face S. Return success. 

3. Return failure. 

Variants of the Wamock algorithm, which we refer 10 

as window-$IJI1J{Jling algorithms. may be distinguished from 
the larger set of area-sampling algorithms by the way they 
subdivide regions of the screen. Window-sampling algo­
rithms subdivide rectangular windows within the screen 
into smaller rectangular windows. while other area­
sampling algorithms (e.g .• [WEILER &: ATHERTON]). 
may subdivide the screen in arbitrarily complex ways. 

In Section 2. we offer a theoretical view of why previ­
ous efforts to exploit image coherence via window sam­
pling have not yielded superior rendering algorithms. and 
we suggest a hybrid strategy that we believe leads 10 the 
fullest use of image coherence that is possible in practical 
circumstances. 

The resulting improvements in rendering efficiency for 
various degrees of image coherence are reported in Sec­
tions 3 and 4. which describe two rendering algorithms that 
use our hybrid strategy. One algorithm is based on projec­
tive geometry and the other is based on ray tracing. Both 
algorithms harness existing algorithms to render the com­
plex areas of an image. and use a window-sampling algo­
rithm to render the coherent areas. When applied to 
images containing significant image coherence. this 
approach serves to accelerate the non-window-sampling 
half of the hybrid algorithm. In the worst case. when 
applied to images with little or no coherence. the hybrid 
algorithms reduce immediately 10 the non-window­
sampling halfs of the respective algorithms with negligible 
performance degradation. 

In Section 5. we outline how our hybrid approach has 
been used to exploit a similar form of coherence - inter­
visibility coherence -- in the calculation of form factors for 
radiosity-based rendering. 

18 

2. Theoretical Perspective 

Figure 2.1 gives the times required by the Wamock 
wiOOow-sampling algorithm and the Romney scan-line 
algorithm to render the six test images presented in Figure 
2.2. For all 6 scenes, the nmning time of the scan-line 
algorithm is shown to be less -- in most cases much less -­
than the nmning time of the window-sampling algorithm. 
This is typical of the speed advantage over the Warnock 
algorithm of all rendering algorithms now in common use. 
Since the general inefficiency of the Warnock algorithm is 
not explained by approximate time-<:<>mpiexity measures 
(SUTHERLAND et al.J. we assume that the complete 
time-<:<>mplexity function for the Wamock algorithm 
includes a large constant of proportionality and/or 
significant lower-order terms. 
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Figure 2.1 Comparative Rendering Times 
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In spite of the apparent disadvantages of window sam­
pling. it is extremely efficient when rendering a large win­
dow within a coherent image region. Ideally. we would 
like to render these coherent regions with a window­
sampling algorithm and render all other portions of the 
image with some other. more generally efficient algorithm. 
To do this in practice. we must be able to predict where 
the coherent regions of an image lie. If this can be done 
reliably with no appreciable cost., we would be able to con­
struct hybrid rendering algorithms whose rendering-time 
speedup due to the exploitation of image coherence would 
approach the theoretical maximum. 

We address the problem of predicting the locations of 
coherent regions by assuming that rendering begins with a 
window-sampling technique. TIten. for each window sam­
ple. we need to determine whether to continue with the 
window-sampling approach or to convert to an alternative 
rendering technique. It would be advantageous to continue 
the window-sampling approach if further subdivision would 
produce a sample window. C. such that the cost of render­
ing C via window sampling plus the cost of producing C 
would be less than the cost of rendering the pixels in C 
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with the alternative technique. 

To make this determination, we formulate an analytic· 
model of window sampling and subdivision and use it to 
derive an expression that predicts the "umber of window 
samples needed to render an image with a window­
sampling algorithm. To validate our model, we compare 
predicted and actual samples for several test scenes. After 
validating the analytic model, we use it to derive III 

expression that estimates rendering cost per pixel for the 
most economically rc:ndenble subwindow that could be 
generated from a given sample window. 

Our analytic model follows that in [StrrHERLAND et 
al.] and presumes a three~c:nsiona1 scene clipped to a 
viewing frustum and mapped by a perspective transforma­
tion into a three-dimensional image space El pixels wide 
by El pixels high. In this ideal scene, shown in Figure 
2.3. there are D identical layers of identical square faces. 
each layer parallel to the image plane and measuring El x 
E6' D is therefore the depth complexity of the scene. If 
we specify D and the total number of faces in the scene, 
F. we calculate the number of visible faces. F ... as F/D. 

Initially. we are interested in analyzing window­
sampling processes of which the Wamock algorithm is the 
exemplar. To facilitate this analysis. we constrain the 
dimensions and the arrangement of the square faces in the 
scene. Within each layer of faces. we require a II2-pixel 
gap between the edges of adjacent faces . The edg~ l2ngth 
of a face. Ef is therefore slightly less than El/F •. 
Further. we also require that at some granularity of window 
subdivision a window will contain exactly I complete face, 
aligned with the right and bonom borders of the window. 
This window will therefore contain a II2-pixel gap 
between left edge of the face and the left border of the 
window as well as a 1f2-pixel gap between the top edge of 
the face and the top border of the window. These condi­
tions are illustrated in Figure 2.3 . As described below. the 
required face registration plays a role in analyzing window 
subdivision as a function of face-window overlap. and the 
II2-pixel gaps are used in modeling window subdivision 
due to the presence of face edges . 

Given an ideal scene. the behavior of a window­
sampling process can be separated into two activities. sort­

ing and splitting. If a window sample yields more than I 
visible polygon, the window will be subdivided into 4 
subwindows, and all polygons in the sample will be sorted 
into the them; no polygon splitting will be necessary. If a 
sample yields exactly I visible face that fills the window. 
the window will be rendered completely. Otherwise. the 
window is not filled completely. the sample window will 
be subdivided as before, and each of the D faces in the 
sample will be split along the boundaries of the subwin­
dows. (This analysis is made simpler by assuming that 
faces are literally split, although in practice the faces would 
probably be copied.) Sorting and splining continue until 
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each sample window is filled completely by a visible face 
or until the sample window covers I pixel or less. 

~.--------h --------•• 

Figure 2.1 An Ideal Scene Description 

To compute the number of window samples required to 
render an image of an ideal scene. we first determine the 
number of samples required during the sorting phase of 
rendering. This number will depend on F... and we refer 
to it as SlOr/..F.) . If a sample contains exactly I visible 
face. SIOr!.F.) is O. Otherwise. the total number of sorting 
samples required to render the scene will be. in addition to 
the sample for the original window. the sum of the sorting 
samples required to render each of the 4 identical subwin­
dows. Therefore. 

S..,,(F ,)0 l-t4S ~rl [ :'] 

=-- (2.1) 
3 

In addition to the (F.-I)/3 sorting samples. there is 
some number of splitting samples for each of the F. win­
dows containing I visible face and a II2-pixel gap along 
the left and top borders of the window. This number. 
which depends of E/ and is referred to as Slpu/..E/). is 1 
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when E, is 1. Otherwise, S,pli,(E,) is 2 (1 for the initial 
sample and 1 for the lower-right window. which is ren­
dered). plus 2 times the nwnber of samples required to 
render a subwindow with a I/2-pixel gap along 1 edge (the' 
lower-left and upper-right subwindows). plus the nwnber of 
samples required for the upper-left subwindow (whose gap 
configuration is identical to the original sample window). 
By referring to the nwnber of samples required to render a 
window with a I/2-pixel gap along one edge of length n as 
S ... /il (11). we can write 

-r I ........ 

S.,-,(Er)=2+2S"", __ [ i ]+S'P~[ i] 
:2I's ..... , __ [ ~; ]+ 21og,Er-1 (2.2) 

When 11 is 1. S,plill-,.(II) is 1. Otherwise. it is 3 (the 

sample for the original window and 1 sample each for the 
upper-right and lower-right subwindows. which will be ren­
dered). plus the nwnber of samples required for the upper­
left and lower-left subwindows. which also have gaps 
along their left edges. 'Therefore. 

SIp/ill-..(n)=3+2SlJ>Iill-C"'[~ ] 

=4n-3 . 

Substituting this expression for S .. ..J;, (n) into Equation 
Y-I-..I,. 

2.2 yields 

100"Jftf [ E ] 
SIp/i,(E,)=2 L 4-f-3 +21og~t+1 

i=1 2 

=8Er4log-fir 7 (2.3) 

By COJT~rrg Equation 2.1 with Equation 23 and substi­
tuting E,IF y for Ep we find S(Fy). the total nwnber of 
samples required to render an image with F y visible faces: 

Fv-
l ! -{Ef - (Ef 1 S(Fv)=-3-+Fv 8'J T.-410g2--V T.-7 
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In real scenes. the distribution of scene complexity 
may vary widely from the uniform distribution of ideal 
scenes. Consequently. we wish to test the ability of our 
model to accurately predict the behavior or real rendering 
processes. To do so. we empirically verify the predictive 
power of Equation 2.4 with an instrurnented implementa­
tion of the Wamock algorithm that counts the number of 
window samples required during rendering. This imple· 
mentation was used to render the 6 images shown in Fig­
ure 2.2. and the predicted and .ctual operation counts are 
shown in Figure 2.4. 
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Figure 2.4 Predicted and Actual Window Samples 

We now re-examine the behavior of window-sampling 
processes with the goal of estimating for any given win­
dow. W. the rendering cost per piul of the most economi­
cally renderable subwindow that can be derived from W by 
subdivision. In this discussion, F w. F v • El'" and E, are 

W JW 

defined for Was F. F •. E. and E, are defined for the com­
plete scene. Our analysis assumes the same face­
computation cost for sorting a face into a subwindow or 
for splitting it into 4 subwindows. 

During the sorting phase of rendering, the number of 
face computations required to render a window. W. con­
taining F", faces. C'Orlw(Fw), is 0 if Fw is D. Otherwise. 

it is F I" (to sort each face into the appropriate subwindow) 
plus the nwnber of face computations required for each of 
the 4 subwindows: 

C~.(F w)=Fw+4C~" [:w ] 
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As the splitting phase of rendering begins, each of the 
subwindows of W containing exactly 1 visible face is 
further subdivided into 4 windows. One of these - the 
lower-right one -- is rendered completely when it is sam­
pled. The munber of pixels in each of these completely 
rendered windows is E1'//4 . 

For these windows, the largest to be rendered as part 
of a single sampling operation. we can compute the 
number of face-processing operations per pixel. lbere 

F 
were F wIO&4; operations needed during the sorting 

phase of rendering, which Jroduced F ' .. windows. There­

fore, each of these F ... windows can be "charged" with 
F 

(FwIO&4 ; )IF, .. operations performed during the sorting 

phase of rendering. During the splitting phase, each of the 
D faces in each of the F '.. windows is processed as it is 

split into 4 subwindows. The lower-right subwindow, con­
taining El..14 pixels is then rendered. Therefore, the 

number of face-Jrocessing operations per pixel is 

Fw 
Fwlo&4-

D +D 
F,w 

(2.5) 

Substituting Fw/D for F, .. and -J(E~D)/Fw for El .. in 
expression 2.5 yields 

Fw 
4FwI0&4D+4Fw 

Er.. 
(2.6) 

Consider now a different window-sampling algorithm 
that requires processing time for each sample that is pro­
portional to the total number of faces in the scene. (This is 
the case for the hybrid beam-ray tracing algorithm presen­
tation in Section 4.) 

We Imow from Equation 2.1 that (F ' .. -1 )/3 samples 

will be required during the "sorting" phase of rendering to 
yield F 'w windows containing 1 visible face. As "split­

ting" begins, each of the F,w windows will be subdivided 

and the lower-right subwindow will be rendered com­
pletely. This will require 5 more samples for each F ' .. 
window. Hence, the number of samples per rendered pixel 
is 

F -1 'w - -+5 
3F,w 

E 2 Iv; 

4 
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Each sample requires time proportional to the total number 
of faces in the scene, F. Therefore, using the identities 

Fw ~WD F, =-D and Et, = --, the rendering cost per pixel 
.. w Fw 

is Jroportional is 

3. 

16Fw-D 
F--::--

Er..D (2.7) 

Potential Speedups for 
Projective-Geometry-Based Rendering 

To measure the potential for rendering-time speedups 
in practical projective-geometry-based rendering algo­
rithms, we have prepared a hybrid algorithm in which area 
sampling is performed by the Wamock looker and thinker 
coroutines, and point sampling is accomplished by • Z­
buffer. We chose a Z-buffer point-sampling algorithm for 
this experiment because of its simplicity. (We use the tenn 
projective-geometry rendering algoritltm to refer 10 • con­
ventional, non-ray-tracing rendering algorithm that operates 
on a scene which has been mapped by • perspective 
transformation into a three-dimensional image space.) 

In our hybrid algorithm. the looker Jrocess has been 
modified slightly. When invoked, the looker counts the 
number of faces in its window, estimates the depth com­
plexity of the window, and estimates the cost of rendering 
a portion of window via continued window sampling by 
evaluating the eXJression 

Fw 
FwIO&4

D
+Fw 

Er.. 
(3.1) 

whose value is proportional to Expression 2.6. F w is the 
number of faces in the window, D is the depth complexity 
of the scene, and Ew is the edge length of the sample win­
dow in pixels. The value of Expression 3.1 is compared to 
a threshold which represents the cost of rendering the sune 
pixels by point sampling via the Z-buffer. If the computed 
cost exceeds the threshold, the window is passed 10 the Z­
buffer routine. 

The threshold for selecting point sampling is detez­
mined empirically to capture an accurate balance between 
window sampling and point sampling. This balance point 
reflects the efficiencies of the constituent window-sampling 
and point-sampling algorithms and their implementations in 
the hybrid renderer. H the threshold is set arbitrarily 10 0, 
the hybrid algorithm will immediately convert to point 
sampling and · render the entire image with the Z-buffer; if 
the threshold is set to infinity, the Warnock algorithm will 
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Figure 3.1 Rendering Time vs. Threshold Value 

be used exclusively. To determine an appropriate threshold 
value, the times to render a few typical test scenes are 
recorded as the threshold is varied along a ramp of values. 
If the insights of Section 2 are valid, we would expect the 
rendering time to initially decrease as the threshold value is 
increased from 0 (and some window sampling is "blended 
in"). then increase as the utility of additional window sam­
pling is exhausted. This behavior is shown in Figure 3.1 
for test scenes A and F. which represent the maximum md 
minimum ~formance improvements for the test scenes in 
Figure 2.2. Using these empirically derived performance 
data. we select a threshold value that corresponds to a 
minimal rendering time over the set of test scenes. In this 
case. we choose 0.04. With that value, the hybrid algo­
rithm produces a speedup over the Z-buffer algorithm of 
30% for scene A and 8% for scene F. 'These speedups 
correspond well with the relative presence of image coher­
ence in the test images. 
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By comparing the value of Expression 3.1 to a fixed 
threshold, we asswne a fixed rmdering cost per piul for 
the Z buffer. Because the Z-Buffer technique incorporates 
a high overhead cost per pixeL this is a reasonable assump­
tion for small values of Fw. Further. since the cost of 
rmdering as a function of the number of faces increases 
more rapidly with window sampling that it does with a Z 
buffer. our simplification produces the desired result for 
large values of Fw. i.e., we select point sampling via the Z 
buffer. 

TIle rendering times givm in Figure 3.1 are for images 
at 1024 x 780 spatial resolution and are exclusive of pixel 
tiling. We assume that tiling is performed by a JX"ocessor 
in the graphics controller that accepts rectangle-fill com­
mands (windows from the thinker coroutine) and vector­
draw commands (scan-line spans from the Z-buffer). 

4. Potential Speedups for 
Ray-Tracing-Based Rendering 

The recent focus of computer-graphics research on 
ray-tracing-based rendering has produced dramatic 
improvements in the efficiency of this class of rendering 
algoritluns. In fact. many now believe that no further 
significant improvements in efficiency are achievable 
without the use of some form of parallelism. 

Beam tracing is a form of parallelism that seeks to 
exploit image coherence by tracing simultaneously all rays 
through a coherent area of the screen. This is possible 
because all rays through the coherent area will intersect the 
same surfaces. by definition. Although beam tracing has 
obvious appeal for rendering large coherent areas of an 
image. previous beam-tracing algoritluns suffer from the 
performance degradation observed in projective-geornetry­
based rendering algoritluns that attempt to use area sam­
pling on insufficiently large screen areas. When this point 
is reached with beam tracing. however. a point-sampling 
process -- ray tracing -- can be used. Thus. a strategy for 
hybrid beam-ray tracing is to trace beams through the more 
coherent areas of an image and to trace rays elsewhere. 

To \Dlderstand better the prospects for exploiting coher­
ence in ray-tracing-based reOOering. we have constructed a 
hybrid algorithm that combines beam tracing with ray trac­
ing using a extension of Wllmock's approach to area sam­
pling. This beam-tracing algorithm is different from the 
beam-tracing algorithm due to Heckbert and 
Hanrahan[HECKBERT & HANRAHAN]. which is a gen­
eralization of the Weiler-Atherton hidden-surface 
algorithm[WEll..ER & ATHERTON). 
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WI.dow A rectangular region of the screen. 
B u. An infinite pyramidal volume. A truncated 

beam is formed by removing the top of • 
beam through intersection with a planar 
IUrface. 

Lateral Ray. The four rays that form the edges of a 
beam. 

Orl,lnal Bum 1be lateral rays of an original beam are 
rays from the eye through the comen of a 
window. 

Renec:ted Beam A truncated beam that is formed when 
another beam is incident upon a reflecting 
face. 

Refracted Beam A truncated beam that is formed when a 
beam is incident upon a refracting face. 
When the refractive index is not 1.0. the 
refracted beam will be diltorte4 

Bea. Se,ment 1be aegment of a beam between two planar 
turfaces that intenect the beam. 

Bea. Pat.. A aequence of oomected beam tegmenu 
produced by intersectiont with reflectin, 
and refracting turfacet that endt with a 
truncated beam. 

Hit 

Partial Hit 

Blocked Hit 

A hit occun when a beam intenecu 
oompletely with a face (the hit face), and 
the resultant beam aegment is empty. 
A partial hit occurs when no face intersects 
a beam oompletely. 
A blocked hit occurs when a beam 
interaects completely with a faee, but the 
resultant beam !Cgment contains one or 
more additional facel . 

Figure 4.1 Glossary of Terms for Beam-Ray Tracing 

Figure 4.2 An Illustration of Beam Tracing 

A glossary of terms for hybrid beam-ray tracing is 
given in Figure 4.1. Figure 4.2 illustrates the optimal 
situation for beam tracing. The beam passing through a 
given window on the screen intersects completely with a 
face in the scene, and the resulting beam segment contains 
no other faces. (To simplify the presentation, faces are 
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UIIumed to be convex. This is not esaentiaJ to the algo­
ritlun, but it does pennit a simplification of the intersection 
computation: if the four lakral rays of a beam intlnect a 
convex face. then the whole beam in1eI'sects the face.) 'The 
diffuse-reflection contribution from the hit face cm now be 
calculated for the entire window. If the hit face is specu­
larJy reflective, the reflected beam is found by reflecting 
the incident lateral rays of the beam. The specul .. -
reflection contribution from the hit face is then computed 
by recursively tracing the reflected be.-n through the 1CaIe. 

A simil .. procedure can be followed for refracted beams, 
although additional steps are required to cope with the poI­

sible distortion of the refracted beam. For a discussion of 
how to extend the hybrid be.-n-ray traciJl& algorithm to 

simulate more sophisticated · illumination effects, including 
general refraction, shadows, and texture-mapping. see 
[MARKS et al.). 

Eye 

Figure 4.3 A Partial Hit 

For the optimal case afforded by a coherent area of the 
image, beam tracing a large window on the screen can be 
much more efficient than ray tracing it. For example, the 
cost of tracing a beam like the one in Figure 4.2 is the cost 
of ray tracing four iat.eJal rays and performing spatial 
queries to verify that the beam segments on the subsequent 
beam path .. e empty. Although a spatial query of this 
kind is a complex operation. not every polygon in the 
scene need be tested for intersection with a given be.-n 
segment: a data structure like the spatial enumeration of 
[FUJIMafO et al.) is used to restrict attention to only 
those polygons in the neighborhood of the beam segment. 
Further efficiencies result from the fact that the spatial 
query need only detennine whether an intersection has 
occurred, and need not return a geometric description of 
the int.eJsection. Computing the reflected beams generated 
at each reflecting surface incurs only the cost of reflecting 
four incident lat.eJal rays. Ray tracing a N x N pixel 
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Eye 

Figure 4.4 A Blocked Hit 

on Screen 

Figure 4.5 Sulxiivision of a Window on the Screen 

window would require tracing and reflecting N2 rays; 
antialiasing by oversampling might require tracing many 
more rays. 

Unfortunately, the optimal case is not the only one that 
can occur . Figure 4.3 illustrates the case of a partial hiL 
The lateral rays of the beam do not all have the same sur­
face of nearest intersection, hence the beam does not com­
pletely intersect any face. Figure 4.4 illustrates the case of 
a blocked hit. The lateral rays share the same surface of 
nearest intersection, so the beam intersects the face com­
pletely. But the beam does not intersect the face 
exclusively: the beam segment contains another face. If 
the newest beam segment on a beam path experiences a 
partial or a blocked hit, it is clear that this and subsequent 
beam segments will not generate coherent contributions to 
the window associated with the beam path. 
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The two options for coping with partial and blocked 
hits are ,ulxlivision of the beam path and ray tracing. Fig­
ure 4..5 illustrates the procedure for sulxiividing a beam 
path. The associated window is sulxiivided regularly into 
four smaller windows. Rays are traced through the corners 
of each of these smaller windows. These rays are the 
lateral rays that define four new beam paths, one for each 
of the smaller windows . Some of the new beam paths will 
generate hits immediately, whereas some will require more 
subdivision to generate further hits. 

As the amount of sulxiivision required before produc­
ing a hit increases, so does the rendering cost per pixel for 
the associated window. If the new beam paths resulting 
from a sulxlivision are unlikely to generate further hits 
while their associated windows are still large enough to 
realize savings in computation over ray tracing, it would be 
best to abandon the area-sampling awroach. Any ray­
tracing algorithm can be used as the alternative. COOosing 
between continued sulxiivision and ray 11 acing is done by 
evaluating Expression 2.7, 

16Fy D 
F--::---

E~D 

to estimate the cost-per-pixel of continued beam tracing. 
Here F is the total number of faces in the scene, D is the 
depth complexity of the scene, Fw is the number of faces 
in the window, and Ew is the edge length of the window in 
pixels. If the value of Expression 2.7 exceeds an empiri­
cally determined threshold (which is determined using the 
same method that we used for the projective-geometry 
renderer), beam tracing in this window is discontinued. and 
further rendering within the window is performed by the 
ray tracer. The number of faces in a window is found 
when the spatial query is performed for the beam. 

The hybrid beam-ray tracing algorithm described 
above, which was implemented on a Sun 3 workstation, 
was used to render the images in Figures 4.6 and 4.9 at 
three different resolutions. (A simple Lambenian illumina­
tion model was used so that the program timings reflect 
more closely the cost of hidden-surface processing.) For 
comparison purposes, the same images were rendered using 
the embedded ray tracer alone. The rendering times of 
both algorithms are illustrated in Figures 4.8 and 4.11. 
The timings reported here are for the complete rendering 
process, from readIDg the scene description to writing the 
image into a frame buffer. 

The very simple scene in Figure 4.6 was chosen 
because the image exhibits a very high degree of image 
coherence. Figure 4.7 illustrates how the hybrid algorithm 
takes advantage of this image coherence by rendering most 
of the image using beam tracing. At an image resolution 
of 1024 x 780, 84% of the pixels were rendered by beam 
tracing. Although the cost-estimation procedure for decid­
ing between further beam sulxiivision and ray tracing 
correctly identifies most of the coherent areas of the image, 
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Figure 4.6 Image G: Concentric Cubes 
Reflected in a Mirror (1S faces) 
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Figure 4.S Rendering Time vs. Picture Resolution 
for Image G 

Figure 4.10 Image H: regions requiring 
some ray tracing are blacked out 
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some ray tracing are blacked out 
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it occasionally misses some. Note in Figure 4.8 that 
exploitable coherence increases with image resolution. 

The image in Figure 4.9 exhibits less image coherence 
(see Figure 4.10); 11 an image resolution of 512 x 390. 
only 42% of the pixels were rendered by beam tracing. At 
this resolution. the rendering-time speedup due to the 
exploitation of coherence is negligible. At greater resolu­
tion, however. coherence becomes more significant as a 
greater number of pixets are more efficiently rendered by 
beam tracing (the Wamock hybrid of section 3 shows simi­
lar improvrnent at higher resolutions). 

Figure 4.12 shows a more complex image with multi­
ple reflections. At a resolution of 1024 x 780 it is ren­
dered 27% faster by the hybrid algorithm than by ray trac­
ing alone. 

5. Potential Speedups for 
Radiosity-Based Rendering 

The term "radiosity" is used to describe a variety of 
shading techniques that model the flow of radiant flux 
between diffusely reflecting surfaces. The essence of the 
technique for computing this radiant transfer is to decom­
pose each face in the scene description into a mesh of 
small paJches and to compute a form factor for each pair 
of patches in the scene. The fonn factor between patches 
P j and Pj gives the fraction of flux leaving P j that strikes 
Pj- . 

For any non-trivial scene. the calculation of form fac­
tors is obviously a very expensive operation. A fonn fac­
tor depends on the shapes. sizes. and angular orientations 
of the two patches. as well as on the distance between 
them. The form factor for P j and Pr denoted by FFjj• is 

1 co~(CO~j 
FF'j=-A. J J w2 O~,404dA;dAj (5.1) 

I At-j J 

where Aj is the area of Pj. Aj is the area of Pr dAj is the 
differential area of Aj • dAj is . the differential area of Ar 
and 0.t.\404 . is 1 if dA j and dAj are intervisible and 0 if they 

I J 

are not intervisible. These quantities are illustrated in Fig-
ure 5.1. 

The exact evaluation of the double integral in equation 
5.1 is very difficult, and an approximation to it must be 
used in practice. Currently the most popular method of 
computing this approximation is the hemicube 
algorithm[COHEN et all. A hemicube (essentially a five­
sided box) is centered over each patch, and each side of 
the hernicube is treated as a virtual "screen." All other 
patches in the scene are projected onto each hemicube side 
in turn, and hidden-patch elimination is perfonned using a 
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modified Z-buffer algorithm. Based on the number and 
location of "pixels" in which a given patch is visible. an 
estimate can be made of the fonn-factor from that patch to 
the patch at the centC'r of the hemicube. 

A recently proposed alternative to the hemicube algo­
rithm is the technique of ray casting between patches to 
compute fonn factors [CHRISTENS EN et al .• W AlLACE 
et al.): we call this technique flux tracing. By using a 
hybrid method that is similar to the beam-ray-tracing algo­
rithm of Section 4 the efficiency of the flux-tracing algo­
rithm can be enhanced for scenes that exhibit substantial 
in/ervisibiliry coherence. Intervisibility coherence refers to 
the phenomenon that patches A and B are likely to be 
intervisible if A is contiguous to patch 0.. B is contiguous 
to patch ~. and a and ~ are intervisible. 

We detennine form factors between patches by 
separately calculating intervisibility and energy transfer. In 
calculating intervisibility. we wish to compute OAt-j in 

Equation 5.1 for each pair of patches. P j and Pj' To 
accomplish this efficiently. we consider each pair of faces. 
F" and F bo and, assuming they are quadrilaterals. we fonn 
from them a decahedron. This decahedron is simply the 
convex hull around the eight vertices of F lA and F bo as 
shown in Figure 5.2. We then perform a spatial query to 
determine whether the decahedron is empty. If it is. every 
patch in face F lA is intervisible with every patch in face F b. 

Should the decahedron not be empty. we subdivide the 
larger of the two faces -- say F" -- into four subfaces and 
apply this technique recursively to each subface and F b' 

Figures 5.3 - 5.6 illustrate the process. 

At some point during the recursive process. it will 
become more efficient to perform pairwise comparisons 
between patches in faces F" and Fb than to perfonn 
exhaustive queries of decahedral volumes. This task is 
performed by the flux-tracing algorithm, to which we 
alluded earlier. To determine the intervisibility of patches 
P j and Pj' we cast a ray between the centers of the two 
patches to see if it is blocked by any face in the scene. If 
the ray is not blocked, the patches are treated as if they 
were completely intervisible; if the ray is blocked by a 
face. the patches are treated as if they were mutually 
obscured. This represents a conversion from an area­
sampling process to a point-sampling process and estab­
lishes the hybrid nature of the algorithm. 

Once the intervisibility of patches in the scene is deter­
mined, we compute the energy transfers between pairs of 
faces. If patches P j and Pi are not intervisible. the energy 
transfer is clearly O. If the patches are intervisible. we 
estimate the form factor. FFif'. to be 

F~ __ l . CO~(COS~j.\: (5.2) 
r ij - Aj 7r.?- UAI'/ 

Figures 5.7 and 5.8 were produced using this algorithm. 
The scene shown in Figure 5.7 contains 29 faces that 
decompose into 832 patches. The scene in Figure 5.8 
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Figure 5.1 Computing Form Factors 

Figure 5.3 Scene with Substantial Coherence 

Figure 5.5 Determining the Intervisibility 
of Patches by Volume Sampling 
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FaceB 

Figure 5.2 Decahedral Volume 

Figure 5.4 Decomposing Faces into Patches 

Figure 5.6 Volume Subdivision 
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contains 324 flCeS that decompose into 1,348 patches. 

Our present implementation uses relatively crude 
heuristics to choose between the continued subdivision of I 
decahedral volume md flux tracing. Nevertheless, we suc­
cessfully exploit inte:visibility coherence to reduce by 
45%, from 272,608 to 149,728, the number of ray castings 
needed to render the image in Figure 5.7, while performing 
I little more than 800 decahedral-volume queries. This 
reduces the time taken to compute form factors by approxi­
mately 28%, from 196 seconds to 141 seconds on I Sun 4 
workstation. 

As intervisibility coherence decreases, however, the 
computational savings of our hybrid approach will also 
decrease. For example, in Figure 5.8 the number of ray 
castings is only reduced from 510,748 to 507,676 by per­
forming 524 decahedral-volume queries, and the time taken 
to compute form factors actually increases slightly by 
about 3%, from 777 seconds to 805 seconds on I Sun 4. 

6. Conclusions 

The exploitation of image coherence is widely regarded 
as one of the fundamental opportunities for improving the 
efficiency of rendering operations . 1nrough I combination 
of theoretical and experimental work, we have character­
ized the prospects for improving practical rendering algo­
rithms by exploiting image coherence. We have also 
identified the phenomenon of inte:visibility coherence in 
radiosity-based rendering and experimented with an 
approach for exploiting coherence of this kind. 

Our srudy indicates that for unusually coherent images 
the maximum achievable speedup with our hybrid strategy 
is approximately a factor of 2, IIIld that for images of 
moderate complexity the speedup is on the order of I few 
percent While this may be significant in some cir­
cumstances, the benefits of exploiting image coherence in 
this way are surprisingly less than would be expected to 
accrue from I process that renders many pixels simultane­
ously. Likewise the benefits of exploiting inte:visibility 
coherence in radiosity-based rendering are surprisingly less 
than would be expected to accrue from I process that com­
putes the intervisibility of many pairs of patches simultane­
ously. 

The hybrid rendering algorithms presented in this paper 
serve primarily as experiments to improve our understand­
ing of the phenomena of image and inte:visibility coher­
ence, and are not necessarily recommended for production 
rendering. Nonetheless, the algorithms presented in Sec­
tions 2 and 3 can be used to accelerate existing algorithms 
for coherent images (especially at high resolution) , and the 
algorithm in Section 5 improves upon I prorrusmg new 
technique for scenes with IJUbstCltial inte:visibility 
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coherence. 
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Figure 5.7 Garish Room with 
Four Luminous Ceiling Panels 

and Two Weightless Cubes 
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Figure 4.12 Image I: Sea Shell 
and Mirrors (2018 faces) 

Figure 5.8 The 
Programmer's Cell 


