
17

Image and Intervisibility Coherence in Rendering

Joseph Marks, Robert Walsh, Jon Christensen, and Mark FriedeU

Aiken Computation Labora1ory
Harvard University

Cambridge, Massachusetts 02138

Abstract
Researchers in computer graphics have long regarded

the exploitation of image coherence as one of the funda­
mental opportunities for improving the efficiency of image
rendering. We describe in this paper a theoretical and
experimental investigation of the potential benefits of
exploiting this phenomenon through the use of hybrid
rendering strategies that combine area-sampling and point­
sampling techniques. We also examine the impact of a
related phenomenon. intervisibility coherence, on the calcu­
lation of form factors for radiosity-based rendering.

Although the prospect of exploiting image coherence to
render many pUels simultaneously is intuitively appealing,
this study indicates that the potential for reducing rendering
time in this way is surprisingly limited in most cir­
cumstances . Nevertheless, the hybrid rendering algorithms
we describe may be of some practical significance for
high-resolution images that exhibit substantial image coher­
ence. A similar observation holds for the exploitation of
intervisibility coherence to speed up radiosity-based render­
ing: the potential for reducing rendering time by exploiting
this kind of coherence appears limited, but the hybrid algo­
rithm we describe may be of some practical use for very
finely discretiz.ed scenes that exhibit substantial intervisibil­
ity coherence.

Keywords: image rendering, image coherence, intervisibil­
ity coherence, projective rendering, ray tracing, radiosity.

1. Introduction

Consider an arbitrary pixel in a typical synthetic image.
There is a high probability that this pixel depicts part of
the same primitive surface descriptor, e.g., a polygonal
face, as that depicted by the pixel's 8~ted neighbors.
This phenomenon is known as image coheTence.

The computer-graphics literature chronicles many
anernpts to reduce rendering time by exploiting image
coherence in several different ways. These efforts, which
seek to render simultaneously all the pixels in a coherent
region, previously have not been shown to be superior to
other rendering algorithms, even when the image is highly
coherent Nonetheless, the prospect of rendering many
pixels simultaneously is intuitively appealing and the
exploitation of image coherence is frequently cited as a
fundamental oppornmity for improving the efficiency of
image rendering.

The most aggressive attempts to exploit image coher­
ence are area-sampling algorithms, which attempt to find
the largest coherent regions in the image. Area-sampling
algorithms have been developed by W &mOCk [W AR­
NOCK] , WeiIer and Atherton [WEILER cl ATIffiRTON] ,
and Heckbert and Hanrahan [HECKBERT cl HAN­
RAHAN], among others. The Warnock algorithm was the
first and is among the most famous algorithms in computer
graphics. It is described briefty below in terms of two
coroutines: looker and thinJ:er. Rendering begins by set­
ting window equal to the entire screen and invoking looker.

procedure looker:

1. Invoke thinker with the cUlTent window as its argu­
ment. IT thinker succeeds, return immediately; other­
wise, go on to step 2.

Graphics Interface '90

2. Subdivide evenly the window into 4 subwindows.

3. Call recursively the looker for each of the subwindows.

procedure tblnker:

1. If the window is empty. tile the window with the back­
ground color md return success.

2. If the window contains a face. S. that completely fills
the window and is everywhere in the window closer 10

the viewer than the plane of any other face in the win­
dow. tile the window with face S. Return success.

3. Return failure.

Variants of the Wamock algorithm, which we refer 10

as window-$IJI1J{Jling algorithms. may be distinguished from
the larger set of area-sampling algorithms by the way they
subdivide regions of the screen. Window-sampling algo­
rithms subdivide rectangular windows within the screen
into smaller rectangular windows. while other area­
sampling algorithms (e.g .• [WEILER &: ATHERTON]).
may subdivide the screen in arbitrarily complex ways.

In Section 2. we offer a theoretical view of why previ­
ous efforts to exploit image coherence via window sam­
pling have not yielded superior rendering algorithms. and
we suggest a hybrid strategy that we believe leads 10 the
fullest use of image coherence that is possible in practical
circumstances.

The resulting improvements in rendering efficiency for
various degrees of image coherence are reported in Sec­
tions 3 and 4. which describe two rendering algorithms that
use our hybrid strategy. One algorithm is based on projec­
tive geometry and the other is based on ray tracing. Both
algorithms harness existing algorithms to render the com­
plex areas of an image. and use a window-sampling algo­
rithm to render the coherent areas. When applied to
images containing significant image coherence. this
approach serves to accelerate the non-window-sampling
half of the hybrid algorithm. In the worst case. when
applied to images with little or no coherence. the hybrid
algorithms reduce immediately 10 the non-window­
sampling halfs of the respective algorithms with negligible
performance degradation.

In Section 5. we outline how our hybrid approach has
been used to exploit a similar form of coherence - inter­
visibility coherence -- in the calculation of form factors for
radiosity-based rendering.

18

2. Theoretical Perspective

Figure 2.1 gives the times required by the Wamock
wiOOow-sampling algorithm and the Romney scan-line
algorithm to render the six test images presented in Figure
2.2. For all 6 scenes, the nmning time of the scan-line
algorithm is shown to be less -- in most cases much less -­
than the nmning time of the window-sampling algorithm.
This is typical of the speed advantage over the Warnock
algorithm of all rendering algorithms now in common use.
Since the general inefficiency of the Warnock algorithm is
not explained by approximate time-<:<>mpiexity measures
(SUTHERLAND et al.J. we assume that the complete
time-<:<>mplexity function for the Wamock algorithm
includes a large constant of proportionality and/or
significant lower-order terms.

30

i
-20

~

f 10

o
A B c 0

Teatn,.

• •

E F

Figure 2.1 Comparative Rendering Times

Warnoca
Romney

In spite of the apparent disadvantages of window sam­
pling. it is extremely efficient when rendering a large win­
dow within a coherent image region. Ideally. we would
like to render these coherent regions with a window­
sampling algorithm and render all other portions of the
image with some other. more generally efficient algorithm.
To do this in practice. we must be able to predict where
the coherent regions of an image lie. If this can be done
reliably with no appreciable cost., we would be able to con­
struct hybrid rendering algorithms whose rendering-time
speedup due to the exploitation of image coherence would
approach the theoretical maximum.

We address the problem of predicting the locations of
coherent regions by assuming that rendering begins with a
window-sampling technique. TIten. for each window sam­
ple. we need to determine whether to continue with the
window-sampling approach or to convert to an alternative
rendering technique. It would be advantageous to continue
the window-sampling approach if further subdivision would
produce a sample window. C. such that the cost of render­
ing C via window sampling plus the cost of producing C
would be less than the cost of rendering the pixels in C

Graphics Interface '90

19

A B

c D

E F

Figure 2.2 Six Test Scenes

Graphics Interface '90

with the alternative technique.

To make this determination, we formulate an analytic·
model of window sampling and subdivision and use it to
derive an expression that predicts the "umber of window
samples needed to render an image with a window­
sampling algorithm. To validate our model, we compare
predicted and actual samples for several test scenes. After
validating the analytic model, we use it to derive III

expression that estimates rendering cost per pixel for the
most economically rc:ndenble subwindow that could be
generated from a given sample window.

Our analytic model follows that in [StrrHERLAND et
al.] and presumes a three~c:nsiona1 scene clipped to a
viewing frustum and mapped by a perspective transforma­
tion into a three-dimensional image space El pixels wide
by El pixels high. In this ideal scene, shown in Figure
2.3. there are D identical layers of identical square faces.
each layer parallel to the image plane and measuring El x
E6' D is therefore the depth complexity of the scene. If
we specify D and the total number of faces in the scene,
F. we calculate the number of visible faces. F ... as F/D.

Initially. we are interested in analyzing window­
sampling processes of which the Wamock algorithm is the
exemplar. To facilitate this analysis. we constrain the
dimensions and the arrangement of the square faces in the
scene. Within each layer of faces. we require a II2-pixel
gap between the edges of adjacent faces . The edg~ l2ngth
of a face. Ef is therefore slightly less than El/F •.
Further. we also require that at some granularity of window
subdivision a window will contain exactly I complete face,
aligned with the right and bonom borders of the window.
This window will therefore contain a II2-pixel gap
between left edge of the face and the left border of the
window as well as a 1f2-pixel gap between the top edge of
the face and the top border of the window. These condi­
tions are illustrated in Figure 2.3 . As described below. the
required face registration plays a role in analyzing window
subdivision as a function of face-window overlap. and the
II2-pixel gaps are used in modeling window subdivision
due to the presence of face edges .

Given an ideal scene. the behavior of a window­
sampling process can be separated into two activities. sort­

ing and splitting. If a window sample yields more than I
visible polygon, the window will be subdivided into 4
subwindows, and all polygons in the sample will be sorted
into the them; no polygon splitting will be necessary. If a
sample yields exactly I visible face that fills the window.
the window will be rendered completely. Otherwise. the
window is not filled completely. the sample window will
be subdivided as before, and each of the D faces in the
sample will be split along the boundaries of the subwin­
dows. (This analysis is made simpler by assuming that
faces are literally split, although in practice the faces would
probably be copied.) Sorting and splining continue until

20

each sample window is filled completely by a visible face
or until the sample window covers I pixel or less.

~.--------h --------••

Figure 2.1 An Ideal Scene Description

To compute the number of window samples required to
render an image of an ideal scene. we first determine the
number of samples required during the sorting phase of
rendering. This number will depend on F... and we refer
to it as SlOr/..F.) . If a sample contains exactly I visible
face. SIOr!.F.) is O. Otherwise. the total number of sorting
samples required to render the scene will be. in addition to
the sample for the original window. the sum of the sorting
samples required to render each of the 4 identical subwin­
dows. Therefore.

S..,,(F ,)0 l-t4S ~rl [:']

=-- (2.1)
3

In addition to the (F.-I)/3 sorting samples. there is
some number of splitting samples for each of the F. win­
dows containing I visible face and a II2-pixel gap along
the left and top borders of the window. This number.
which depends of E/ and is referred to as Slpu/..E/). is 1

Graphics Interface '90

when E, is 1. Otherwise, S,pli,(E,) is 2 (1 for the initial
sample and 1 for the lower-right window. which is ren­
dered). plus 2 times the nwnber of samples required to
render a subwindow with a I/2-pixel gap along 1 edge (the'
lower-left and upper-right subwindows). plus the nwnber of
samples required for the upper-left subwindow (whose gap
configuration is identical to the original sample window).
By referring to the nwnber of samples required to render a
window with a I/2-pixel gap along one edge of length n as
S ... /il (11). we can write

-r I

S.,-,(Er)=2+2S"", __ [i]+S'P~[i]
:2I's , __ [~;]+ 21og,Er-1 (2.2)

When 11 is 1. S,plill-,.(II) is 1. Otherwise. it is 3 (the

sample for the original window and 1 sample each for the
upper-right and lower-right subwindows. which will be ren­
dered). plus the nwnber of samples required for the upper­
left and lower-left subwindows. which also have gaps
along their left edges. 'Therefore.

SIp/ill-..(n)=3+2SlJ>Iill-C"'[~]

=4n-3 .

Substituting this expression for SJ;, (n) into Equation
Y-I-..I,.

2.2 yields

100"Jftf [E]
SIp/i,(E,)=2 L 4-f-3 +21og~t+1

i=1 2

=8Er4log-fir 7 (2.3)

By COJT~rrg Equation 2.1 with Equation 23 and substi­
tuting E,IF y for Ep we find S(Fy). the total nwnber of
samples required to render an image with F y visible faces:

Fv-
l ! -{Ef - (Ef 1 S(Fv)=-3-+Fv 8'J T.-410g2--V T.-7

21

In real scenes. the distribution of scene complexity
may vary widely from the uniform distribution of ideal
scenes. Consequently. we wish to test the ability of our
model to accurately predict the behavior or real rendering
processes. To do so. we empirically verify the predictive
power of Equation 2.4 with an instrurnented implementa­
tion of the Wamock algorithm that counts the number of
window samples required during rendering. This imple·
mentation was used to render the 6 images shown in Fig­
ure 2.2. and the predicted and .ctual operation counts are
shown in Figure 2.4.

! .
U!

A B c o E

.p~

• Actual

Figure 2.4 Predicted and Actual Window Samples

We now re-examine the behavior of window-sampling
processes with the goal of estimating for any given win­
dow. W. the rendering cost per piul of the most economi­
cally renderable subwindow that can be derived from W by
subdivision. In this discussion, F w. F v • El'" and E, are

W JW

defined for Was F. F •. E. and E, are defined for the com­
plete scene. Our analysis assumes the same face­
computation cost for sorting a face into a subwindow or
for splitting it into 4 subwindows.

During the sorting phase of rendering, the number of
face computations required to render a window. W. con­
taining F", faces. C'Orlw(Fw), is 0 if Fw is D. Otherwise.

it is F I" (to sort each face into the appropriate subwindow)
plus the nwnber of face computations required for each of
the 4 subwindows:

C~.(F w)=Fw+4C~" [:w]

Graphics Interface '90

As the splitting phase of rendering begins, each of the
subwindows of W containing exactly 1 visible face is
further subdivided into 4 windows. One of these - the
lower-right one -- is rendered completely when it is sam­
pled. The munber of pixels in each of these completely
rendered windows is E1'//4 .

For these windows, the largest to be rendered as part
of a single sampling operation. we can compute the
number of face-processing operations per pixel. lbere

F
were F wIO&4; operations needed during the sorting

phase of rendering, which Jroduced F ' .. windows. There­

fore, each of these F ... windows can be "charged" with
F

(FwIO&4 ;)IF, .. operations performed during the sorting

phase of rendering. During the splitting phase, each of the
D faces in each of the F '.. windows is processed as it is

split into 4 subwindows. The lower-right subwindow, con­
taining El..14 pixels is then rendered. Therefore, the

number of face-Jrocessing operations per pixel is

Fw
Fwlo&4-

D +D
F,w

(2.5)

Substituting Fw/D for F, .. and -J(E~D)/Fw for El .. in
expression 2.5 yields

Fw
4FwI0&4D+4Fw

Er..
(2.6)

Consider now a different window-sampling algorithm
that requires processing time for each sample that is pro­
portional to the total number of faces in the scene. (This is
the case for the hybrid beam-ray tracing algorithm presen­
tation in Section 4.)

We Imow from Equation 2.1 that (F ' .. -1)/3 samples

will be required during the "sorting" phase of rendering to
yield F 'w windows containing 1 visible face. As "split­

ting" begins, each of the F,w windows will be subdivided

and the lower-right subwindow will be rendered com­
pletely. This will require 5 more samples for each F ' ..
window. Hence, the number of samples per rendered pixel
is

F -1 'w - -+5
3F,w

E 2 Iv;

4

22

Each sample requires time proportional to the total number
of faces in the scene, F. Therefore, using the identities

Fw ~WD F, =-D and Et, = --, the rendering cost per pixel
.. w Fw

is Jroportional is

3.

16Fw-D
F--::--

Er..D (2.7)

Potential Speedups for
Projective-Geometry-Based Rendering

To measure the potential for rendering-time speedups
in practical projective-geometry-based rendering algo­
rithms, we have prepared a hybrid algorithm in which area
sampling is performed by the Wamock looker and thinker
coroutines, and point sampling is accomplished by • Z­
buffer. We chose a Z-buffer point-sampling algorithm for
this experiment because of its simplicity. (We use the tenn
projective-geometry rendering algoritltm to refer 10 • con­
ventional, non-ray-tracing rendering algorithm that operates
on a scene which has been mapped by • perspective
transformation into a three-dimensional image space.)

In our hybrid algorithm. the looker Jrocess has been
modified slightly. When invoked, the looker counts the
number of faces in its window, estimates the depth com­
plexity of the window, and estimates the cost of rendering
a portion of window via continued window sampling by
evaluating the eXJression

Fw
FwIO&4

D
+Fw

Er..
(3.1)

whose value is proportional to Expression 2.6. F w is the
number of faces in the window, D is the depth complexity
of the scene, and Ew is the edge length of the sample win­
dow in pixels. The value of Expression 3.1 is compared to
a threshold which represents the cost of rendering the sune
pixels by point sampling via the Z-buffer. If the computed
cost exceeds the threshold, the window is passed 10 the Z­
buffer routine.

The threshold for selecting point sampling is detez­
mined empirically to capture an accurate balance between
window sampling and point sampling. This balance point
reflects the efficiencies of the constituent window-sampling
and point-sampling algorithms and their implementations in
the hybrid renderer. H the threshold is set arbitrarily 10 0,
the hybrid algorithm will immediately convert to point
sampling and · render the entire image with the Z-buffer; if
the threshold is set to infinity, the Warnock algorithm will

Graphics Interface ' 90

I
1
~

f
J

I
~
F

)

110

100

90

80

70

60

50
0.0

190

180

170

160

150
0 . 0

Tee! lmape "

0.1

nn.hoId

0.2

0 .1 0 .2
Threshold

0 .3

0. 3

Figure 3.1 Rendering Time vs. Threshold Value

be used exclusively. To determine an appropriate threshold
value, the times to render a few typical test scenes are
recorded as the threshold is varied along a ramp of values.
If the insights of Section 2 are valid, we would expect the
rendering time to initially decrease as the threshold value is
increased from 0 (and some window sampling is "blended
in"). then increase as the utility of additional window sam­
pling is exhausted. This behavior is shown in Figure 3.1
for test scenes A and F. which represent the maximum md
minimum ~formance improvements for the test scenes in
Figure 2.2. Using these empirically derived performance
data. we select a threshold value that corresponds to a
minimal rendering time over the set of test scenes. In this
case. we choose 0.04. With that value, the hybrid algo­
rithm produces a speedup over the Z-buffer algorithm of
30% for scene A and 8% for scene F. 'These speedups
correspond well with the relative presence of image coher­
ence in the test images.

23

By comparing the value of Expression 3.1 to a fixed
threshold, we asswne a fixed rmdering cost per piul for
the Z buffer. Because the Z-Buffer technique incorporates
a high overhead cost per pixeL this is a reasonable assump­
tion for small values of Fw. Further. since the cost of
rmdering as a function of the number of faces increases
more rapidly with window sampling that it does with a Z
buffer. our simplification produces the desired result for
large values of Fw. i.e., we select point sampling via the Z
buffer.

TIle rendering times givm in Figure 3.1 are for images
at 1024 x 780 spatial resolution and are exclusive of pixel
tiling. We assume that tiling is performed by a JX"ocessor
in the graphics controller that accepts rectangle-fill com­
mands (windows from the thinker coroutine) and vector­
draw commands (scan-line spans from the Z-buffer).

4. Potential Speedups for
Ray-Tracing-Based Rendering

The recent focus of computer-graphics research on
ray-tracing-based rendering has produced dramatic
improvements in the efficiency of this class of rendering
algoritluns. In fact. many now believe that no further
significant improvements in efficiency are achievable
without the use of some form of parallelism.

Beam tracing is a form of parallelism that seeks to
exploit image coherence by tracing simultaneously all rays
through a coherent area of the screen. This is possible
because all rays through the coherent area will intersect the
same surfaces. by definition. Although beam tracing has
obvious appeal for rendering large coherent areas of an
image. previous beam-tracing algoritluns suffer from the
performance degradation observed in projective-geornetry­
based rendering algoritluns that attempt to use area sam­
pling on insufficiently large screen areas. When this point
is reached with beam tracing. however. a point-sampling
process -- ray tracing -- can be used. Thus. a strategy for
hybrid beam-ray tracing is to trace beams through the more
coherent areas of an image and to trace rays elsewhere.

To \Dlderstand better the prospects for exploiting coher­
ence in ray-tracing-based reOOering. we have constructed a
hybrid algorithm that combines beam tracing with ray trac­
ing using a extension of Wllmock's approach to area sam­
pling. This beam-tracing algorithm is different from the
beam-tracing algorithm due to Heckbert and
Hanrahan[HECKBERT & HANRAHAN]. which is a gen­
eralization of the Weiler-Atherton hidden-surface
algorithm[WEll..ER & ATHERTON).

Graphics Interface '90

WI.dow A rectangular region of the screen.
B u. An infinite pyramidal volume. A truncated

beam is formed by removing the top of •
beam through intersection with a planar
IUrface.

Lateral Ray. The four rays that form the edges of a
beam.

Orl,lnal Bum 1be lateral rays of an original beam are
rays from the eye through the comen of a
window.

Renec:ted Beam A truncated beam that is formed when
another beam is incident upon a reflecting
face.

Refracted Beam A truncated beam that is formed when a
beam is incident upon a refracting face.
When the refractive index is not 1.0. the
refracted beam will be diltorte4

Bea. Se,ment 1be aegment of a beam between two planar
turfaces that intenect the beam.

Bea. Pat.. A aequence of oomected beam tegmenu
produced by intersectiont with reflectin,
and refracting turfacet that endt with a
truncated beam.

Hit

Partial Hit

Blocked Hit

A hit occun when a beam intenecu
oompletely with a face (the hit face), and
the resultant beam aegment is empty.
A partial hit occurs when no face intersects
a beam oompletely.
A blocked hit occurs when a beam
interaects completely with a faee, but the
resultant beam !Cgment contains one or
more additional facel .

Figure 4.1 Glossary of Terms for Beam-Ray Tracing

Figure 4.2 An Illustration of Beam Tracing

A glossary of terms for hybrid beam-ray tracing is
given in Figure 4.1. Figure 4.2 illustrates the optimal
situation for beam tracing. The beam passing through a
given window on the screen intersects completely with a
face in the scene, and the resulting beam segment contains
no other faces. (To simplify the presentation, faces are

24

UIIumed to be convex. This is not esaentiaJ to the algo­
ritlun, but it does pennit a simplification of the intersection
computation: if the four lakral rays of a beam intlnect a
convex face. then the whole beam in1eI'sects the face.) 'The
diffuse-reflection contribution from the hit face cm now be
calculated for the entire window. If the hit face is specu­
larJy reflective, the reflected beam is found by reflecting
the incident lateral rays of the beam. The specul .. -
reflection contribution from the hit face is then computed
by recursively tracing the reflected be.-n through the 1CaIe.

A simil .. procedure can be followed for refracted beams,
although additional steps are required to cope with the poI­

sible distortion of the refracted beam. For a discussion of
how to extend the hybrid be.-n-ray traciJl& algorithm to

simulate more sophisticated · illumination effects, including
general refraction, shadows, and texture-mapping. see
[MARKS et al.).

Eye

Figure 4.3 A Partial Hit

For the optimal case afforded by a coherent area of the
image, beam tracing a large window on the screen can be
much more efficient than ray tracing it. For example, the
cost of tracing a beam like the one in Figure 4.2 is the cost
of ray tracing four iat.eJal rays and performing spatial
queries to verify that the beam segments on the subsequent
beam path .. e empty. Although a spatial query of this
kind is a complex operation. not every polygon in the
scene need be tested for intersection with a given be.-n
segment: a data structure like the spatial enumeration of
[FUJIMafO et al.) is used to restrict attention to only
those polygons in the neighborhood of the beam segment.
Further efficiencies result from the fact that the spatial
query need only detennine whether an intersection has
occurred, and need not return a geometric description of
the int.eJsection. Computing the reflected beams generated
at each reflecting surface incurs only the cost of reflecting
four incident lat.eJal rays. Ray tracing a N x N pixel

Graphics Interface '90

r-------------------- ---- -----

Eye

Figure 4.4 A Blocked Hit

on Screen

Figure 4.5 Sulxiivision of a Window on the Screen

window would require tracing and reflecting N2 rays;
antialiasing by oversampling might require tracing many
more rays.

Unfortunately, the optimal case is not the only one that
can occur . Figure 4.3 illustrates the case of a partial hiL
The lateral rays of the beam do not all have the same sur­
face of nearest intersection, hence the beam does not com­
pletely intersect any face. Figure 4.4 illustrates the case of
a blocked hit. The lateral rays share the same surface of
nearest intersection, so the beam intersects the face com­
pletely. But the beam does not intersect the face
exclusively: the beam segment contains another face. If
the newest beam segment on a beam path experiences a
partial or a blocked hit, it is clear that this and subsequent
beam segments will not generate coherent contributions to
the window associated with the beam path.

25

The two options for coping with partial and blocked
hits are ,ulxlivision of the beam path and ray tracing. Fig­
ure 4..5 illustrates the procedure for sulxiividing a beam
path. The associated window is sulxiivided regularly into
four smaller windows. Rays are traced through the corners
of each of these smaller windows. These rays are the
lateral rays that define four new beam paths, one for each
of the smaller windows . Some of the new beam paths will
generate hits immediately, whereas some will require more
subdivision to generate further hits.

As the amount of sulxiivision required before produc­
ing a hit increases, so does the rendering cost per pixel for
the associated window. If the new beam paths resulting
from a sulxlivision are unlikely to generate further hits
while their associated windows are still large enough to
realize savings in computation over ray tracing, it would be
best to abandon the area-sampling awroach. Any ray­
tracing algorithm can be used as the alternative. COOosing
between continued sulxiivision and ray 11 acing is done by
evaluating Expression 2.7,

16Fy D
F--::---

E~D

to estimate the cost-per-pixel of continued beam tracing.
Here F is the total number of faces in the scene, D is the
depth complexity of the scene, Fw is the number of faces
in the window, and Ew is the edge length of the window in
pixels. If the value of Expression 2.7 exceeds an empiri­
cally determined threshold (which is determined using the
same method that we used for the projective-geometry
renderer), beam tracing in this window is discontinued. and
further rendering within the window is performed by the
ray tracer. The number of faces in a window is found
when the spatial query is performed for the beam.

The hybrid beam-ray tracing algorithm described
above, which was implemented on a Sun 3 workstation,
was used to render the images in Figures 4.6 and 4.9 at
three different resolutions. (A simple Lambenian illumina­
tion model was used so that the program timings reflect
more closely the cost of hidden-surface processing.) For
comparison purposes, the same images were rendered using
the embedded ray tracer alone. The rendering times of
both algorithms are illustrated in Figures 4.8 and 4.11.
The timings reported here are for the complete rendering
process, from readIDg the scene description to writing the
image into a frame buffer.

The very simple scene in Figure 4.6 was chosen
because the image exhibits a very high degree of image
coherence. Figure 4.7 illustrates how the hybrid algorithm
takes advantage of this image coherence by rendering most
of the image using beam tracing. At an image resolution
of 1024 x 780, 84% of the pixels were rendered by beam
tracing. Although the cost-estimation procedure for decid­
ing between further beam sulxiivision and ray tracing
correctly identifies most of the coherent areas of the image,

Graphics Interface '90

I
~

f

12000

10000

l1OOO

6000

GlO

2000

0

Figure 4.6 Image G: Concentric Cubes
Reflected in a Mirror (1S faces)

• Rayln<zr ... s..n-Ray In<zr

~1:b390 10l4.11O 128OJ.10l4

lmase RaoIutiOll

Figure 4.S Rendering Time vs. Picture Resolution
for Image G

Figure 4.10 Image H: regions requiring
some ray tracing are blacked out

26

I
~

f

12(KX)

10000

1000

6000

«lOO

lOOO

0

Figure 4.7 Image G: regions requiring
some ray tracing are blacked out

Figure 4.9 bnage H: Two Goblets
Reflected in I Mirror (946 faces)

~121390 10l4111O

lmase RaoIutiOll

Figure 4.11 Rendering Time vs. Picture Resolution
for Image H

Graphics Interface '90

it occasionally misses some. Note in Figure 4.8 that
exploitable coherence increases with image resolution.

The image in Figure 4.9 exhibits less image coherence
(see Figure 4.10); 11 an image resolution of 512 x 390.
only 42% of the pixels were rendered by beam tracing. At
this resolution. the rendering-time speedup due to the
exploitation of coherence is negligible. At greater resolu­
tion, however. coherence becomes more significant as a
greater number of pixets are more efficiently rendered by
beam tracing (the Wamock hybrid of section 3 shows simi­
lar improvrnent at higher resolutions).

Figure 4.12 shows a more complex image with multi­
ple reflections. At a resolution of 1024 x 780 it is ren­
dered 27% faster by the hybrid algorithm than by ray trac­
ing alone.

5. Potential Speedups for
Radiosity-Based Rendering

The term "radiosity" is used to describe a variety of
shading techniques that model the flow of radiant flux
between diffusely reflecting surfaces. The essence of the
technique for computing this radiant transfer is to decom­
pose each face in the scene description into a mesh of
small paJches and to compute a form factor for each pair
of patches in the scene. The fonn factor between patches
P j and Pj gives the fraction of flux leaving P j that strikes
Pj- .

For any non-trivial scene. the calculation of form fac­
tors is obviously a very expensive operation. A fonn fac­
tor depends on the shapes. sizes. and angular orientations
of the two patches. as well as on the distance between
them. The form factor for P j and Pr denoted by FFjj• is

1 co~(CO~j
FF'j=-A. J J w2 O~,404dA;dAj (5.1)

I At-j J

where Aj is the area of Pj. Aj is the area of Pr dAj is the
differential area of Aj • dAj is . the differential area of Ar
and 0.t.\404 . is 1 if dA j and dAj are intervisible and 0 if they

I J

are not intervisible. These quantities are illustrated in Fig-
ure 5.1.

The exact evaluation of the double integral in equation
5.1 is very difficult, and an approximation to it must be
used in practice. Currently the most popular method of
computing this approximation is the hemicube
algorithm[COHEN et all. A hemicube (essentially a five­
sided box) is centered over each patch, and each side of
the hernicube is treated as a virtual "screen." All other
patches in the scene are projected onto each hemicube side
in turn, and hidden-patch elimination is perfonned using a

27

modified Z-buffer algorithm. Based on the number and
location of "pixels" in which a given patch is visible. an
estimate can be made of the fonn-factor from that patch to
the patch at the centC'r of the hemicube.

A recently proposed alternative to the hemicube algo­
rithm is the technique of ray casting between patches to
compute fonn factors [CHRISTENS EN et al .• W AlLACE
et al.): we call this technique flux tracing. By using a
hybrid method that is similar to the beam-ray-tracing algo­
rithm of Section 4 the efficiency of the flux-tracing algo­
rithm can be enhanced for scenes that exhibit substantial
in/ervisibiliry coherence. Intervisibility coherence refers to
the phenomenon that patches A and B are likely to be
intervisible if A is contiguous to patch 0.. B is contiguous
to patch ~. and a and ~ are intervisible.

We detennine form factors between patches by
separately calculating intervisibility and energy transfer. In
calculating intervisibility. we wish to compute OAt-j in

Equation 5.1 for each pair of patches. P j and Pj' To
accomplish this efficiently. we consider each pair of faces.
F" and F bo and, assuming they are quadrilaterals. we fonn
from them a decahedron. This decahedron is simply the
convex hull around the eight vertices of F lA and F bo as
shown in Figure 5.2. We then perform a spatial query to
determine whether the decahedron is empty. If it is. every
patch in face F lA is intervisible with every patch in face F b.

Should the decahedron not be empty. we subdivide the
larger of the two faces -- say F" -- into four subfaces and
apply this technique recursively to each subface and F b'

Figures 5.3 - 5.6 illustrate the process.

At some point during the recursive process. it will
become more efficient to perform pairwise comparisons
between patches in faces F" and Fb than to perfonn
exhaustive queries of decahedral volumes. This task is
performed by the flux-tracing algorithm, to which we
alluded earlier. To determine the intervisibility of patches
P j and Pj' we cast a ray between the centers of the two
patches to see if it is blocked by any face in the scene. If
the ray is not blocked, the patches are treated as if they
were completely intervisible; if the ray is blocked by a
face. the patches are treated as if they were mutually
obscured. This represents a conversion from an area­
sampling process to a point-sampling process and estab­
lishes the hybrid nature of the algorithm.

Once the intervisibility of patches in the scene is deter­
mined, we compute the energy transfers between pairs of
faces. If patches P j and Pi are not intervisible. the energy
transfer is clearly O. If the patches are intervisible. we
estimate the form factor. FFif'. to be

F~ __ l . CO~(COS~j.\: (5.2)
r ij - Aj 7r.?- UAI'/

Figures 5.7 and 5.8 were produced using this algorithm.
The scene shown in Figure 5.7 contains 29 faces that
decompose into 832 patches. The scene in Figure 5.8

Graphics Interface '90

Figure 5.1 Computing Form Factors

Figure 5.3 Scene with Substantial Coherence

Figure 5.5 Determining the Intervisibility
of Patches by Volume Sampling

28

FaceB

Figure 5.2 Decahedral Volume

Figure 5.4 Decomposing Faces into Patches

Figure 5.6 Volume Subdivision

Graphics Interface '90

contains 324 flCeS that decompose into 1,348 patches.

Our present implementation uses relatively crude
heuristics to choose between the continued subdivision of I
decahedral volume md flux tracing. Nevertheless, we suc­
cessfully exploit inte:visibility coherence to reduce by
45%, from 272,608 to 149,728, the number of ray castings
needed to render the image in Figure 5.7, while performing
I little more than 800 decahedral-volume queries. This
reduces the time taken to compute form factors by approxi­
mately 28%, from 196 seconds to 141 seconds on I Sun 4
workstation.

As intervisibility coherence decreases, however, the
computational savings of our hybrid approach will also
decrease. For example, in Figure 5.8 the number of ray
castings is only reduced from 510,748 to 507,676 by per­
forming 524 decahedral-volume queries, and the time taken
to compute form factors actually increases slightly by
about 3%, from 777 seconds to 805 seconds on I Sun 4.

6. Conclusions

The exploitation of image coherence is widely regarded
as one of the fundamental opportunities for improving the
efficiency of rendering operations . 1nrough I combination
of theoretical and experimental work, we have character­
ized the prospects for improving practical rendering algo­
rithms by exploiting image coherence. We have also
identified the phenomenon of inte:visibility coherence in
radiosity-based rendering and experimented with an
approach for exploiting coherence of this kind.

Our srudy indicates that for unusually coherent images
the maximum achievable speedup with our hybrid strategy
is approximately a factor of 2, IIIld that for images of
moderate complexity the speedup is on the order of I few
percent While this may be significant in some cir­
cumstances, the benefits of exploiting image coherence in
this way are surprisingly less than would be expected to
accrue from I process that renders many pixels simultane­
ously. Likewise the benefits of exploiting inte:visibility
coherence in radiosity-based rendering are surprisingly less
than would be expected to accrue from I process that com­
putes the intervisibility of many pairs of patches simultane­
ously.

The hybrid rendering algorithms presented in this paper
serve primarily as experiments to improve our understand­
ing of the phenomena of image and inte:visibility coher­
ence, and are not necessarily recommended for production
rendering. Nonetheless, the algorithms presented in Sec­
tions 2 and 3 can be used to accelerate existing algorithms
for coherent images (especially at high resolution) , and the
algorithm in Section 5 improves upon I prorrusmg new
technique for scenes with IJUbstCltial inte:visibility

29

coherence.

7. References

[CHRISTENS EN et al.]
Christensen. l., Marks, l ., Walsh, R. and Friedell. M.
Aux Tracing: A Aexible Infrastructure for Global
Shading. Technical Report TR-16-89, Center for
Research in Computing Technology, Aiken Compllta­
tion Laboratory, Harvard University, luly 1989.

[COHEN et al.]
Cohen, F. C., Greenberg, D. P., Immel, D. S. and
Brock, P. J. "An Efficient Radiosity Approach for
Realistic Image Synthesis." IEEE CompulU Graphics
and ApplicaJions (March 1986).

[FUllMafO et al.]
Fujimoto, A., Tanaka, T . and Iwala, K. "ARTS:
Accelerate Ray-Tracing System." IEEE CompuJer
Graphics and ApplicaJions (April 1986).

[HECKBERT & HANRAHAN]
Heckbert, P. and Hanrahan, P. ''Beam Tracing Polyg­
onal Objects." CompUlU Graphics, 18, 3.

[MARKS et al.]
Marks, l., Walsh, R. and Friedell. M. Hybrid Beam­
Ray Tracing. Technical Report TR-03-88, Center for
Research in Computing Technology, Aiken Computa­
tion Laborauory, Harvard University 1987.

[SUTHERLAND et al .]
Sutherland, I. E., Sproull, R. F., and Schumacker, R.
A. "A Characterization of Ten Hidden-Surface Algo­
rithms." Compuling SlUVeyS, 6, 1.

[W ALLACE et al.]
Wallace, J. R., Elrnquist, K. A. and Haines, E. A. • A
Ray Tracing Algorithm for Progressive Radiosity."
Compuler Graphics, 23, 3.

[WARNOCK]
WIInlOCk, J. A Hidden-Surface Algorithm for Com­
puter Generated Half-Tone Picrures. Technical Report
TR 4-15, Computer Science Department, University
University of Utah 1969.

[WEll..ER & ATHERTON]
Weiler, K. and Atherton, P. "Hidden Surface Remo­
val Using Polygon Area Sorting." CompuJer Graphics,
11,3.

Graphics Interface '90

Figure 5.7 Garish Room with
Four Luminous Ceiling Panels

and Two Weightless Cubes

30

Graphics Interface '90

Figure 4.12 Image I: Sea Shell
and Mirrors (2018 faces)

Figure 5.8 The
Programmer's Cell

