
277

NASSI-SHNEIDERMAN DIAGRAMS AND TABLETALK

Richard Gary Epstein
Department of statistics / Computer

and Information Systems
The George Washington University

Washington, DC 20052

1. IntrocSuotion
There is a growing interest in the

subject of visual languages, as evidenced
by a spate of new publications in the area
(including two new books [1,2]) and the
birth of a new journal devoted to the
subject.

At last year I s Vision Interface /
Graphics Interface Conference, this author
presented a paper on "informatics
calculus", a graphical query language for
multi-media database systems [3].
"Informatics calculus" has been revised
and has been renamed "TableTalk". The
syntax of the language has been formalized
in terms of syntax diagrams and the
semantics has been recast in terms of
sequences, objects and their
transformations. TableTalk represents an
effort to capture all "database
activities" in a seamless, visual
language. Seamless implies that regardless
of the activity, the database user will be
operating within the same conceptual and
visual framework . Accomplishing this is a
major challenge, since database activities
are quite diverse. With respect to the
writing of applications programs, the
fundamental issue for TableTalk is whether
a graphical, functional query language can
be integrated into a framework which
supports applications programming? This
paper proposes that this can be
accomplished by combining TableTalk with
another diagrammatic language, Nassi­
Shneiderman (N-S) diagrams.

2. .a •• i-8hneideraan diaqr... and
qrapbical query lanquaqe.

Shu [1] presenta an excellent
introduction to visual languages. Other
introductions to this topic are found in
Chang [4] and in Ambler and Burnett [5] .
Our specific interest is in visual
languages which allow people to program by
means of visual expressions.
Representative examples of such systems
include PICT/D [6], N-S diagrams [7] and
all qraphical query languages.

Experience with visual programming
systems such as PICT/D has shown that in
order to make a visual language cost
effective, the visual expressions in the
language must correspond to concepts in a
very high level programming language.
Graphical query languages generally adhere
to this principle.

The term "N-S diagrams" refers to a
family of very similar diagrammatic
notations whose common idea is to express
structured programming control structures
in diagrammatic form . N-S diagrams, like
TableTalk, express programs as mosaics,
that is, as rectangular arrangelDents of
non-overlapping tiles. Spatial patterns
are used to denote various kinds of
combinators.

N-S diagrams represent a higher level
of program abstraction than the icons and
flowcharts of PICT/D. N-S diagrams are
also far less demanding in terms of
computer graphics resources. Thus, they
represent a practical approach to
facilitating program development. N-S
diagrams have been employed by a variety
of systems, including IBM I S Programming
Support System (8], PIGS [9] and GRASE
(10]. Figure 1 presents some of the basic
tiling patterns employed in N-S diagrams.

•• quenc1ft9

.,hile loop

.,hU. boolean

r

if-tIIen-eh.

vb 11. loop .,1 tII
ne.ted 1f-tIIen-.1 ••

""11. bool •• n

Graphics Interface '90

Graphical query languages generally
operate at a higher level of abstraction
than N-S diagrams. Data models have
encouraged the development of very
powerful, non-pr.ocedural, database
languages whose fundamental feature is
that they descr ibe "programming in the
large". For example, the relational data
model (11) has fostered the development of
a great variety of database languages,
both textual and graphical. Some of these
are based upon relational algebra (e.q.,
ASTRID (12), others are based upon
relational calculus (e.g., QUEL (13) and
QBE [14)) and yet others are designed
around slightly different formal isms
(e.g., SQL (15). Shipman's functional
data model (16) gave rise to a powerful
functional query language, FQL (see
Buneman et al. (17)) and the TableTalk
language (3), which captures the semantics
of a functional query language in
diagrammatic terms.

A review of graphical query
languages reveals a great diversity in
terms of their use of visual information
to communicate the underlying database
semantics. (See Shu (1), chapters 2 and
11, and also the proceedings of the IEEE
Workshop on Visual Languages, includinq
Czejdo, Reddy et al., (18) and Rohr (19).)
An interesting discussion of available
means for expressing semantics in visual
languages is given in Selker and Koved
(20». QBE (14), CUPID (21), IS IS (22),
FORMAL (23), and GUL-Q (24) represent a
variety of approaches for expressing
database semantics in a graphical query
language.

There are several fundamental
challenges inherent in graphical query
language design. These include:

1. Basing the query language on a
suitable user-centered data model which
can be mapped to the underlying logical
model.

2. Employing an effective visual
metaphor for expressing database
semantics.

3. Achieving orthogonality.
4. Mirroring thought (expressiveness,

completeness).
5. Supporting multi-media.
6. Supporting extensibility.
7. Providing a uniform system image

across the various database activities
(including data definition, querying,
updating, report generation and
applications programming).

8. Supporting problem decomposition

as a problem-solving aid.

Providing a uniform system image
across various database activitiel
(challenge ,7, above) is certainly a
formidable task. IBM's relational database
system DB2 is typical in this regard (see
Date (25). Although IBM supports QBE as
a user-oriented, graphical interface to
DB2, QBE does not mesh with the
applications development language (which
is COBOLI). Applications programs are
written in COBOL with embedded SQL.

278

3. TableT.lta A qrapbical, funotioDal
query laDquaqe

This section presents a brief
synopsis of the TableTalk language.
TableTalk is based upon a semantic data
model. Appendix A presents most of the
basic elements of TableTalk's semantic
data model and Appendix B shows the
semantic database schema assumed
throughout the rest of this paper.
TableTalJt'. data model represent. a
compromise between Hammer and McCleod 's
original semantic data model (26) and
Shipman's functional data model (16).

Here are some essential facts about
TableTalk:

1. TableTalk is a functional query
language.

2. TableTalk expresses functional
programs as mosaics.

3. TableTalk is a sequence processing
language.

TableTalk's underlying formalism
der i ves from Buneman ' s funct ional query
language, FQL (17). FQL and TableTalk
express queries as functional forms which
are built up from primitive elements
(including entity classes, attributes and
constants) using functional combinators
(such as composition and Cartesian
product). TableTalk uses various visual
elements to express functional
combinators. For example, functional
composition can be expressed by means of
vertical juxtaposing of tiles, Cartesian
product is expressed by means of
horizontal juxtaposing of tiles, and
subqueries are expressed using mosaics
embedded within tile.. In addition,
external functional forw. can be
referenced by name. In such a situation,
the functional form referred to i.
SUbstituted into the functional form in
which the reference occurs. Figure 2
summarizes the basic tiling patterns of
TableTalk.

TableTalk is a sequence processing
language. This means that the semantics of
the language is formally described in
terms of sequences of objects. An object
encapsulates one or more pieces of
information. There are four kinds of
Objects: scalar objects, set object.,
entity objects and sequences. These
correspond to the four kinds of attributes
in the underlying model: single-valued
scalar, multi-valued scalar, single-valued
entity and multi-valued entity attributes.
An entity object encapulates information
about some entity in the database. Figure
3 presents graphical representations for
the four kinds of objects. (The visual
representation of an object is called a
"card".) An entity object can be either
primordial or non-primordial. For example,
a primordial book object encapsulates all
of the information associated with a
particular book. Since this is potentially
an infinite amount of information (due to
cyclic patterns in the database schema),
the encapsulated information is
represented symbolically as an "entity

Graphics Interface '90

279

rlquro J. Jalio ti1iaq pattara. 1. T.b1.T.1k

functlon.l coapolltlon Cartoll.n product

I I I
S ubquor 1 ..

EJ/
Ixtornal Rotoranca

,iquro , . Cardl tor •• rloul lladl at Objlctl.

I') a loalar objlot

f
c l ••• :

-------I
_ v.luo: 1L lt5

Ib) a ut objoot

ch •• : .ot ot STRING

v.luo: " PROGRAHlfI NC"

ut "COMi'\1T!Jt I.UlGUAGI8"

"USIR INTERrACIa"

"COMi'\1T!Jt GRAPHICS"

(0) 1 prlaordl.1 objaot

cla.a: BOOQ

_ "lICll."

Id) 1 .oquo.oo of priaordi.l objoot •

• oqu.nc. ch ... BOOU - "IeUl" - "Ma5"" - "'TU5"

button": .. . A non-primordial book
object is a book object that has had some
of its information filtered out (usually
by a process similar to the relational
algebraic operation of "projection"). A
non-primordial book object can contain
other entity objects, either primordial or
non-primordial. Figure 4 shows a card for
a non-primordial book object.

,Iqur. t. Card tor. aoa-priaor'ia1 book objlot wblcb
cODt.iD. two Ic.l.r objootl, • prI.or.I.1
oDtit, objlot .Dd •• lquIDOO ot prl.ordlal
ob)oota.

ch ... BOOKS

BOOK' : ch .. : STRING 1
v.1u.: "lIel,." I

AUTIIOR: I ell ... AIn'IIOItJ I - "SHII , NAIl C."

R£HARKS: I cla •• , DOC\IIWIT

I valu.: 11111

ORDERS : .oquonco cla • ., ORD!U - "M"'" - "0514" - "R"'" - "TU'" - "nU"

,iqur. s. Tba b •• l0 kl.d. af ro •• &ad ••• t tba, do.

ro .. type: .ctlon pertoraad l

.ntity cla .. / tran.forae the null .oquonc. Into
.ubela •• a .oqu.nc. of priaordial objoct.

troD the .pacified cl •••.

prodic.t. roaov.. froo the Input .oqu.nca
.ny object which d04. not •• tl.fy
tha predicate

tunctional roplac •• a •• qu.nc. of nuab.r.
.. ith a .I~l. nwabor

functor r •• rra~ •• the Input .aquanc.
In .0.. .ay

product tr.n.tora. prlaordlal obj.ct.
Into non-prlaordl.l objoct . by
tiltarl~ out .ttrlbuto.

Every TableTalk query can be viewed
as a sequence of "rows". Each row belongs
to a particular syntactical category
(determined by the formal syntax of the
language, which is given in [21]). Each
row can be viewed as transforming an input
sequence. It is important to real i ze that
each row describes an iterative process,
the iteration being over the objects in
the input sequence. The k i nd of
transformation performed by a row depends
upon the syntactic category of that row.
The major kinds of rows are summarized in
Figure 5 .

Graphics Interface '90

3.1 QU.ry .ub1aDguag ••• aap1 ••
This section presents a sequence of

TableTa1x query sublanguage examples.

280

I ... pl. J. al •• tb. av.ra;. prloa .t boot. wrltt.a h'
Chrl. oat. and publl.b •• bf a •• l •• a-W •• l.,.

--
I ... pl. 1. Glv. tb. book .uab.r., autbor a an4 photo.,

tor book. wbo •• prlc. 1. 1 ••• tbaa tl0 . 00. I AUTHOR '.

Il001(1

IIA.KE 10 -OATI, CHRlS"
Rov

IIOOKS

pRICI < 10.0

IIOOItf AUTHOR

IIAlQ PHOTO

ICll4 SHU, MAlI C. 11111
IILlt7 DATI, oatJl 11111
UH!U] ICROEIIQ, DAVID 11111

In this case, row 1 is an entity
class, row 2 is a predicate and row 3 is
a product. The result of the query is the
sequence of three non-primordial book
objects which are displayed in tabular
form beneath the double line. The 11111
symbol under the PHOTO column represents
a "scalar button" which provides access to
an author's photo.

I ... pl. I. Glv. tb. boot auab.r., tlt1 •• , or4.r nuab.r.,
an4 cu.to •• r. t.r tbo.a .r4ar. tor boo'.
publl.b.4 b, a441.oa-W •• I., tbat .r. out
ot .took.

Il001(1

and I Ill_STOCK· 0

I 1I.va: of PUBLISHER· "ADDISON-WESLEY"

Il001(' I
TITLE I ORDEIIS

I ORDER' I ClJSTOIIER

The second row of Example 2 is a
predicate which i. of the fora

Bl
and

B2

where B1 and B2 are boolean expressions.
The second boolean expression involves a
"derived attribute". A derived attribute
is an attribute which is the composition
of two or more attributes contained in the
database schema. In this case, NAME of
PUBLISHER represents the composition of
the attributes

PUBLISHER BOOKS -----> PUBLISHERS
and

NAME PUBLISHERS ---> STRING.
TableTalx uses the reserved word of to
denote functional composition on the left
and the reserved word I. to denote
functional composition on the right.
Hence, NAME of PUBLISHER and PUBLISHER's
NAME denote the same derived attribute.

.nd I PUBLISHER '. N.va: 10 "ADDISON-WESLEY"

pRICI

av.ra;.

I ... plo t.

Glv. tb. tltl., prl0. &A •• uaber 1 •• tock of .11
booka .ltb.r wrltt •• hJ Cbrl. o.t. or publl.b ••
h, a441.0 •••• 1.J ••• ;1 •• tb ••• 1. alpbabetlc.l
orbr h, Utl •.

IOOJtI

I AUTHOR '. NAJa 1. "DATI, ClIJU."
or I MAJa ot PUBLISHER 1. "ADOISOM-WESLlY"

.ort by TIT1.I

TITLI I PIUCI I IM_STOCI

huopl •••

01 •• tb. book auab.r., tltla. a •• autbor'.
DUO •• tor all boo' •• ot wrltt •• bJ Cbrla Oat.
but pub11.b •• h' a441.oa-W •• 1., tbat ar.
.or ••• p ••• l •• t ... tb. ob.ap •• t boot
writt •• b, Cbrl. Dat • •

IIOOJtI

PUBLISHER 'a MA.KE i. "ADDISOM-WESLlY"

NAME of AUTHOR 10 not "DATE, CHJtIl"
and

pRICI > IIOOJtI

AUTHOR '. MAJa 10 "DATI, CHRIS"

pRICI

.1niaua

IIOOK, I TIT1.I I AUTHOR '. MAIII

The second row of Example 5 is a
predicate of the form Bl and 82 and B3,
where Bj, j 1, 2, 3 are boolean
expressions. The third boolean expression
includes a subquery. This subquery returns
a single scalar object, whose value is the
lowest price charged for any boox written
by Chris date. In the third row (a
product), the derived attribute AUTHOR's
NAME could also have been expressed a9:

AUTHOR

NAME

Graphics Interface '90

h"pl •• •

Oiv. book .uab.r. aad or •• r iatoraetio. 'or
boot. vritt •• b, C~rl. Oat •• W. vaat the boot
l.tora.tio •• ort •• bJ titl •• Wo oal, .eat or.or.
placod by .0IdoDbook. aad v •• aat the ordor.
tor •• cb boot .orto. bJ .at ••• 0 .aat tho ordor
auabor. aad tho quaatiti •• ord.r •• tor oocb book.

IOOJ(J

AUTHOR '. NAKE I. "DATI, CHRIS"

.ort by TlTLI

ORDERS

CVSTOIIZIt '. NAIa la ·WA1.OEII800KS·

.ort by DATI

ORDIJt' I QUAllTITY

Example 6 illustrates the recursive
syntax and semantics of the TableTalk
language. The multi-valued entity
attribute ORDERS yields, for each book, a
sequence of order objects. TableTalk
treats all sequences, whether at the top
level (i.e., the main processing sequence)
or at a lower level (e.g., a sequence
within an object), in a consistent manner.
Example 6 applies a predicate and a
functor (.ort by) to the sequence of
orders contained within each book object
in the main processing sequence.

3.2 Update sublanguage examples
The general form for a database

update is shown below:

<EHTITY CLASS or 5UICLASS>

<PREDICATE>

<UPDAT! OPERATOR>: <OPERAND(S)>

The update operators include assign,
input, delate, and insert. Each operator
has its own set of legal operands.

Ixupl • .,.
raer •••• tb. prlc • • t all boot. publioh.d b,
Addl.oa-W •• l., .. d vrltt.a b, Cbri. Dot. vbicb
dl.ov.a d.taba ••• ,ot ••• bJ 2".

IOOJ(J

AUTHOR '. NAIa i. "DATI, CHRIS"
.nd

PUBLISHIJt '. NAIa i. 'ADDISOH-vtSLlY

TOPICS int.r •• et I •• t I'DATABASI SYSTEMS

••• 19n: PIt I Cl :- PltICI • 1.25

'1

The second boolean expression in the
predicate row of Example 8 includes a
subquery which begins with the reserved
word .elf. This subquery is re-computed
for each individual customer object in the
main processing sequence. The value of the
subquery is the number of orders for the
current customer.

281

!xa.pl ••• D.l.t. all ouoto.or. W\O 11 •• 1 •• lr91.1.
vb. ,.v. placod tov.r tbaa tvo .rd.ra.

,..-.-----
CVSTOMEU

5TATI 1. 'VIRGINIA'
and

< 2
ORDERS

count

dol.t.:

4. Integrating TableTalk and M-a diaqr ...
TableTalk and N-S diagrams share the

use of mosaics as a means of representing
programs. A TableTalk mosaic represents a
program in a functional query language and
an N-S diagram represents a program in an
imperative language . We propose a melding
of TableTalk mosaics and N-S diagrams as
a means of achieving a multi-paradigmic,
diagrammatic language for specifying
database applications. The tiling metaphor
can act as a bridge between the functional
programming paradigm of TableTalk and the
imperative paradigm of N-S diagrams.

Integrating TableTalk and
diagrams involves solving
fundamental problems:

N-S
three

1. Incorporating N-S notation into
the TableTalk language.

2. Incorporating TableTalk into the
N-S language.

3. Providing a mechanism for the
functional language to communicate with
the imperative language, and visa versa.

Problem 1. The TableTalk syntax needs
to be extended to include N-S diagrammatic
notations. Example 10 illustrates how such
an extension to TableTalk might be
accomplished. The third row of this
TableTalk update is an if-then-else
structure which determines which update
operation (assign or delete) is applied to
books in the processing sequence.

Ixupl. 10.

than

racr •••• tb. prlo. ot .11 booka publ1 ••• d bf
Addlaoa-W •• l., bf l.' it tb. ourr.at frio. ia
uad.r "0.0 ... d d.l.t. all book publ .b.d .,
Ad.lo.a-W •• l., vbo •• prioo ia o.ar ,".0 •.

IOOJ(J

PUILISHIJt 'a MAXI la ·ADOlSOH-WESLlY·

••• 19n :
PRICE : - PltICI • 1.10

Problem 2. N-S diagrams need to be
extended in order to allow for embedded
TableTalk mosaics. Example 11 shows an N­
S diagram which includes an embedded
TableTalk update. The embedded TableTalk
update is bounded on the left by a shaded

Graphics Interface '90

border to distinguish it from the
imperative language elements.

I ... pl. 11.

Ybl. pr09r ... 110w. tb. u •• r to l.cr •••• tb. prlc ••
of .11 boot. publ1.b •• ~J o.rt.la publ1.b.r. ~J
a c.rlola l.or •••• t. 1 ••• tl •• l loop 1.
u •• d tb. u •• r •• l.r l.rl.t for tb.
publ1.b.r- , tb. loop t.ral •• t •••

con.t
SENTINEL· -.-

REAL
STRING

Problem 3. TableTalk is a sequence
processing ~anguage. Iteration over
objects in a sequence is automatic. Some
device is needed to allow the imperative
language to express iterations over
TableTalk sequences. In embedded SQL this
is accomplished by means of cursors.
CUrsors allow an imperative language to
process the results of a query record by
record. This enables fine-grained
interactions between the imperative
language and the database language. A
similar device will be necessary in the
final specification of the integrated
TableTalk I N-S language.

5. Sumaary and conclusion.
This paper presented Tabletalk as a

database language and did not discuss the
implementation of the user-interface.
Tabletalk is intended to be implemented as
a highly interactive system with extensive
help facilities. In particular, the user
will not need to have an in-depth
knowledge of the database schema. Randy
)(irsh at Temple University is currently
implementing a small subset of TableTalk
in order to explore the relationship
between such a schema-based help facility
and the language structure.

Visual languages, in order to be cost
effective, must allow programmers to work
at a high level of abstraction.
Unfortunately, most languages which
operate on a very high level of
abstraction, such as database query
languages, lack flexibility and
generality. consequently, there is little
commonality between end-user interfaces

282

and the languages which are used to
develop applications.

This paper points out the
similarities between TableTalk, a
functional, graphical query langugage, and
N-S diagrams, a family of diagrammatic
languages for specifying control
structures in imperative languages. The
paper concludes by presenting some
tentative ideas concerning how TableTalk
and N-S diagrams can be integrated in
order to yield a diagrammatic applications
programming language.

5. Reterenc ••
1. Shu, N. C. (1988) Visual Programming,
Van Nostrand Reinhold, New York, 315 pp.

2. Chang, S.)(. (ed) (1989) Principles ot
Visual Programming Systems, Prentice-Hall,
Englewood Clitts, 372 pp.

3. Epstein, R. (1989) "A Graphical Query
Language for Hypertext Database Systems",
Graphics Interface • 89 Proceedings, pp.
47-54, June 1989, London, ontario.

4. Chang, S. K. (1987) "Visual Languages:
A Tutorial and Survey", IEEE Softyare,
4(1), pp. 29-39.

5. Ambler, A. and Burnett, M. (1989)
"Influence ot Visual Technology on the
Evolution of Language Environments", lIEI
Computer, 22(10), pp. 9-24.

6. Glinert, E. and Tanimoto, S. (1984),
"Pict: An Interactive Graphical
Programming Environment", IEEE Computer,
17(11), pp. 7-25.

7. Nassi, I., and Shneiderman, B. (1973),
"Flowchart Techniques for Structured
Programming", AQH SIGPLAH Notices, 8(2),
pp. 12-26.

8. Frei, H. P., Weller, D. L. and
Williams, R. (1978) "A Graphics-Based
Programming Support System", Proceedings
o! AQH Siggraph 78, August 1978, pp. 43-
49.

9. Pong, M. C. , and Ng, N. (1983) "A
System for Programming with Interactive
Graphical Support", Software Practice and
Experience, Vol. 13, pp. 847-855.

10. Albizuri-Romero, M. B. (1984) "GRASE­
A Graphical Syntax Directed Editor for
Structured Programming", AQH Sigplan
Notices, 19(2), pp. 28-37.

11. Codd, E. (1970) "A Relational Model
for Large Shared Data Banks",
Communications of the AQH, 13(6), pp. 377-
387.

12. Gray, P. (1984) Logic. Algebra and
oatabases, John Wiley and Sons, New York,
294 pp.

Graphics Interface '90

13. Stonebraker, M. R., Wong, E., and
Kreps, P. (1976) "The Design and
Implementation of INGRES", ~
Transactions on Database Systems, Volume
1, pp. 189-222.

14 . Zloof, M. M. (1977) "Query-by-Example:
A Data Base Language", IBM Systems
Journal, 16 (4) .

15. Date, C. (1987) A Guide to the SOL
Standard, Addison-Wesley, Reading, MA, 205
pp.

16. Shipman, D. (1981) "The Functional
Data Model and the Data Language DAPLEX" ,
ACK Transactions on Database Systems,
6(1), pp. 140-173.

17. Buneman, P., Frankel, R., and Nikhil,
R. (1982) "An Implementation Technique for
Database Query Languages", ~
Transactions on Database Systems, 7 (2),
pp. 164-186.

18. Czejdo, B, Reddy, V., and
Rusinkiewicz, M. (1988) "Design and
Implementation of an Interactive Graphical
Query Interface for a Relational Database
Management System", 1988 IEEE Workshop on
Visual Languages, October 1988,
Pittsburgh, Pa.

19. Rohr, G. (1988) "Graphical User
Langugages for Querying Information: Where
to Look for Criteria?" , 1988 IEEE Workshop
on Visual Languages, pp. 21-28, October
1988, Pittsburgh, PA.

20. Selker, T. and Koved, L. (1988)
"Elements of Visual Language", 1988 IEEE
Workshop on Visual Languages, pp. 38-44,
October 1988, Pittsburgh, PA.

21. McDonald. N. (1975) "CUPID : a graphics
oriented facility for support of non­
programmer interactions with a database",
Memo No. ERL-M563, Ph. D. dissertation,
University of California, Berkeley.

22. Davison . J. and Zdonik, B. (1986) "A
Visual Interface for a Database with
Version Management", ACK Transactions on
Office Information Systems, 4(3), pp. 226-
256.

23 . Shu, N. C. (1985) "FORMAL: A forms­
oriented and visual-directed application
system", IEEE Computer, 18(8), pp. 38-49.

24. Rohr, G. (1988) "Graphical User
Languages for Querying Information: Where
to Look for Criteria?" in 1988 IEEE
Workshop on Visual Languages, Pittsburgh,
PA, pp. 21-28.

25. Date, C. (1984) A Guide to OB2,
Addison-Wesley, Reading, MA, 312 pp.

283

26. Hammer, M. and McCleod , D. (1981)
"Database Description with SDM: A Semantic
Database Model", ACK Transactions on
oatabase systems, 6(3), pp . 351-386.

27. Epstein, R. (1989) "TableTalk : A
Graphical Query Language", submitted to
ACM Transactions on Database Systems.

UPlIItIII •

aASIC UNDS or O!JECTI 111 TAIH.ETAUt "
S~IC DATA MODEL

kind ot object e •• aple of thl. kind of object 91ven
In Appendix b

ENTITY CLASS

SUBCLASS

SCAL.\R CLASS

ENTITY ATTRIBUTE

SCAL.\R ATTRIBUTE

DERIVED ATTRIBUTE

INVERSE ATTRIBUTES

INTERSECTIOII
ATTRIIWT!

the (aultl-valuecS) enti t y ottrlbute :
ORDERS : lOOKS -----» ORDERS

the (.I~Ie-velued) . c alor attribute:
IIOOK'I lOOKS ------> STRING

the attribute :
NAMI of AUTHOR:

lOOKS ------> STRI NG

the attribute. I
ORDERS: lOOKS ------» ORDERS
IIOOItS I ORD!JtI - - - - - » IIOOItS

the attribute I
QUAllTITY: (IOOU p ORD[RI) -----.-> 1lUM8[1t

APPENDII 8

SCHEMA DIAGRAMS ASSUMED BY TABLETALK
EXAMPLES IN THIS PAPER

This appendix presents the database
schema which is assumed in all examples
given in this paper. Figure B. l shows the
database schema in terms of entity
classes, subclasses and their
relationships. Figure B.2 shows individual
entity classes and subclasses and their
scalar attributes.

Entity classes and subclasses are
denoted using boxes. Scalar classes are
denoted using ovals. Multi-valued
attributes are denoted using double-headed
arrows and single-valued attributes are
denoted using single-headed arrows.
Inverse attributes are connected by a
single line, which might have an
intersection attribute emanating from it.
QUANTITY is a single-valued scalar
intersection attribute.

Graphics Interface '90

284

Tb. d.tLb •••• ob ... i. t.ra. ot .Dtltl 01 ••••••
• ubol ••••• ead t •• l~ ~.l.tioD.blp •• ll.o obova
1. tb. lDt.r •• otl0 •• ttrlbut •• QOAMTITY.

0.01 ..

lVTIoar--------,
lVTIO"

'--r---...,.....-JIOOU
IOOU

,i9ur ••. 1 IDtill 01 ••••• Lad .ubol ••••• _itb tb.t~
.e.lar attribut •• •

(.) CD.TOU ..

CU.TOIIU, ADOU ••

CO.TOU ..

• lddr laplltl.d. It letuIlll
cOD.l.t. ot • ooll.ctlo. ot .ttrlbut ••• Dea.ll.
I'UIT. Cl" •• Tln ead IU_CODI.

(b) 0.01 ..

Dln

0.01 ..

(0) IOOU

'ITLI

'lICI

Graphics Interface '90

IOOU

