277

NASSI-SHNEIDERMAN DIAGRAMS8 AND TABLETALK

Richard Gary Epstein
Department of Statistics / Computer
and Information Systems
The George Washington University
Washington, DC 20052

1. Introduction

There is a growing interest in the
subject of visual languages, as evidenced
by a spate of new publications in the area
(including two new books [(1,2])) and the
birth of a new Jjournal devoted to the
subject.

At last year's Vision Interface /
Graphics Interface Conference, this author
presented a paper on "informatics
calculus", a graphical query language for
multi-media database systems (3].
"Informatics calculus" has been revised
and has been renamed "TableTalk". The
syntax of the language has been formalized
in terms of syntax diagrams and the
semantics has been recast in terms of

sequences, objects and their
transformations. TableTalk represents an
effort to capture all "database
activities” in a seamless, visual

language. Seamless implies that regardless
of the activity, the database user will be
operating within the same conceptual and
visual framework. Accomplishing this is a
major challenge, since database activities
are quite diverse. With respect to the
writing of applications programs, the
fundamental issue for TableTalk is whether
a graphical, functional query language can
be integrated into a framework which
supports applications programming? This
paper proposes that this can be
accomplished by combining TableTalk with
another diagrammatic language, Nassi-
Shneiderman (N-S) diagrams.

2. Nassi-Shneiderman
graphical query languages

Shu (1) presents an excellent
introduction to visual languages. Other
introductions to this topic are found in
Chang [4) and in Ambler and Burnett (5].
our specific interest is in visual
languages which allow people to program by
means of visual expressions.
Representative examples of such systems
include PICT/D [6), N-S diagrams (7] and
all graphical query languages.

diagrams and

Experience with visual programming
systems such as PICT/D has shown that in
order to make a visual language cost
effective, the visual expressions in the
language must correspond to concepts in a
very high 1level programming language.
Graphical query languages generally adhere
to this principle.

The term "N-S diagrams" refers to a
family of very similar diagrammatic
notations whose common idea is to express
structured programming control structures
in diagrammatic form. N-S diagrams, like
TableTalk, express programs as mosaics,
that is, as rectangular arrangements of
non-overlapping tiles. Spatial patterns
are used to denote various kinds of
combinators.

N-S diagrams represent a higher level
of program abstraction than the icons and
flowcharts of PICT/D. N-S diagrams are
also far less demanding in terms of
computer graphics resources. Thus, they
represent a practical approach to
facilitating program development. N-S
diagrams have been employed by a variety
of systems, including IBM's Programming
Support System (8], PIGS [9) and GRASE
(10). Figure 1 presents some of the basic
tiling patterns employed in N-S diagrams.

rigure 1. Tiling patterns employed by N-8 diagrams

sequencing if-then-else
if boolean
T r
wvhile loop vhile loop vith

nested if-then-else

wvhile boolean

if boolean
B
l

wvhile boolean

Graphics Interface ’90

Graphical query languages generally
operate at a higher level of abstraction

than N-S diagrams. Data models have
encouraged the development of very
powerful, non-procedural, database

languages whose fundamental feature is
that they describe "programming in the
large". For example, the relational data
model [11) has fostered the development of
a great variety of database languages,
both textual and graphical. Some of these
are based upon relational algebra (e.g.,
ASTRID (12)), others are based upon
relational calculus (e.g., QUEL [13]) and

QBE (14)) and yet others are designed
around slightly different formalisms
(e.g., SQL [15)). Shipman's functional

data model [16) gave rise to a powerful
functional query 1language, FQL (see
Buneman et al. (17]) and the TableTalk
language (3], which captures the semantics

of a functional query language in
diagrammatic terms.
A review of graphical gquery

languages reveals a great diversity in
terms of their use of visual information
to communicate the underlying database
semantics. (See Shu [1), chapters 2 and
11, and also the proceedings of the IEEE
Workshop on Visual Languages, including
Czejdo, Reddy et al., [18] and Rohr [19).)
An interesting discussion of available
means for expressing semantics in visual
languages is given in Selker and Koved
[20)). QBE ([14), CUPID ([21), ISIS [22),
FORMAL (23], and GUL-Q [24]) represent a
variety of approaches for expressing
database semantics in a graphical query
language.

There are several fundamental
challenges inherent in graphical query
language design. These include:

1. Basing the query language on a
suitable user-centered data model which
can be mapped to the underlying logical
model.

2. Employing an effective visual
metaphor for expressing database
semantics.

3. Achieving orthogonality.

4. Mirroring thought (expressiveness,
completeness).

5. Supporting multi-media.

6. Supporting extensibility.

7. Providing a uniform system image
across the various database activities
(including data definition, querying,
updating, report generation and
applications programming).

8. Supporting problem decomposition

as a problem-solving aid.

Providing a wuniform system image
across various database activities
(challenge §7, above) is certainly a
formidable task. IBM's relational database
system DB2 is typical in this regard (see
Date [25])). Although IBM supports QBE as

a user-oriented, graphical interface to

DB2, QBE does not mesh with the
applications development language (which
is COBOL!). Applications programs are

written in COBOL with embedded SQL.

278

3. TableTalk: A graphical, functional
query language

This section presents a brief
synopsis of the TableTalk language.

TableTalk is based upon a semantic data
model. Appendix A presents most of the
basic elements of TableTalk's semantic
data model and Appendix B shows the
semantic database schema assumed
throughout the rest of this paper.
TableTalk's data model represents a
compromise between Hammer and McCleod's
original semantic data model (26) and
Shipman's functional data model [16].

Here are some essential facts about
TableTalk:

1. TableTalk is a functional query
language.
2. TableTalk expresses functional

programs as mosaics.

3. TableTalk is a sequence processing
language.

TableTalk's underlying formalism
derives from Buneman's functional query
language, FQL ([17). FQL and TableTalk
express queries as functional forms which
are built up from primitive elements
(including entity classes, attributes and
constants) using functional combinators
(such as composition and Cartesian
product). TableTalk uses various visual
elements to express functional
combinators. For example, functional
composition can be expressed by means of
vertical juxtaposing of tiles, Cartesian
product is expressed by means of
horizontal juxtaposing of tiles, and
subqueries are expressed using mosaics

embedded within tiles. In addition,
external functional forms can be
referenced by name. In such a situation,
the functional form referred to is
substituted into the functional form in
which the reference occurs. Figure 2
summarizes the basic tiling patterns of
TableTalk.

TableTalk is a sequence processing
language. This means that the semantics of
the language is formally described in
terms of sequences of objects. An object
encapsulates one or more pieces of
information. There are four kinds of
objects: scalar objects, set objects,
entity objects and sequences. These
correspond to the four kinds of attributes
in the wunderlying model: single-valued
scalar, multi-valued scalar, single-valued
entity and multi-valued entity attributes.
An entity object encapulates information
about some entity in the database. Figure
3 presents graphical representations for
the four kinds of objects. (The visual
representation of an object is called a
"card".) An entity object can be either
primordial or non-primordial. For example,
a primordial book object encapsulates all
of the information associated with a
particular book. Since this is potentially
an infinite amount of information (due to
cyclic patterns in the database schema),
the encapsulated information is
represented symbolically as an "entity

Graphics Interface *90

279

Pigure 4. Card for a son-primordial book object which
contains tvo scalar objeots, a primordial
entity objeot and a sequence of primordial

rigure 2. Basio tiling patterns im TableTalk

Functional composition Cartesian product

Subqueries

External Reference

__I— > function X
:]

rigure 3. Cards for various kinds of objects.

(a) A scalar objeot

class: REAL

value: 12,3483

(b) A set objeot

class: set of STRING

value: * PROGRAMMING®

set *COMPUTER LANGUAGES®

S"USER INTERFACES®

“COMPUTER GRAPHICS®

(e) A primordial object

class: BOOKS

B "mcade”
(8) A sequence of primordial objects
sequence class: BOOKS
o] "BC12)°
sy "MRS67"
foe o "gT125°

button”: . A non-primordial book
object is a book object that has had some
of its information filtered out (usually
by a process similar to the relational
algebraic operation of "projection"). A
non-primordial book object can contain
other entity objects, either primordial or
non-primordial. Figure 4 shows a card for
a non-primordial book object.

objeots.

class: BOOKS

BOOK{ : class: STRING
value: "BC234"
AUTHOR: Class: AUTHORS
. "SHU, NAN C.*

REMARKS : Class: DOCUMENT

value: JHIND

ORDERS: sequence class: ORDERS

"H709"

"Qs64"

"R678°

"T667°*

"T912°

7igure $. The basioc kinds of rows and what they do.

rovw type: action performed:
entity class / transforms the null loquoﬁcn into
subclass a sequence of primordial objects

from the specified class.

predicate removes from the input sequence
any object which does not satisfy
the predicate

functional replaces a sequence of numbers
vith a single number

functor rearranges the input sequence
in some vay

product transforas primordial objects
into non-primordial objects by
filtering out attributes

Every TableTalk query can be viewed
as a sequence of "rows". Each row belongs
to a particular syntactical category
(determined by the formal syntax of the
language, which is given in [27]). Each
row can be viewed as transforming an input
sequence. It is important to realize that
each row describes an iterative process,
the iteration being over the objects in
the input sequence. The kind of
transformation performed by a row depends
upon the syntactic category of that row.
The major kinds of rows are summarized in
Figure 5.

Graphics Interface ’90

3.1 Query sublanguage examples

280

example 3. Give the average price of books vrittea by

This section presents a sequence of Chris Date and publisbed by Addison-Vesley.
TableTalk query sublanguage examples.
Example 1. Give the book bpumbers, author names and photos, BOOKS
for books wbose price is less than $10.00.
AUTHOR ‘s NAME {s “"DATE, CHRIS"
Row and
PUBLISHER 's NAME is "ADDISON-WESLEY"
1 BOOKS
PRICE
2 PRICE < 10.0
average
3 BOOK{ AUTHOR
NAME PHOTO
I Example 4.
BC2)4 SHU, NAN C.
Give tbe title, price and number ia stock of all
ML897 DATE, CHRIS 1111} books either writtem by Cbris Date or published
by Addison Wesley and give these in alphabetical
UHS4) KROENKE, DAVID L order by title.

In this case, row 1 is an entity
class, row 2 is a predicate and row 3 is
a product. The result of the query is the
sequence of three non-primordial book
objects which are displayed in tabular
form beneath the double line. The |jl1]
symbol under the PHOTO column represents
a "scalar button" which provides access to
an author's photo.

Exasple 2. Oive the book muabers, titles, order numbers,
and customers for those orders for books
published by Addison-Wesley that are out
of stook.

BOOKS
IN_STOCK = 0
and
NAME of PUBLISHER = "ADDISON-WESLEY"®
BOOK{ TITLE ORDERS
ORDER{] CUSTOMER

The second row of Example 2 is a
predicate which is of the form

Bl

and
B2

where Bl and B2 are boolean expressions.
The second boolean expression involves a
"derived attribute". A derived attribute
is an attribute which is the composition
of two or more attributes contained in the
database schema. In this case, NAME of
PUBLISHER represents the composition of
the attributes

PUBLISHER : BOOKS
and

NAME ¢ PUBLISHERS =---> STRING.
TableTalk uses the reserved word of to
denote functional composition on the left
and the reserved word 's to denote
functional composition on the right.
Hence, NAME of PUBLISHER and PUBLISHER 's
NAME denote the same derived attribute.

----- > PUBLISHERS

AUTHOR 's NAME i{s "DATE, CHRIS"

or

NAME of PUBLISHER is “"ADDISON-WESLZY®

sort by TITLE

TITLE] PRICE] IN_STOCK

Example $.

Oive the book pumbers, titles and author's
names for all books mot writtea by Chris Date
but publisbed by Addison-Wesley that are
more expensive thaa the cheapest book
vritten by Chris Date.

BOOKS
PUBLISHER 's NAME is “ADDISON-WESLEY"
NAME of AUTHOR i{s not "DATE, CHRI§®
and
PRICE > BOOKS
AUTHOR 's NAME is "DATE, CHRIS®
PRICE
ninimum
BOOK{] TITLE] AUTHOR 's NAME

The second row of Example 5 is a
predicate of the form Bl and B2 and B3,
where Bj, 3 = 1, 2, 3 are boolean
expressions. The third boolean expression
includes a subquery. This subquery returns
a single scalar object, whose value is the
lowest price charged for any book written
by Chris date. In the third row (a
product), the derived attribute AUTHOR 's
NAME could also have been expressed as:

AUTHOR

NAME

Graphics Interface 90

Example ¢.

Give book numbers and order {nformations for
books written by Chris Date. We wvant the book
ipformation sorted by title. We only vant orders
placed by Waldenbooks and ve vant the orders

for each book sorted by date. We vant the order
pumbers and the quantities ordered for each book.

BOOKS

AUTHOR 's NAME is "DATE, CHRIS"

sort by TITLE

BOOK{ ORDERS

CUSTOMER 's NAME is "WALDENBOOKS®

sort by DATE

ORDER{] QUANTITY

Example 6 illustrates the recursive
syntax and semantics of the TableTalk
language. The multi-valued entity
attribute ORDERS yields, for each book, a
sequence of order objects. TableTalk
treats all sequences, whether at the top
level (i.e., the main processing sequence)
or at a lower level (e.g., a sequence
within an object), in a consistent manner.
Example 6 applies a predicate and a
functor (sort by) to the sequence of
orders contained within each book object
in the main processing sequence.

3.2 Update sublanguage examples
The general form for a
update is shown below:

database

<ENTITY CLASS or SUBCLASS>

<PREDICATE>

<UPDATE OPERATOR>: <OPERAND(S)>

The wupdate operators include assign,
input, delete, and imnsert. Each operator
has its own set of legal operands.

gxample 7.
Increase the price of all books published by
Addison-Wesley and vritten by Chris Date which
discuss database systems by 25%.

BOOKS

AUTHOR 's NAME {s "DATE, CHRIS"

and
PUBLISHER 's NAME {s "ADDISON-WESLEY

TOPICS intersect [set]'DATABAS! SYSTEMS ‘]

assign: PRICE := PRICE ¢ 1.2%

The second boolean expression in the
predicate row of Example 8 includes a
subquery which begins with the reserved
word self. This subquery is re-computed
for each individual customer object in the
main processing sequence. The value of the
subquery is the number of orders for the
current customer.

281

gxample 0. Delete all customers wdo live {a Vvirginia
who have placed fever thaa tvo orders.

CUSTOKERS

STATE is ®"VIRGINIA®

and

self

ORDERS

count

delete:

4. Integrating TableTalk and N-8 diagrams
TableTalk and N-S diagrams share the
use of mosaics as a means of representing
programs. A TableTalk mosaic represents a
program in a functional query language and
an N-S diagram represents a program in an
imperative language. We propose a melding
of TableTalk mosaics and N-S diagrams as
a means of achieving a multi-paradigmic,
diagrammatic language for specifying
database applications. The tiling metaphor
can act as a bridge between the functional
programming paradigm of TableTalk and the
imperative paradigm of N-S diagrams.

Integrating TableTalk and N-S
diagrams involves solving three
fundamental problems:

1. Incorporating N-S notation into
the TableTalk language.

2. Incorporating TableTalk into the
N-S language. :

3. Providing a mechanism for the
functional language to communicate with
the imperative language, and visa versa.

Problem 1. The TableTalk syntax needs
to be extended to include N-S diagrammatic
notations. Example 10 illustrates how such
an extension to TableTalk might be
accomplished. The third row of this
TableTalk update is an if-then-else
structure which determines which update
operation (assign or delete) is applied to
books in the processing sequence.

txample 10.

Increase the price of all books published by
Addison-Wesley by 10% if the current price is
under $50.00 and delete all Dbook published by
Addison-Wesley vhose price is over $50.00.

BOOKS

PUBLISHER 's NAME is “"ADDISON-WESLEY"

it
PRICE < %0.0
then

assign: delete:

PRICE := PRICE ¢ 1.10

Problem 2. N-S diagrams need to be
extended in order to allow for embedded
TableTalk mosaics. Example 11 shows an N-
S diagram which includes an embedded
TableTalk update. The embedded TableTalk
update is bounded on the left by a shaded

Graphics Interface ’90

border to distinguish it from the
imperative language elements.

Example 11.

This program allovs the user to increase the prices
of all books publisbed by certais publishers by

s certain iporement. A sentinel loop is

used. When the user enters an asterisk for the
publisher's name, the loop terminates.

const
SENTINEL = '¢!

var
CUTOFP, INCREMENT: REAL
PUB_NAME: STRING

WRITE('Please enter publisher name: ')

READLN (PUB_NAME)

while PUB_NAME <> SENTINEL

WRITE('Enter price increment: ')

READLN (INCREMENT)

BOOKS

NAME of PUBLISHER = PUB_NAME

assign: PRICE := PRICE + INCREMENT

WRITE('Enter publisher name or ¢ ')

READLN (PUB_NAME)

Problem 3. TableTalk is a sequence
processing language. Iteration over
objects in a sequence is automatic. Some
device is needed to allow the imperative
language to express iterations over
TableTalk sequences. In embedded SQL this
is accomplished by means of cursors.
Cursors allow an imperative language to
process the results of a query record by
record. This enables fine-grained
interactions between the imperative
language and the database language. A
similar device will be necessary in the
final specification of the integrated
TableTalk / N-S language.

S. Summary and conclusions

This paper presented Tabletalk as a
database language and did not discuss the
implementation of the user-interface.
Tabletalk is intended to be implemented as
a highly interactive system with extensive
help facilities. In particular, the user
will not need to have an in-depth
knowledge of the database schema. Randy
Kirsh at Temple University is currently
implementing a small subset of TableTalk
in order to explore the relationship
between such a schema-based help facility
and the language structure.

Visual languages, in order to be cost
effective, must allow programmers to work
at a high 1level of abstraction.
Unfortunately, most languages which
operate on a very high 1level of
abstraction, such as database query
languages, lack flexibility and
generality. Consequently, there is little
commonality between end-user interfaces

and the languages which are used to
develop applications.

This paper points out the
similarities between TableTalk, a
functional, graphical query langugage, and
N-S diagrams, a family of diagrammatic
languages for specifying control
structures in imperative languages. The
paper concludes by presenting some
tentative ideas concerning how TableTalk
and N-S diagrams can be integrated in
order to yield a diagrammatic applications

programming language.

S. References
1. Shu, N. C. (1988) Visuval Programming,
Van Nostrand Reinhold, New York, 315 pp.

2. Chang, S. K. (ed) (1989) Principles of
Vis , Prentice-Hall,
Englewood Cliffs, 372 pp.

3. Epstein, R. (1989) "A Graphical Query
Language for Hypertext Database Systems",
L]

PP-
47-54, June 1989, London, Ontario. '

4. Chang, S. K. (1987) "Visual Languages:

A Tutorial and Survey", IEEE Software,
4(1), pp. 29-39.

5. Ambler, A. and Burnett, M. (1989)
"Influence of Visual Technology on the
Evolution of Language Environments", IEEE

Computer, 22(10), pp. 9-24.

6..Glinert, E. and Tanimoto, S. (1984),
"Pict: An Interactive Graphical

Programming Environment", IEEE Computer,
17(11), pp. 7-25.

7. Nassi, I., and Shneiderman, B. (1973),
"Flowchart Techniques for Structured

Programming®, ACM SIGPLAN Notjces, 8(2),
PP. 12-26.

8. Frei, H. P., Weller, D. L. and
wWilliams, R. (1978) "A Graphics-Based
Programming Support System",

s 78, August 1978, pp. 43-

9. Pong, M. C., and Ng, N. (1983) "a
System for Programming with Interactive
Graphical Support", w

Experjence, Vol. 13, pp. 847-855.

10. Albiguri-Romero, M. B. (1984) "GRASE-
A Graphical Syntax Directed Editor for

Structured Programming", ACM _ Sigplan
Notices, 19(2), pp. 28-37.

11. Codd, E. (1970) "A Relational Model
for Large Shared Data Banks",

Communications of the ACM, 13(6), pp. 377-

387.

12. Gray, P. (1984) Logic, Algebra and
Databasesg, John Wiley and Sons, New York,
294 pp.

Graphics Interface 90

13. Stonebraker, M. R., Wong, E., and
Kreps, P. (1976) "The Design and
Implementation of INGRES", ACM

, Volume

S
1, pp. 189-222.

14. Zloof, M. M. (1977) "Query-by-Example:
A Data Base Language", IBM Systems
Journal, 16(4).

15. Date, C. (1987) A Guide to the SOL
standard, Addison-Wesley, Reading, MA, 205

PP.

16. Shipman, D. (1981) "The Functional
Data Model and the Data Language DAPLEX",
6(1), pp. 140-173. '

17. Buneman, P., Frankel, R., and Nikhil,
R. (1982) "An Implementation Technique for

Database Query Languages", ACM
Transactions on Database Systems, 7(2),
pp. 164-186.

18. Czejdo, B, Reddy, V., and
Rusinkiewicz, M. (1988) "Design and

Implementation of an Interactive Graphical
Query Interface for a Relational Database

Management Systenm", W

Visual Langquages, October 1988,
Pittsburgh, Pa.

19. Rohr, G. (1988) "Graphical User

Langugages for Querying Information: Where
to Look for Criteria?", 1988 JEEE Workshop

on Visual Languages, pp. 21-28, October
1988, Pittsburgh, PA.

20. Selker, T. and Koved, L. (1988)
"Elements of Visual Language",

Workshop on Visual Languages, pp. 38-44,

October 1988, Pittsburgh, PA.

21. McDonald, N. (1975) "CUPID: a graphics
oriented facility for support of non-
programmer interactions with a database",
Memo No. ERL-M563, Ph. D. dissertation,
University of California, Berkeley.

22. Davison. J. and Zdonik, B.
Visual 1Interface for a Database
Version Management", i

(1986) "A
with

s [o)
, 4(3), pp. 226-
256.

23. Shu, N. C. (1985) "FORMAL: A forms-
oriented and visual-directed application

system", IEEE Computer, 18(8), pp. 38-49.

24. Rohr, G. (1988) "Graphical User
Languages for Querying Information: Where
to Look for Criteria?" in 1988 IEEE
Workshop on Visual Languages, Pittsburgh,
PA, pp. 21-28.

25. Date, C. (1984) A Gujde to DB2,
Addison-Wesley, Reading, MA, 312 pp.

283

26. Hammer,

M. and McCleod, D. (1981)

npatabase Description with SDM: A Semantic

Database

Model", a

ons

patabase Systems, 6(3), pp. 351-386.

27. Epstein, R. (1989) "TableTalk: A
Graphical Query Language", submitted to
C ansactio o abase Systems.

APPENDIX A

BASIC KINDS OF OBUECTS IN TABLETALK'S

SEMANTIC DATA MODEL

xind of object

example of this kind of object given
in Appendix b

ENTITY CLASS
SUBCLASS

SCALAR CLASS
ENTITY ATTRIBUTE

SCALAR ATTRIBUTE

DERIVED ATTRIBUTE

INVERSE ATTRIBUTES

BOOKS
BEST_SELLERS
STRING

the (multi-valued) entity attribute:
ORDERS: BOOKS ~=--- >> ORDERS

the (single-valued) scalar attribute:
BOOK§: BOOKS --=-~-- > STRING

the attribute:
NAME of AUTHOR:

BOOKS ~====-= > STRING

the attributes:
ORDERS: BOOKS ==-=-- >> ORDERS
BOOKS: ORDERS ----- >> BOOKS

INTERSECTION the attribute:
ATTRIBUTE QUANTITY: (BOOKS p ORDERS)
------ > NUMBER
APPENDIX B

SCHEMA DIAGRAMS ASSUMED BY TABLETALK
EXAMPLES IN THIS PAPER

This appendix presents the database

schema which is assumed in all examples
given in this paper. Figure B.1 shows the
database schema in terms of entity
classes, subclasses and their
relationships. Figure B.2 shows individual
entity classes and subclasses and their
scalar attributes.

Entity classes and subclasses are
denoted using boxes. Scalar classes are
denoted using ovals. Multi-valued
attributes are denoted using double-headed
arrows and single-valued attributes are
denoted using single-headed arrows.
Inverse attributes are connected by a
single line, which might have an
intersection attribute emanating from it.
QUANTITY is a single-valued scalar
intersection attribute.

Graphics Interface ’90

(a) CUSTOMERS

@ CUSTOMER

BTRING
NANME

284

rigure 3.1

The database schema im terms of entity classes,
subclasses and their relationships. Also showa
i{s the interseotioa attribute, QUANTITY.

CUSTONERS
/N CUSTOMER
ORDERS 3
ORDERS
QUANTITY * ORDERS
INTEGER <€ |
BOOKS
AUTEOR
R8T _ € DOOKS T > AvrEoRs
SBLLER subclass <€
BOOKS
DOOKS
PUBLISERR]
PUDLISEERS

Figure 3.2 Entity olasses and subclasses with their

(c) BOOKS

CUBTONERS

scalar attributes.
ADDRESS l
OO

COPYRIGHT
INTEGER
IN_sTOCK .

PRICB

B S —
G

¢ Address bas been simplified. It actually
consists of a collection of attributes, namely,
STREET, CITY, STATE and SIP_CODS. REMARKS

(b) ORDERS

oy 2

ORDERS

DATS
(d) DEST_SELLERS
RENARKS @ WEEXS

COMP_PRICES

p——

m_LTe? .

Graphics Interface 90

