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Abstract 

The specification of the display interface for visualisation 
is regarded as analogous to devising a mechanical linkage. 
A definitive (definition-based) approach to display specifi­
cation is described, illustrated and evaluated. 

Resume 

On conyoit la specification de !'interface visuelle servant 11 
la visualisation comme analogue 11 l'invention d'une 
articulation mecanique. On decrit une approche, fondee sur 
l'emploi de definitions, de la specification visuelle. On 
donne un exemple et une evaluation de cette approche. 
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Introduction 

The execution of an interactive program is a sequence of 
transitions carried out by the computer or the user. The cur­
rent state of the execution is represented internally by the 
values currently assigned to memory locations, but this is 
not in general an appropriate representation for the user. 
The user-interface serves a dual purpose: giving' the user a 
comprehensible view of the current internal state and dic­
tating the protocol by which the user can alter this state. 

This paper considers a new programming paradigm for vi­
sualisation. A definition-based or "definitive" program­
ming style is adopted, whereby the relationship between 
the screen display and the internal state is represented by a 
set of variables whose values are defined by formulae that 
may be changed during program execution. In effect, the 
screen is regarded as an exotic variable whose value is de­
fined - in a flexible manner with reference to potential tran­
sitions from the current state - as a function of the internal 
state. This generalises the use of a script to define a static 

environment for evaluation in a functional programming 
system [16]: a "script" is instead used to represent state and 
can be dynamically modified during execution to reflect the 
prevailing relationship between the screen state and the in­
ternal state. 

The screen display will in general be composed of several 
windows, each of which has special characteristics accord­
ing to its role in the visualisation process. Some windows 
may display text, others graphical images of various differ­
ent kinds. Previous papers [2,3,4,5] have considered the 
design and implementation of special-purposp notations 
based on definitive principles that are suitable for particu­
lar types of display. These include the interactive graphics 
systems DoNaLD and ARCA [3,4] for instance. This paper 
applies definitive principles to display management, de­
scribing and illustrating a general framework within which 
to integrate the diverse application-oriented components 
required for effective visualisation (cf [9]). 

The paper is in 5 sections. §1 motivates and introduces a 
definitive notation for screen layout. §2 explains why a 
definitive screen interface resembles a mechanical linkage. 
§3 discusses the advantages of definitive screen layout 
specification and explains the important role of the user 
protocols that must complement the display specification. 
§4 outlines appropriate techniques for specifying such pro­
tocols. §5 discusses the current status of the project and 
indicates directions for further research. 

1. Motivation and Basic Principles 

The set of definitions that specifies both the nature and cur­
rent state of the display will be formulated using SCOUT, a 
definitive notation for screen layout. A definitive notation 
is a simple programming language in which a program is a 
sequence of variable declarations and definitions. Each def­
inition associates a formula with a declared variable. This 
formula either specifies the value of the variable explicitly 
(as in "a=3") or implicitly in terms of the values of other 
variables (as in "a=2*b+c"). The same variable may be re-
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defmed many times in the course of a program; such redefi­
nition effectively overwrites the previous defmition of the 
variable. A defmition is invalid only if it introduces direct 
or indirect self-reference (as in "a=3*a" or 
"a=3*b; b=a+c"). 

The semantics of a definitive notation is determined by an 
underlying algebra of data types and operators. The under­
lying algebra in effect specifies the domain of possible 
values for variables and the operators that can be used in 
the defIDing formulae. The type of a variable is specified on 
declaration. A program over a defmitive notation is inter­
preted by regarding the prevailing set of defmitions (i.e. 
that determined by the most recent defmitions of each of 
the declared variables) as specifying a state. Each new dec­
laration. definition or redefinition then effects a change of 
state. The state information associated with a set of defmi­
tions reflects the current values of variables - where defmed 
- and the relationships between these values; it typically 
represents the current state of a designed object (e.g. the 
screen display). A change of state may reflect redesign (e.g. 
the relocation of a display window by the designer) or a 
change in the state of the object (e.g. a screen update). 

Such definitive principles are exploited in their simplest 
form in spreadsheets; they were also applied to graphics in 
[15]. Recent research at the University of Warwick has in­
vestigated generic techniques for designing and implement­
ing application-oriented definitive notations as a medium 
for interactive programming [2.3,4.5]. As one example. an 
interactive graphics system based on a defmitive notation 
for line-drawing DoNaLD over an underlying algebra of 
points. lines and shapes comprising sets of points 
and lines has been developed [4] . 

A full description of DoNaLD is beyond the scope of this 
paper; a DoNaLD script to describe a room layout similar to 
the picture "floorplan" that appears in Figure 1 is given in 
[4]. By way of illustration, the plan of the door in [4] is 
generated by the following set of defmitions: 

point NW = {100.900} # the NW corner of the room 
openshape door 
within door { 

} 

real width = 200 
bool open 
I i n e door = [hinge. lock] 
# the line segment joining points hinge and lock 
point hinge = -/NW + {I5.-10} 
po I n t lock = binge + If open then {O. -width} 

else {width.O} 

When used in conjunction with notations such as DoNaLD. 
SCOUT addresses the need to construct a display from sev­
eral images. each of which has a specialised function. This 
is desirable for instance in an architectural design envi­
ronment where a plan may be accompanied by perspective 
drawings. symbolic diagrams and textual armotations. 
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The principal features of SCOUT will be illustrated by ex­
ample. Figure 2 shows a screen display comprising several 
components: a room layout consisting of a door. a desk and 
a table bearing a table lamp; an auxiliary window in which 
a selected area of the room can be shown in greater detail; a 
set of buttons indicating menu options that can be used to 
simulate actions such as opening and closing the door and 
altering the subregion selected for magnification; addi­
tional text windows that are introduced as appropriate to 
indicate particular error conditions. Both the room layout 
and the auxiliary window are specified in DoNaLD (they are 
in fact different views of the same DoNaLD picture); the 
contents of other windows of the display are specified us­
ing variables representing textual strings. 

The data types in SCOUT are designed for display manage­
ment. A screen is a variable of type display. where dis­
play = list of window. The window data type is a union 
of several different types. reflecting the variety of ways in 
which special-purpose defmitive notations may be used to 
generate components of the screen display. The essential 
ingredients common to each window subtype are informa­
tion about the location. content and attributes of the win­
dow. In the example. window locations are specified using 
the types Integer. point. box and frame. where: 

point = integer x Integer. 

box = point x point. 
frame = list of box. 

The syntax used for specifying values of type point and 
box is illustrated in Figure 1. For instance. [p2.q2] desig­
nates the box whose opposite corners have the coordinates 
{275.100} and {475.300} respectively. The location of a 
textual window is specified by a frame. and that of a 
DoNaLD window by a box. The content of a textual win·­
dow is specified by a string. and that of a DoNaLD window 
by the graphical interpretation of a specified file of 
DoNaLD definitions (this file is omitted from Figure 1 - for 
details of the DoNaLD specification. see [4]). The principal 
attribute of a window is its type; additional attributes are 
used to select a background colour or border. 

The detailed interpretation of Figure 1 is a simple exercise 
to the reader. The defmition of a variable of type window 
makes use of constructors such as 

"{ frame: ...• string: ...• border: ...•... }" 

that synthesise a value of a window subtype from its con­
stituent fields. with the convention that unspecified fields 
are dermed by default values. Semantic links between win­
dows are set up by using common variables. such as the 
boolean DoorHitsTable. 

2. Sets or Definitions as Mechanisms 

In the visualisation process. the external display has to be 
closely coupled to the internal state of the system. The im-
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plied analogy with a mechanical system in which a cou­
pling is established through direct physical connection be­
tween components is instructive and will be explored in de­
tail. For instance, we should like to view the correlation of 
changes in internal and display state in the same way that 
we conceive the interdependent synchronised movement of 
levers in a linkage. 

The characteristic behaviour of a mechanical device is as­
sociated with the communication of change from one com­
ponent of a system to another: when gear A rotates clock­
wise, gear B rotates anti-clockwise with twice the angular 
displacement. The propagation of change is directional: 
turning gear A turns gear B. Though a construction such as 
a gear-pair allows propagation in either direction this is 
not the case in general: a block placed on a table will move 
when the table moves, but not vice versa. State changes 
within a mechanical device can also affect the framework 
for propagation: as when a new gear is selected in a gear­
box. 

The communication of change from the internal state of a 
system to the display interface follows a closely analogous 
pattern. It is commonplace for the external representation 
of internal parameters to depend functionally upon their 
values. In a direct manipulation interface there are symmet­
ric relationships that enable the user to change internal pa­
rameters as if through the display interface, but in fact 
changes propagate from the internal state to the display 
rather than vice versa. When the mode of operation of an 
executing program changes, entirely different relation­
ships between external and internal values may be estab­
lished. 

The mechanical analogy can be usefully extended. A com­
mon practice in machine design is to develop simple mech­
anisms that can be composed by linkages. These sub­
mechanisms are themselves designed in a similar manner. 
The hierarchical decomposition of a machine into compo­
nent parts resembles the decomposition of a system into 
objects in an object-oriented paradigm. The role of defIni­
tions in specifying the screen interface in Figure 1 is in 
many respects similar. Some of the definitions determine 
the geometric relationships in the application, others the 
relationships between the elements of the screen display. 
These sets of definitions can be developed independently 
and linked through bridging definitions (such as 

Integer DoorIsOpen = boolean door/open 
where DoorIsOpen is a SCOUT variable and door/open is a 
DoNaLD one) expressing the dependency between pictorial 
elements and parameters in the application. 

A set of definitions serves as an effective computational 
device for representing the propagation of change. In mod­
elling mechanical systems, definitions are better adapted 
for describing the relationships between objects than 
orthodox message passing techniques [14] . They can repre­
sent the relationship between coupled components in such 
a way that the computation associated with maintaining the 
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relationship is invisible. The computational abstraction 
resembles that exploited in pure functional programming, 
where function evaluation is invisible. A definitive ap­
proach has the advantage of also representing the current 
state of the components. Other approaches to handling 
state change propagation represent state information ex­
plicitly, but do not use abstraction to capture coupling rela­
tionships. For instance, in Borning and Duisberg's ap­
proach to building user-interfaces [8], explicit methods for 
constraint satisfaction are introduced in an object-oriented 
paradigm. Their emphasis is then upon convenient means 
of specifying the procedures that propagate change. 

3. The Merits of Definitive Specification 

A controversial issue in human-computer interaction is the 
degree to which separation of output from the application 
is possible ([I]p27,[13]). Ideally we should like to be able 
to edit the application and the display functions indepen­
dently within a computational framework that conveys the 
coupling between changes of state in the application and 
the display in execution. In a procedural paradigm, mainte­
nance of the display typically means that display actions 
must be invoked after each significant change to the inter­
nal state. In a conventional program, this means that the 
procedural actions in the application and the display ac­
tions are intertwined in the text. Delegating the task of 
maintaining consistency between the display and the in­
ternal store to objects (cf [8]) allows application and dis­
play functions to be edited independently, but introduces a 
degree of indirection into the execution. A definitive de­
scription of the screen display addresses this problem, 
since the relationship between the screen definition and the 
application state is established through symbolic links, 
whilst changes in state to parameters within the applic\,-­
tion are communicated to the display in a conceptually in­
divisible fashion. 

A definitive approach to screen display realises several 
benefits of separation that have been widely cited by pre­
vious researchers [1,13], viz the power to separate applica­
tions and interface development, to reuse an interface in a 
similar application and to experiment with different inter­
faces for the same application. The fact that a set of defini­
tions explicitly describes the data dependencies 'means that 
the propagation of change can be targeted, leading to 
greater efficiency when selective updating of the display is 
possible. The declarative nature of the description of the 
screen display state can also assist program development, 
obviating the need for reasoning about sequences of dis­
play actions. 

Definitive principles provide a means of constructing exe­
cutable specifications for the display manager. A definitive 
specification of the screen state is an idealisation in that 
the formulae that define the screen state in terms of the in­
ternal parameters must be repeatedly re-evaluated in order to 
keep the screen updated. Effective implementation tech-
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niques that address this problem have been described in de­
tail elsewhere [4] . Implementing SCOUT specifications us­
ing a conventional software package' such as X Windows 
can be reduced to implementing the basic operators of the 
SCOUT underlying algebra using the standard basic proce­
dures. This technique is useful for rapid prototyping pur­
poses. An alternative approach that might be appropriate 
in developing interfaces for a particular target firmware 
configuration would involve substituting an underlying al­
gebra tailored to the most efficient primitives available. 

The advantages of using a definitive paradigm for interface 
design are fully appreciated only when the protocols gov­
erning redefinition are considered. To pursue the analogy 
introduced above, the function of a mechanical device can 
only be understood with reference to possible user input. 
The control a driver has over an engine is confined to alter­
ing certain parameters, such as the depression of the accel­
erator, and certain functional relationships, such as the 
gear ratio. Formerly - in the days of the hand-crank - it 
encompassed means to drive the pistons manually. The set 
of definitions in Figure 1 must be interpreted with similar 
regard for what privileges the user has to rede'fine variables. 
These in turn will be determined by the intended role of the 
interface and its designer's conception. 

These issues underlie the use of definitive principles for in­
tegrating modelling and animation in Chmilar and 
Wyvill's animation system [10], as can be illustrated with 
reference to Figure 1. The interface described in Figure 1 
may be designed for a simple educational tool that simu­
lates the relocation of furniture and objects within the 
room. In that case" the user will be allowed to open and 
close the door, but not to relocate it. At the discretion of 
the interface designer, the location of monitoring mes­
sages that indicate error conditions, such as the obstruction 
of the door, might also be under user control. In designing 
the interface for use by an architect, the options available 
to the user would include scope for both simulation of the 
room in use and redesign. The representation of state by a 
set of definitions makes it readily possible to model the 
characteristic privileges to change state associated with 
each agent. 

4. Dialogue and Automatic Mechanisms 

The SCOUT notation is primarily concerned with issues of 
display. In the light of the above discussion, the role of 
SCOUT in user-interface management and visualisation can 
only be fully understood with reference to the protocols for 
interaction that surround the display interface. At one level 
of abstraction, it is sufficient to complement a screen dis­
play specification with appropriate information about how 
and when the user is privileged to redefine variables. At an­
other level, it is essential to consider the means by which 
the user affects such a change. In Figure I, for instance, the 
user may be entitled to redefine the variable open, but the 
user action to be performed is a menu selection. It may be 
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that the error message "Table obstructs door" is only to be 
displayed when the user attempts to open or close an ob­
structed door. It may be that a menu selection invokes a 
complex sequence of actions involving simulated move­
ment of the furniture, perhaps in such a way that the user 
can intervene. 

The need to extend the specification methods so far de­
scribed is most apparent if Figure 1 is considered to be part 
of the display specification for a fictitious interactive game 
that might appropriately be called Poltergeist. In 
Poltergeist, the human player must rearrange furniture to 
satisfy an objective such as enabling a trapped elephant to 
escape from the room whilst the elephant and the furniture 
are simultaneously being moved around by the computer. 
The mechanical analogy in this case is with machines that 
have an autonomous behaviour. 

The full consideration of display protocols for such appli­
cations clearly requires a more general computational 
model than simple redefmition of SCOUT scripts provides. 
For the most effective application of definitive principles 
to display management, this model must permit compatible 
specification of related aspects of the interface. For in­
stance, the specification in Figure 1 cannot otherwise be 
refmed to incorporate menu selection or to describe the re­
sponses required of the Poltergeist display. The concepts 
being developed for this purpose will be briefly described; 
for more discussion, see [6]. 

The user protocol is specified by the values to which the 
user responds, the variables which the user can condition­
ally redefine, and the enabling condition associated with a 
redefmition. In the context of Figure I, the user might be 
permitted to open or close the door only when it is unob­
structed. Abstractly, this means that the boolean condition 
"open and not DoorHitsTable" is the enabling condition 
that determines whether the door can be closed. In specify­
ing Poltergeist, the protocol for redefinition to be ob­
served by the computer might be identified most effectively 
by conceptually distributing the computation between two 
agents: the elephant and the poltergeist, and specifying 
their protocols independently. The LSD notation has been 
designed for such a specification role (cf [6,7]). 

In LSD, the interface through which each agent interacts 
with the system is viewed as analogous to a generalised 
spreadsheet whose state can be changed both by the user 
and by external agents. There are variables whose values 
are visible to the agent, but are subject to change beyond 
its direct control - oracle variables. There are variables that 
can be conditionally redefmed - state variables - subject to 
a protocol specifying the enabling conditions for redefmi­
tion. The values of other variables - derivate variables - are 
given in terms of these by appropriate definitions. 

The LSD specification models the way in which an agent 
can respond to changes in its environment reflected in the 
perceived values (as typically represented via oracle and 
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derivate variables) by making reciprocal changes in the 
state of its environment (as represented via state vari­
ables). In itself, such a specification cannot be interpreted 
·operationally: the fact that an agent is privileged to re­
spond according to a particular protocol does not give suf­
ficient information about which actions it chooses to per­
form, the speed with which it responds to changes in its 
environment or how fast it executes relative to other 
agents. LSD does provide a suitable framework in which to 
model the different characteristics of agents however. For 
example, the specifications of elephants and poltergeists 
might respectively reflect knowledge of the immediate lo­
cal environment and comprehensive knowledge of the en­
tire room layout (cf [7]). 

Specifying agent privileges for conditional redefinition of 
variables is the first step towards a full implementation of a 
required interface. The complete specification is most ap­
propriately expressed using the framework provided by the 
Abstract Definitive Machine (ADM) [5,6]. In this computa­
tional model, the current state of the execution is recorded 
by a set of defmitions and each transition consists of a set 
of parallel redefinitions. In Poltergeist, this set might rep­
resent simultaneous actions on the part of the user, the ele­
phant and the poltergeist, for instance. The set of redefmi­
tions to be performed in a single transition is determined 
with reference to boolean conditions that serve as guards. 
The explicit representation of data dependency in the ADM 
model can be used to address problems of interference (cf 
[5]). 

Since all transitions in the ADM model are represented by 
redefinitions, some interpretation for user input is required. 
The signal generated by clicking the mouse button in a par­
ticular location can be interpreted as a change of internal 
state initiated by the user. This state change can be repre­
sented consistently by conceiving the internal state as 
specified by a set of definitions encompassing both appli­
cation-oriented variables such as open and variables to rep­
resent e.g. the status and position of the mouse. It is such 
variables that the user is able to redefme. Within the ADM 
model, these redefmitions can be used in conjunction with 
guards to transform a primitive user input into a redefmi­
tion as required e.g. for menu selection or direct manipUla­
tion. 

5. Status and comparison 

Our prototype system runs under UNIX on a SUN worksta­
tion. It makes use of a pipeline consisting of scour and 
DoNaLD filters to generate intermediate code in the hybrid 
defmitive/procedural language EDEN [4] (cf the use of tbl 
and eqn preprocessors to creat moff code). The display out­
put is generated by executing the EDEN interpreter in paral­
lel with an interface to X Windows. The screen displays in 
Figure 2 were generated by converting a window dump into 
a Postscript file. The system can be used in conjunction 
with the ADM for animation purposes, as illustrated in [5]. 
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Our present prototype · is too slow to be used directly to 
drive practical interfaces, but could be used by the interface 
designer to study different modes of data presentation, for 
instance. 

Our approach will be briefly reviewed with reference to 
Olsen's discussion of the state of the art in UIMS's, as re­
ported in [11]. 

Successful user-interface management relies upon combin­
ing good data abstraction, such as object-oriented pro­
gramming provides, with control over the logic of the se­
quence, as is best captured in state-transition models. The 
approach to specification described in [1] aims to treat se­
quencing and data transformation as separate concerns, but 
it is evident that dialogue control is often directed by data 
values. Definitive principles may be an appropriate solu­
tion: they support good data abstraction and powerful state­
transition models; they make it possible to relate the se­
quencing and effect of actions to the current data values, and 
also offer methods for relating synchronisation to stimulus 
and response [7]. 

The distinctive feature of a defmitive approach is that it 
makes it possible to represent the total events indivisibly 
associated with particular actions. Notice that it is not gen­
erally necessary to explicitly update all dependent vari­
ables when performing a redefinition in order to guarantee 
this - it is enough that the values of implicitly defmed vari­
ables are calculated from their current defmitions as and 
when they are required. When one redefinition is made, the 
values of several variables are changed in what is conceptu­
ally a single indivisible transition. 

The special characteristics of definitive principles can be 
exploited in several ways in specifying interface. The rep­
resentation of state by sets of definitions makes 'rubout' ac­
tions easy to implement [11]. The indivisible effect of ac­
tions can be context-dependent, as is appropriate when 
specifying interface modes. Because consistency between 
values is rigorously maintained, it is relatively easy to en­
able the user to interrupt execution and to interpret the 
computational state. 

The most significant implications of defmitive principles 
relate to the design and development of interfaces. Because 
the event associated with an action is determined by its 
context, the designer can effectively specify and modify 
the effect of an action retrospectively. It is also possible to 

deal simultaneously with issues at different levels of ab­
straction in the user-interface, for example, to establish 
connections between the syntactic and semantic levels as 
required. These considerations suggest that a defmitive ap­
proach can support a process of software development in 
which requirements analysis and implementation are inter­
twined [7]; this accords with Olsen's view of the interface 
development process as far more hectic and iterative than is 
described by a simple "waterfall" model [11,12]. 
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Conclusion 

The SCOUT system provides a framework within which 
several special-purpose definitive tools can be used in con­
junction. It makes it possible to establish relationships 
between dissimilar component parts of the display whilst 
retaining the advantages of conceptually disjoint applica­
tion-oriented underlying algebras. This illustrates one ap­
proach to the effective visualisation of objects that can be 
viewed in several orthogonal abstract ways (cf [3]). 

In its present form, SCOUT only addresses some of the sig­
nificant issues in user-interface management. Further re­
search is required e.g. to deal with mouse input and dialogue 
control. SCOUT is also in certain respects a low-level lan­
guage. Methods for describing generic features of a display 
(such as the concept of an "error monitor window") would 
be essential for convenient use. In this context, the issues 
for further research are similar to those raised elsewhere in 
connection with developing definitive interactive graphics 
systems for large scale applications [5]. 

The ultimate objective of the definitive programming pro­
ject is to demonstrate the feasibility of addressing all 
aspects of software specification in an integrated and con­
sistent manner by applying definitive principles [6] . The 
role of definitive interfaces in this research programme is 
potentially as significant as that played by mechanical 
analogy in general engineering. 

Acknowledgemen ts 

We are indebted to Yun Wai Yung for invaluable help in de­
veloping the prototypes described in this paper and to 
William Beynon for the loan of Donkey Kong n. 

References 

[1] H Alexander, Formally-based tools and techniques for 
human-computer dialogues, Computers and their 
Applications, Ellis Horwood, 1987 

[2] W M Beynon, Definitive notations for interaction, 
Proc. hci'85, "People and Computers: Designing the 
Interface", ed Johnson and Cook, CUP 1985, 23-34 

[3] W M Beynon, Definitive principles for interactive 
graphics, NATO ASI Series F:40, Springer-Verlag 
1988, 1083-1097 

[4] W M Beynon, Y W Yung, Implementing a definitive 
notation for interactive graphics, New Trends in 
Computer Graphics, Springer-Vcrlag 1988,456-468 

[5] W M Beynon, Evaluating definitive principles for in­
teractive graphics, New Advances in Computer 
Graphics, Springer-Verlag 1989, 291-303 

[6] W M Beynon, M T Norris, S B Russ, M D Slade, Y P 
Yung, Y W Yung, Software construction using 
definitions: an illustrative example, CS RR#147, 
Univ of Warwick 1989 

[7] W M Beynon, M T Norris, R A Orr, M D Slade 

290 

Definitive specification of concurrent systems, Proc 
UKIT'90, Southampton, March 1990 (to appear) 

[8] A Borning, R Duisberg, Constraint-based Tools for 
Building User Interfaces, ACM Transaction on 
Graphics, Vol 5 No 4, 1986, 345-374 

[9] D W Brown, C D Carson, W A Montgomery, P M 
Zislis, Software specification and prototyping tech­
nologies, AT&T Tech Journal, July/August 1988, 33-
45 

[10] M Chmilar, B Wyvill, A Software Architecture for 
Integrated Modelling and Animation, New Advances 
in Computer Graphics, Proc. of CGI'89, 257-276 

[11] K Ehrlich, Report on Seminar "UIMS: State of the 
Art" by Dan Olsen, . SIGCHI Bulletin, JUly 1989 

[12] W L Johnson, Deriving Specifications from 
Requirements, Proc 10th Int Conf on Software 
Engineering, Singapore, 428-438, 1988 

[13] H R Hartson, D Hix, Human-Computer Interface 
Development: Concepts and Systems for Its 
Management, ACM Computing Surveys, 21(1), 
1989, 5-92 

[14] T Tomiyama, Object-oriented programming for intel­
ligent CAD systems, in Intelligent CAD systems 2: 
Implementation Issues, Springer-Verlag 1989, 3-16 

[15] B Wyvill, An interactive graphics language, PhD 
Thesis, Univ of Bradford, 1975 

[16] The miranda manual, Research Software Ltd, 1987 

Graphics Interface '90 



# Windows Showing DoNaLD Pictures 
point p2 = {27S, 100}; 
point q2 = {47S, 300}; 
point zoomPos = {SOO, SOO}; 
point zoomSize .. 500; 
window don2 = { 

type: DONALD, 
box: [p2, q2], 
plct: "floorplan", 
xmln: zoomPos.1 - zoomSize/2, 
ymln: zoomPos.2 - zoomSizel2, 
xmax: zoomPos.1 + zoomSizel2, 
ymax: zoomPos.2 + zoomSizel2, 
border: ON 

}; 

# Error Message Windows 
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# top left comer of the window 
# bottom right comer 
# zooming position in DoNaLD coordinates 
# size of the picture in DoNaLD coordinates 

# it is a DoNaLD picture 
# area in which the DoNaLD picture is shown 

# name of the DoNaLD picture 
# defining the portion of the DoNaLD 
# picture to be displayed in the box 
# defined above; zoomPos. 1 retums the 
# first coordinate of zoomPos 
# there is a border around the box 

Integer DoorHitsTable = DONALD boo lean DoorHitsTable; # a bridging definition 
window monDoor = { 

frame: ([monDoorPos, 1, strlen(monDoorStr)]), 
# A string will be put into a frame containing only one box that has top left comer monDoorPos 
# and is 1 row by strlen(monDoorStr) columns 

string: monDoorStr 
}; # by default, windows are of type TEXT 
string monDoorStr = If DoorHitsTable then "Table obstructs door" else "" end If; 
point monDoorPos = {2S, 50}; 

# Menu Buttons 
point tblMenuRef = {1 00, 400}; # the centre of the table-menu 
point tblUpPos .. tblMenuRef - {(strlen(tbIUpMenu)I2).c, 2.r}; # the location of the table-up button 

#.c and .r seNe as units, they can be read as 'columns' and 'rows' respectively 
window tblMenus = { 

frame : (gbIUPPOS, 1. strlen(tbIUpMenu)], [tblDownPos, 1, strlen(tbIDownMenu)], 
tblLeftPos, 1, strlen(tbILeftMenu)], [tblRightPos, 1, strlen(tbIRightMenu»)), # a list of 4 boxes 

string: t IUpMenu /I tblDownMenu /I tblLeftMenu /I tblRightMenu. # II - strmg concatenation 
border: ON 

}; 
string tblUpMenu = "UP", tblDownMenu = "DOWN", tblLeftMenu '"' "LEFT". tblRightMenu = "RIGHT"; 

Integer DoorlsOpen '"' DONALD boolean door/open; # a bridging definition 
point miscMenuRef = {2S0, 400}; 
point doorButtonPos .. miscMenuRef + {strlen(plugMenu).c 12, 1.r}; 
window doorButton '"' { 

frame: ([doorButtonPos, 1, strlen(doorMenu)]). 
string: ooorMenu, 
border: ON 

}; 
string doorMenu = If DoorlsOpen then "Close Door" else "Open Door" end If; 

# Forming Display 
display basicScreen = < 

tblHeader / tblMenus / zoomHeader / zoomMenus / plug Button / doorButton / don1 / don2 
>; # if windows overlap, tblHeader overlays tblMenus etc. 
display scr '"' If DoorHitsTable then Insert(basicScreen, 1, monDoor) else basicScreen endlf; 
display screen .. If CablelsShort then Insert(scr, 1. monCable) else scr endlf; 

# 'screen' is a special variable representing the actual screen 

Figure 1: Extracts from the SCOUT specification for Figure 2a 
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Figure 2a: The display associated with Figure 1 
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Figure 2b: The display after the table position has been redefmed 

Figure 2: Two sample screen displays 
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