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Abstract 

A new digital halftone resolution technique, based on a neu
ral network with connection strengths derived from stochastic 
power spectra, is proposed. Ulichney's "blue noise" spec
trum is used as a basis; alternative spectra are also examined. 
The new technique is compared with standard resolution tech
niques, ordered dither, Floyd-Steinberg, and dot diffusion. 
The new technique appears to offer resolutions with improved 
image detail. 
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Introduction 

The digital halftone resolution problem may be stated as 
follows: given an n x n array V ofreal numbers, Vi ,j E [0, 1], 
produce an n x n array w of binary integers, Wi,j E {O, I}, 
such that w, when displayed on a binary output device such as 
a computer monitor or laser printer, is a "good" representation 
of the real information, the intensities contained in V. The 
obvious resolution algorithm, round the values in V, fails to 
satisfy most interpretations of "good". For instance, if Vi ,j = 
.4999999 for all i, j, then Wi ,j =0 for all i, j, and a desired gray 
image is displayed as white. Consideration of neighborhood 
intensities seems imperative. 

Many halftone resolution algorithms have been proposed (see 
[8]), and some of the more commonly used ones are described 
in the next section. One reason for this multitude of algorithms 
is that the usual measure of success for half toning, the quality 
of the output image, has been gauged in a largely subjective 
manner. A notable exception to this subjective evaluation 
has appeared recently in [12, 13] where Ulichney offers a 
convincing case for the use of stochastic power spectra in 
measuring the success of certain classes of halftone resolution 
algorithms. With the support of numerous examples, he argues 
that high quality images are produced by those algorithms 
whose associated (radially averaged) power spectrum can be 
characterized as "blue noise," that is, a flat noise function 
shifted toward the higher frequency, "blue" end of the spectrum. 

The advantage of such an approach is that it offers a purely 
objective measure of algorithm success as well as lending some 
quantification to visual aesthetics. 

The purpose of this paper is to show that idealized power 
spectra, such as Ulichney's "blue noise", can be inverted to 
yield natural, deterministic algorithms for halftone resolution. 
The inversion itself yields a collection of pixel correlation 
coefficients which serve as connections in a Hopfield neu
ral network. A fast neural network convergence algorithm 
provides the actual resolution. 

The paper is organized as follows. In the next section we 
consider three commonly used halftone algorithms, ordered 

. dither, Floyd-Steinberg, and dot diffusion. Then, we discuss 
Hopfield neural networks and their use in halftone resolution. 
Next, we compare the results of resolution by "blue noise" 
inversion with the more commonly used algorithms. In the 
following section we consider "red noise" and "green noise" 
inversion, and finally we offer conclusions. 

We note that both neural networks and frequency domain con
siderations have been included in earlier halftone resolution 
algorithms. In [1] a frequency-weighted mean squared error 
function is minimized by mapping the function onto a neural 
network. The weights are determined from psychophysical 
experiments reported in [10]. In [4] we offer an algorithm for 
resolving 210 x 210 pixel images using 216 neural networks in 
parallel. Each network contains 16 neurons with connections 
determined by a pixel magnetism model. Convergence of each 
network is perfect; that is, energy minima are guaranteed. The 
approach described herein offers significantly stronger motiva
tion for selection of the network interconnection parameters. 

Standard Halftone Algorithms 

The most commonly used resolution algorithm is probably the 
ordered dither [3], in which we tile the image matrix V with a 
smaller fixed array D of threshold values, and then turn on the 
pixel (set wi,j=l) if and only if Vi,j exceeds the corresponding 
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threshold value. A standard 4 x 4 tile is 
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Note that a uniform intensity of 0.5 would cause 8 of every 16 
pixels (every other one) to be turned on. Also note that the 
entries in the tile are carefully chosen to break horizontal and 
vertical lines, which are easily recognized by the eye. 

In figure 1 we show a 256 x 256 pixel image of a digitized photo 
resolved by this ordered dither. This image was printed on a 
conventional 300 pixel per inch laser printer at an expanded 
resolution of75 pixels per inch. 

Although the ordered dither algorithm can be highly parallel in 
implementation, one of the standard complaints lodged against 
this technique is that it imparts an artificial texture to the image. 
This "computery" look is quite evident in our figure. 

A substantial improvement in smoothing can be achieved, at 
the expense of parallelism, by the Floyd-Steinberg algorithm 
[2]: 

for(i=l to n){ 
for(j=l to n){ 

} 

if Vi ,j < 1/2 then Wi,j =O; 
else Wi ,j = 1; 
err = Vi ,j -Wi, j ; 
Vi ,j+l = Vi ,j+l + (err * 7/16); 
Vi+l ,j-l = Vi+l ,j -l + (err * 3/16); 
Vi+l ,j = Vi+ l,j + (err * 5/16); 
ViH,j+l = ViH,j+l + (err * 1/16); 
} 

The algorithm thus diffuses the rounding error at each step to 
adjacent image cells in a serial fashion. Applying this algorithm 
to the same data, we obtain the results shown in figure 2, where 
greater detail in the ring is available and the artificial texturing 
is substantially reduced. However, much ring detail is still 
obscured, no distinct features of the background are visible, 
and the signature initials in the lower right (which were at least 
hinted at in the dithered picture) have been obliterated. 

In an effort to achieve both the smoothness of the Floyd
Steinberg algorithm and the highly desirable parallelism of the 
ordered dither, Knuth has recently developed dot diffusion [9]. 
In this algorithm the image V is tiled with a very carefully 
constructed matrix of "class" numbers. An 8 x 8 class matrix 
given in [9] is 
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34 48 40 32 29 
42 58 56 53 21 
50 62 61 45 13 

c= 38 46 54 37 25 
28 14 22 30 35 
20 4 6 11 43 
12 0 3 19 51 
24 16 8 27 39 

The algorithm is then 

for(k=O to 63){ 
for(all (i,j) of class k){ 

if Vi, j < 1/2 then Wi,j=O; 
else wi,j=l; 
err = ~ ,j - Wi ,j; 

15 23 31 
5 7 10 

2 18 
17 9 26 
49 41 33 
59 57 52 
63 60 44 
47 55 36 

distribute err to neighbors of higher class; 
} 

} 

The distribution of err sends twice as much to each orthogonal 
neighbor (of higher class) as it does to each diagonal neighbor 
(of higher class). The algorithm thus diffuses error in a 
manner similar to the Floyd-Steinberg algorithm, but achieves 
parallelism by dissipating the error at isolated pixels of high 
class ("barons") rather than at the edges of the image. 

If we apply this algorithm to our image, we obtain the resolution 
shown in figure 3. The results are similar to those of the Floyd
Steinberg algorithm, although the appearance is somewhat 
grainier. Though both this algorithm and Floyd-Steinberg omit 
much detail, they are both far superior to the ordered dither. 

N e ural N e tworks 

A neural network is a collection of simple analog processing 
elements designed to mimic biological neurons. The com
putational paradigm provided by such networks is a radical 
departure from that of the classical von Neumann architecture. 
The "input" to such a network is a matrix of interconnections 
among the processing elements, together with an initial voltage 
that is applied to each element. The networks are designed so 
that the stable output voltages of the analog elements are binary. 
The collection of all binary output levels is then interpreted as 
the "result" of the computation. 

Of particular interest to us here is the class of neural networks 
proposed by Hopfield [6]. A four element example, from 
[11], is shown in figure 4. Neurons are represented by 
amplifiers, each providing both standard arid inverted outputs 
(voltage ei E[-l,l]). Synapses are represented by the physical 
connections between input lines to the amplifiers and, in 
feedback, output lines from the amplifiers. Resistors are used 
to make these connections . If the input to amplifier i is 
connected to the output of amplifier j by a resistor with value 
Rij , then the conductance of the connection is Tij, whose 
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Figure 1: Digitized photo resolved by ordered dither. 

Figure 2: Digitized photo resolved by Floyd-Steinberg. 
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Figure 3: Digitized photo resolved by dot diffusion. 

14 Inputs 

'(}4 Outputs 

Figure 4: Four element Hopfield network. 

magnitude is 1/ Ri j and whose sign is determined by whether 
the connection to amplifier j is from the standard or inverted 
output. Hopfield showed that when the matrix T is symmetric 
with zero diagonal and the amplifiers are operated in "high
gain" mode, the stable states of the network are binary ({ -l,I}) 
and are the local minima of the computational energy, 

N -l N-l N-l 

E(8) = (- 1/2) L L Tij8i8j - L 8di . (1) 
i =O j =O i=O 

Here li is the external input to amplifier i. 

If we now choose to represent each pixel in our n x n display 

by a neuron, then a binary stable state of a network of N = n 2 

neurons, {8klk = 0,1 , ... N - I}, can be naturally regarded 
as a halftone resolution, namely Wi,j = (8 i.n+j + 1)/2. Of 
course a major difficulty with this approach is translation of the 
desired image intensities, the V matrix of the previous section, 
into network connection parameters, the Ti ,j'S and the h's. 
Reasonable choices abound, and it is the purpose of the next 
section to derive a "natural" selection. 

We should note, however, that any selection of connection pa
rameters is likely to benefit from consideration of global image 
intensity. Specifically, a reasonable constraint on resolution W 

is that"' , ,Wi)' should not deviate greatly from"' , , Vi J' • WI ,) I L..-Jl ,] I 

To incorporate the additional constraint, we use a variation on 
a technique suggested in [11]: let m = l"' , ' Vi ,j + 0.5 J, the 01 ,] 

rounded total intensity. We now add to E( 8) a summand of 
the form 

N-l 

C(L 8i ; 1 _ m)2 

i= O 

where C > O. To reinforce integral solutions while maintain
ing the Hopfield constraint of a zero-diagonal T matrix, we 
add another of the form 

The net effect is to add C( m - N /2) to each li and -C /2 to 
each non-diagonal Ti j in (1). 

The only remaining issue of network application is the method 
by which we obtain the stable state from the specified network. 
Hopfield networks of N = 2562 = 65536 neurons have not 
yet been built, and we are forced to resort to net simulation. 

Net simulation is traditionally approached (e.g. [11]) as a 
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numerical integration of the system of N differential equations 
describing the operation of the amplifiers [6]: 

C.du./dt = L T'jg(uj) - u./R. +1;. (2) 
j 

Here the u. are internal input voltages to the amplifiers, and 
are related to the desired output voltages, the (}., by a sigmoidal 
gain function, g( x). A reasonable choice for g( x) is a scaled 
hyperbolic tangent, g(x) = tanh(Ax). Here A is called the 
gain. The C. are the input capacitances of the amplifiers, 
and R. = l/ (I/p + L j IT' ,j!), where p is amplifier input 
resistance. 

We have found numerical integration of large (216 neuron) 
systems of the form (2) to be extremely time consuming, 
and therefore have developed an alternative approach. Any 
equilibrium of (2) is given by 

that is, 

or simply 

° = LT',jg(uj) - u./R. + I. 
j 

u. = R,(LT' ,jg(uj) + 1;) 
j 

u = G(u) , 

where G(u) = diag(R)(Tg(u) + 1), diag(R) has R.'s on 
the diagonal and o 's elsewhere, and g( u) = (g( uJ) , g( U2 ), ... ). 
Thus we seek a fixed point of a certain N-dimensional function. 
If I I denotes the max norm on Euclidean N-space and 11 11 

its induced matrix norm, then since R. < 1/ Lj IT. ,j l we 
have 

IG(u) - G(ul)1 Idiag(R)T(g(u) - g(ul))1 

< IIdiag(R)TII ·Ig(u) - g(ul)1 

< Ig(u) - g(ul)1 

< Alu - u/l 

Thus, for gain A < I, convergence of the simple iteration 
scheme, u kH = G(u k

), is straightforward (see, e.g. [7]). 
Unfortunately, the Hopfield result speaks only of high-gain 
operation, and we must consider A > I, where the simple 
iteration is likely to diverge. Fortunately, there is an intriguing 
alternative. 

In [5] Hillam established a remarkable result for functions on 
the real line: if J : [a, b] - [a, b] satisfies IJ(x) - J(y)1 ::; 
M I x - y I, then the iteration scheme 

1 M 
Xn+1 = M + 1 J(x n ) + M + 1 Xn (3) 

converges to a fixed point of J. On the conjecture that this 
result might extend to higher dimensions, Hillam noted that 
a completely new approach would be needed, since his proof 
relied heavily upon the total ordering of the real line. To our 
knowledge, this conjecture remains unresolved. 
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Nevertheless, we have found substantial empirical evidence to 
support it, at least within the neural net environment. Using 
(3) with M = A, we find that convergence to a fixed point of 
G (that is, average component error lu. - G(u.)1 < 10-10

) 

usually requires fewer than 150 iterations, even for these large 
(216 neuron) systems. We have not found a net for which this 
scheme fails to converge. 

Blue Noise Inversion 

Hereafter we number pixels in our n x n array left-to-right 
and top-to-bottom using the non-negative integers and refer to 
intensities {Vi li = 0, 1,2, ... N - I} and resolutions {wdi = 
0, 1,2, .. . N-l}. 

If we regard the value of pixel i , w. as a stationary stochastic 
process with mean IL, then its autocovariance sequence (in 
space) is given by 

Rk = E[(w. - 1L)(W.+k - IL)] k = 0 , 1, ... 

where Ro = u2
, the variance. The associated autocorrelation 

sequence is given by 

Rk 
Pk = - k = 0, 1, .... 

Ro 

and the power spectrum is the Fourier transform, 

+ 00 
P(A) = LRkCOS(brA) - 1 ::; A::; 1 

k=O 

Note that zero spatial correlation of pixel value would give 
Rk = 0, k > ° and hence P( A) = u 2

, all A. A constant 
frequency function such as this is often regarded as white 
noise. 

In [12] Ulichney argues that for stochastic halftone resolution 
of a fixed intensity, Vi = IL, all i, it is the low frequency noise 
that gives rise to unpleasant visual effects. If we remove low 
frequency noise from the white noise function, P(A) = u2

, 

we obtain the spectrum of figure 5 with a symmetric picture 
at negative frequencies . Here Jp is the so-called principal 
frequency which is taken, following [12], from the desired 
constant intensity IL: 

° ::; IL ::; 1/2 
1/2 < IL ::; 1 

We now observe that this idealized spectrum is easily inverted. 
In general the inverse transform is given by 

In this instance we obtain 

j l 2 

2 Jp 2(1 ~ Jp ) cos(brA)dA 

~ [-Sin(brJp ) ] 

1 - JP br 
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Figure 5: Blue noise. 

and so 

We can take this correlation coefficient Pk as the desired 
relative strength of connection between two pixels at distance 
k in a halftone resolution of a region of fixed intensity value J1.. 

We contend that when intensities in a region deviate markedly 
from a fixed value, i.e. high standard deviation of intensities, 
the image is likely to contain significant detail in the region, 
and these connection strengths should be reduced accordingly 
to yield to individual cell intensity values. 

Thus our connection structure is specified as follows: for 
each pixel i let J1.i and Ui denote the mean and standard 
deviation of the intensities, the V's, in a neighborhood of 
radius R about pixel i. If pixel j is at distance k :$ R 
from i, where planar distance is given by the sum metric, 
II(Xl. yI) - (X2 . Y2)1I = IXl - x21 + IYl - Y21, we set 

To . _ -sin(br#) 
' ,J - (1 - #)br(1 + Ui) 

and 
Ii = Vi - K X Ai 

where Ai is the mean of the intensities of the pixels adjacent 
to i, and K is a constant. The effect of the latter assignment is 
to give each cell an externally imposed tendency. 

We note that the resulting T matrix is not necessarily sym
metric, but symmetry is a sufficient condition for convergence, 
not a necessary one, and in practice the asymmetry causes no 
problem. 

In figure 6 we see the results of applying to the same data 
our neural net with gain 1.6 and neighborhood radius 5. 
Convergence required 116 iterations. Greater detail is visible 
in the ring, for instance around the clasps. The marbling in 
the background is evident for the first time, as is the signature 
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initial in the lower right. Initials on the inside of the ring 
band, not even suggested by the other resolution methods, are 
beginning to emerge. 

Red Noise and Green Noise 

If blue noise is defined as in the previous section, then one 
might define "red noise" as the inverse of blue noise, with a 
spectrum as shown in figure 8. This idealized spectrum is also 
easily inverted: 

And so 

We also chose to investigate a spectrum with a central non-zero 
component. We define "green noise" to have the spectrum of 
figure 9. This spectrum is also easily inverted: 

J+Jp 

2 r 2 u2cos(br>')d>' 
lIt 

= 
2 stn 2 stn 2 

[ 

. (h(l+ Jp)) - . (kTr IP ) ] 
2u k~ 

And so 

[ 

. (k7r( l+/p ) ) _ . (k1<IP)] s tn 2 stn 2 
Pk = 2 k7r 

Now, specifying our interconnection structure in a way anal
ogous to that for blue noise, we create a red noise neural net 
and a green noise neural net. Applying these nets to our data 
results in pictures which, while clearly inferior to figure 6, are 
not as poor as one might expect if the defined blue noise spec
trum were the ideal for improved resolution. The resolution 
obtained via the red noise algorithm is shown in figure 7. 

Conclusions 

We have considered the development of new algorithms for 
digital halftone resolution, based on Ulichney's use of stochas
tic power spectra. We have shown how idealized spectra 
may be easily inverted to produce connection coefficients in a 
Hopfield neural network which forms the basis for these algo
rithms. When compared with standard resolution techniques, 
ordered dither, Floyd-Steinberg, and dot diffusion, we find our 
"blue noise" algorithm to offer improved resolution detail. 

We have considered not only Ulichney's "blue noise" spec
trum, but also some alternatives: a "red noise" spectrum of 
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Figure 6: Digitized photo resolved by blue noise inversion. 

Figure 7: Digitized photo resolved by red noise inversion. 
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Figure 8: Red noise. 

Figure 9: Green noise. 
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low frequencies and a "green" noise spectrum of central fre
quencies. The high frequency blue spectrum definitely gives 
the best visual results, but the resolutions provided by the 
other spectra encourage further experimentation with spectrum 
definition. 
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