
68 

Robust Ray Intersection with Interval Arithmetic 

Don P. Mitchell 

AT &T Bell Laboratories 
Murray Hill, NJ 07974 

1. Abstract 

This paper discusses a very general root-isolation 
algorithm, based on interval arithmetic, which can 
find real roots in a large class of analytic functions. 
This algorithm has been used successfully to gen­
erate ray-traced images of a variety of implicit sur­
faces. 

2. Introduction 

One of the fundamental operations in ray tracing is 
the calculation of intersections between rays and 
primitive solids or surfaces. This generally reduces 
to the problem of solving for roots of an equation or 
a system of equations, and often the problem is non­
linear. 

The details of the numerical problem depends to a 
large extent on how the primitive solid or surface is 
represented. An indirect definition of the points in a 
solid or surface is given in an implicit surface. 
defined by a scalar-valued function F; 

s= {(x,y,z) I F(x,y,z)=O} (1) 

The other major type of representation gives an 
explicit formula for generating the points of the solid 
or surface, such as a patch of a parametric surface. 

s = {(x(u,v), y(u,v), z(u,v» (2) 

I UO~U~Ul>vo~v~vd 

This paper is concerned with the case of implicit 
surfaces. In this case, the ray/solid intersection 
problem reduces to the problem of finding roots of a 

single equation in one variable. Given a ray 
represented parametrically by a starting point S and 
a direction vector D, a simple substitution gives an 
equation in the ray parameter I; 

F (x,y,z) = F (S~ + ID~ , Sy + IDy , S, +ID,) (3) 

= f(l) 

The surface of this solid is represented by points 
where F is zero, and intersections of the ray with the 
surface correspond to parameter values where f is 
zero. If f is a polynomial of degree less than five, 
then closed-form expressions for the roots exist 
(altho it may not be a sound numerical method to 
use the formulae of Cardan or Ferrari to solve cubic 
and quartic equations). 

For more general types of equations f (I) = 0, the 
problem of finding roots can be divided into two 
steps. First the roots must be isolated by finding 
intervals [ti,/i+1] which are known to contain one 
and only one root of the function. Secondly, the 
intervals about each root can be refined by reducing 
the size of the isolating interval until the root is 
located as accurately as possible using machine 
arithmetic. 

The problem of root isolation is the more difficult 
problem. The problem of root refinement is well 
understood, and efficient, stable algorithms exist for 
locating a single root within an interval. A 
refinement algorithm as simple as bisection could be 
used, but faster methods exist which are equally reli­
able [Press88]. 

If f (I) is a polynomial, there are a number of root 

Graphics Interface '90 



finding methods. To find all of the complex roots of 
a polynomial, the Madsen-Reid algorithm is a 
current favorite [Madsen75]. 

For finding real roots of polynomials, root isolation 
methods based on RoUe's theorem, Budan's 
theorem, Descartes' rule of signs, and Stunn ' s 
theorem have all been demonstrated [Collins82]. 
Some of these algorithms have been applied to ray 
tracing algebraic surfaces. Hanrahan has used a 
method based on Descartes' rule [Hanrahan83] , and 
Sturm's theorem has been used by two others 
[Wijk84, Duff88]. Duff reports that his implementa­
tion of a Stunn-sequence root finder was much faster 
than the Madsen-Reid algorithm and also faster than 
the method used by Hanrahan. 

For functions more general than polynomials, there 
are fewer results. An heuristic for root isolation has 
been proposed which estimates bounds on the value 
of a function in an interval from samples [Jones78] . 
This heuristic can fail, but other methods are based 
on guaranteed upper and lower bounds on a f unc­
tion. 

Very few attempts have been made to ray trace 
non-algebraic surfaces. Blinn demonstrated an 
heuristic method for ray tracing Gaussian density 
distributions [Blinn82]. Kalra and Barr have demon­
strated a robust root isolation algorithm that works 
on functions for which a Lipschitz condition for f 
and its derivative can be found within given inter­
vals of the range [Kalra89]. 

3. The Interval Root Isolation Algorithm 

Interval analysis has proven successful for finding 
real roots of systems of nonlinear equations [Kear­
fott87]. Toth used such an algorithm to ray trace 
parametric surfaces [Toth85]. The algorithm he used 
was based on the idea of subdividing parameter 
space until safe starting regions were found for an 
iterative root-refinement method. 

Ray tracing implicit surfaces presents an easier, 
one-dimensional problem. For this case, Moore 
gives a simple and general algorithm for root isola­
tion which can be applied to rational functions and 
also to functions involving familiar transcendental 
functions [Moore66]. 

An interval number is represented by a lower and 
upper bound, [a, b) and corresponds to a range of 

69 

real values. An ordinary real number can be 
represented by a degenerate interval [a, a]. It is 
straightforward to define basic arithmetic operations 
on interval numbers: 

[a, b) + rc, d) = [a+c , b+d] 

[a, b] - rc, d) = [a -d, b-c] 

[a, b) * rc, d) = [min (ac, ad, bc, bd), 

max (ac, ad, bc, bd)] 

and if 0 e rc, d) 

[a, b) I rc, d) = [a, b) * [lld, llc] 

(4) 

Using the above rules, a rational expression 
r (x, y, z) can be evaluated with interval values 
[xo,xd, [Yo,yd , [zo,zd for its variables. The 
resulting value may be an interval that is much 
wider than the actual range of the corresponding 
real-valued expression, but it is guaranteed to bound 
that range. That is, for intervals X, Y, Z: 

r(X,Y,Z):;;?{r(x,y,z) I XEX,YEY,zEZ} (5) 

As the intervals X, Y, Z become narrower, a rational 
expression converges toward its corresponding real 
restriction: 

X' eX, implies r(X')~r(X) 

and 

X = [x, x] implies r(X) = [r (x), r (x)] 

(6) 

Using these concepts, a simple recursive algorithm 
can be described for isolating the roots of a function 
of one variable. We start with a rational function r 
and an initial interval [a, b) . 

Step 1. Evaluate r([a, bD. If the 
resulting interval value does not contain 
zero, then there cannot be a root in 
[a, b], and we are finished with this 
interval. 

Step 2. Evaluate the derivative 
r' ([a, b D. If the resulting interval value 
does not contain zero, then the function 
must be monotonic in the interval. If 
the function is monotonic and 

Graphics Interface '90 



r (a) r (b) ~ 0, then there is a root in the 
interval which can be refined by some 
standard method. 

Step 3. If r([a, bD and r'([a, b]) both 
contain zero, then subdivide the interval 
at its midpoint and recursively process 
[a, (a+b)/2) and [(a+b)/2, b). 

Step 4. The process of subdivision 
should be stopped when the width of an 
interval approaches the machine accu­
racy. For example, if the midpoint tests 
equal to either endpoint on the machine 
or if the width of the interval is less 
than some minimum allowed value. 

We see that this algorithm is based on the existence 
of a root inclusion test, which checks for the 
presense of a single root in an interval. The root 
inclusion test can return a value of "yes", "no" or 
"maybe", and bisection is performed when the result 
is "maybe". Many root-isolation algorithms conform 
to this paradigm, whether they use Descarte's Rule, 
Lipschitz conditions, or interval arithmetic to test for 
root inclusion. 

The algorithm above is slightly different than the 
one described by Moore which assumes that root 
refinement will also be performed by an interval 
algorithm. 

A discussion of Moore's algorithm should include 
the very important issue of machine arithmetic and 
round-off error. I have found that ordinary rounded 
floating point arithmetic (in single precision) and 
ordinary root-refinement algorithms are sufficient to 
produce the images presented below. However, 
strict bounds on function variation can be computed 
even with finite precision floating point arithmetic if 
it is done with outward rounding. This is safer but 
more computationally expensive. 

4. Application of the Algorithm to Ray Tracing 

In the context of ray tracing an implicit surface, the 
interval root isolation algorithm is well suited to 
finding zeros of the function f (t) in (3). 

Given the three-dimensional surface F (x,y,z) = 0, it 
may be straightforward to derive a closed-form 
expression for f (t) and its derivative J' (t). If so, 

70 

the interval extension f ([t 0, t 1 D. 

If f (t) cannot be easily derived in closed form, it is 
possible to work directly with the interval extension 
of F (x,y,z). Given a ray defined by a starting point 
S and a direction D, an interval [to, td can be sub­
stituted into (3) to evaluate the resulting 
F ([xo, xd,fyo, yd, [zo, z d). 

Similarly, !(t) can be derived by taking the interval 
extension of the directional derivative of F: 

!(t) = jj. VF(x,y,z) (7) 

Given an expression F (x,y,z) in symbolic postfix 
form, a simple interpreter can compute an interval 
evaluation. By application of the chain rule for dif­
ferentiation, the value of VF(x,y,z) can be computed 
concurrently. 

The interval root isolation algorithm was described 
for rational functions, but it is straightforward to 
extend this to include most of the familiar transcen­
dental functions. For monotonic functions, the inter­
val extension is trivial: 

e ra. b ] = [ea,e b ] 

[a, b]3 = [a 3,b3] 

(8) 

For modeling superquadrics, the absolute-value func­
tion is needed, and its interval extension is simply: 

l[a,b]1 =[O,max(lal, Ibl)] (9) 

Many commonly-used transcendental functions like 
sine and cosine are made up of monotonic segments 
with minima and maxima at known locations. That 
information is sufficient to compute exact upper and 
lower bounds of an interval extension of a function. 

When a ray grazes the surface F(x,y,z) = 0 at a 
tangent, the corresponding root of f (t) = 0 will be a 
multiple root (i.e., the value and some number of the 
derivatives of the function will all be zero at the 
same point). As the interval root isolation process 
converges on a multiple root, the derivative will 
always be zero in the interval, so the algorithm will 
not terminate until it reaches a minimum-sized inter­
val (in Step 4 of the algorithm). The algorithm will 

the root finding algorithm can be applied directly to 
Graphics Interface '90 



succeed, but like many root-finding methods, it is 
slower in finding multiple roots. 

In order to ray trace concave superquadrics [Barr81], 
it is also necessary to deal with singularities in the 
derivative. This is because a function such as 

r (x) = I x I 0.75 (10) 

has a singularity in its derivative at x = O. The 
singularity results from dividing by zero, and the 
interval extension of the division operation must be 
modified to return some representation of [-00, 00] in 
this case. 

5. Results 

In Plate I, a fourth-degree algebraic surface is ren­
dered with this method. The equation for this sur­
face is: 

4(x4 + (y2 + z2)2) (11) 

+ 17x2(y2+z2)_20(x2+y2+z 2)+ 17 = 0 

Plate 2 shows an example of a non-algebraic ana­
lytic surface--a sum of five Gaussians representing 
an arrangement of atoms. Plate 3 is a concave 
superquadric of the form: 

I x I 0.75 + I y I 0.75 + I z I 0.75 = 1 (12) 

This illustrates a surface with singular gradients at 
some points. Concave super quadrics are difficult 
objects to render by direct intersection alone. With 
even smaller exponents, the "webbing" between the 
corners becomes so thin that even double precision 
arithmetic may not be sufficient to isolate the roots 
correctly or to compute the gradient accurately (in 
such close proximity to a singularity). It would be 
interesting to see if a careful application of round­
out interval arithmetic could handle such pathologi­
cal cases. 

Plate 4 is the same surface as in Plate 3, with a twist 
deformation [Barr84]: 

x' = x cos (4y) - z sin (4y) 

z' = x sin (4y) + z cos (4y) 

(13) 

71 

In all of these figures, intersection with a simple 
bounding box provides a starting interval for the 
root-isolation algorithm. Better starting intervals 
might be obtained by the octree spatial subdivision 
described by Kalra and Barr [Kalra89] which could 
be easily modified to use interval analysis. 

Test images were generated with an experimental 
ray-tracing system running on a SPARCstation 330. 
Using this algorithm, a simple unit sphere was ren­
dered with 2.7 m sec/ray. That compares to 0.78 
msec/ray to render a sphere using the usual methods 
of solving quadratic equations. 

For more complex surfaces, the speed of the algo­
rithm varies from function to function. For some 
expressions, the interval bounds converge more 
slowly as the intervals are subdivided. Thus a rela­
tively simple algebraic surface may require more 
time than some non-algebraic surfaces. The conver­
gence of the interval bounds is effected not only by 
the function , but also the particular form of the 
expression. In particular, it is useful to keep in 
mind the subdistributive property of interval arith­
metic: 

X(Y +Z) c XY +XZ (14) 

A CSG ray tracer may need to compute all intersec­
tions of the ray with the surface in order to perform 
set operations [Roth82]. In the case of boundary­
representation schemes or CSG models using just 
union set operations, only the closest intersection is 
needed to find the visible surface. Some representa­
tive times are given below for finding all roots or 
just the root closest to the ray origin: 

Rendering Time in Milliseconds per Ray 

Object Find All Closest 

Sphere 2.7 1.9 

Quartic (plate 1) 33.2 17.9 

Gaussians (plate 2) 23.1 11.0 

Superquadric (plate 3) 6.4 4.4 

Twisted SQ (plate 4) 21.3 13.6 

Graphics Interface '90 



6. Conclusions 

Few methods are available for reliably ray tracing 
non-algebraic implicit surfaces. Root isolation by 
interval analysis is a simple and general way to find 
real roots of nonlinear equations. This method has 
been used to ray trace an interesting variety of alge­
braic and non-algebraic implicit surfaces. It is effec­
tive even for surfaces which have singularities in 
their gradients. 

One advantage of the interval algorithm is that it 
does not require a mathematical analysis of new sur­
faces to determine Lipschitz constants-in fact the 
symbolic expression for a new surface is entered at 
run time in my implementation. 

Several improvements should be made. Preprocess­
ing an object to find a tight-fitting octree boundary 
(as in [Kalra89]) might improve performance. And 
in general, the times shown above come from code 
which is has not been squeezed for performance. 
Most time is spent in the interval multiply routine 
which, unnecessarily, performs four multiplications 
for every call. 

7. Acknowledgements 

I would like to thank Eric Grosse for urging me to 
give Moore's algorithm a try. Thanks to John Ama­
natides who worked with me on the "FX" ray trac­
ing system used to test this algorithm. 

8. References 

[Ban81] 

[Ban84] 

[Blinn82] 

[Col\ins82] 

[Duff88] 

Ban, Alan H., "Superquadrics and Angle­
Preserving Transformations", IEEE Com­
puter Graphics and Applications, January, 
1981. 

Ban, Alan H., "Global and Local Defor­
mations of Solid Primitives", SIGGRAPH 
84, July, 1984. 

Blinn, James F., "A Generalization of 
Algebraic Surface Drawing", ACM Tran­
sactions on Graphics, July, 1982, pp 235-
256. 

Collins, G. E., R. Loos, "Real Zeros of 
Polynomials", Computing Suppl. Vo\. 4, 
pp 83-94, 1982. 

Duff, Tom, "Using Suum Sequences for 
Rendering Algebraic Surfaces", unpub­
lish£d report July 25, 1988. 

72 

[Hanrahan83] Hanrahan, Pat, "Ray Tracing Algebraic 
Surfaces", SIGGRAPH 83, July 1983, pp 
83-89. 

[Jones78] 

[Kalra89] 

Jones, Bush, et ai, "Root Isolation Using 
Function Values", BIT Vol. 18, 1978, pp. 
311-319. 

Kalra, Devendra, Alan H. Barr, 
"Guaranteed Ray Intersection with Implicit 
Surfaces", SIGGRAPH 89, July, 1989, pp 
297-306. 

[Kearfott87] Kearfott, R. B., "Abstract generalized 
bisection and a cost bound", Math. Com­
put., Vo\. 49, No. 179, July, 1987, pp. 
187-202. 

[Madsen73] Madsen, K., "A root-finding algorithm 
based on Newton's method", BIT Vol. 13, 
pp 71 -75, 1973. 

[Moore66] Moore, Ramon E., Interval Analysis, 
Prentice-Hall, Englewood Cliffs, NI 
(1966). 

[Press88] Press, William H., et ai, Numerical 
Recipes in C, Cambridge University Press, 
(1988). 

[Toth85] Toth, Daniel L., "On Ray Tracing 
Parametric Surfaces", SIGGRAPH 85, July 
1985, pp 171-179. 

[Wijk84] van Wijk, Jarke I., "Ray tracing objects 
defined by sweeping a sphere", Euro­
graphics 84, September 1984, pp 73-82. 

Graphics Interface '90 



73 

PLATE 

Graphics Interface '90 

PLATE 

2 



PLATE 

3 

74 

Graphics Interface '90 

PLATE 

4 


