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Abstract 

We provide a general technique for all ray tracing space 
subdivision methods to perform what we term as "Ap­
proximate Ra.y Tracing." An implementation of the 
Approximate Ray Tracing called the Approximate Slic­
ing Extent Technique or ASET is provided. ASET 
checks only one ray-polygon intersection per cell along 
the path of the ray. All other ray-object intersections 
are eliminated. 

While the benefits of standard art>a subdivision tech­
niques have proven to be fairly optimal, our experi­
ments have shown an average of fifteen to fifty percent 
reduction in the time required to ray trace approxi­
mate images . Time savings are expected to be greater 
when more complex scenes are rendered . Irrespective 
of the scene complexity, ASET adds only a constant 
amount of memory overhead. 

Keywords: Shading, Rendering Algorithms. 

Introduction 

Ray tracing has proven to be the m ost popular and 
effective method for generating realistic images from 
geometric and mathematical descriptions of objects. It 
involves the tracing of a ray or vector fr om a specified 
view point through a scene . As the rav strikes an ob­
ject, a reflected and a refracted ray m~.y be produced. 
These new rays in turn may strike other objects - re­
peating the above process . The aggregate effects of 
this continual process provide shading, reflections, a.nd 
shadows. However, the repeated splitting of each par­
ent ray into two new rays can produce an exponential 
number of rays . 

Ray tracing, as described above, is too computation­
ally time consuming for the average graphics system. It 
involves testing for a ray-object intersection with every 
object (i.e . , polygon, sphere, etc.) in the scene volume. 

For example, ray tracing a 500 x 50n pixel scene with 
5000 objects would require a minimum of 1.25 billion 
intersection attempts for initial or primary rays. 

Consequently, researchers have pursued heuristics to 
reduce the number of calculations required to gener­
ate an image. One technique that has gained wide 
acceptance is space subdivision . The original volume 
(containing all the objects) is subdivided into smaller 
subvolumes. These small subvolumes may contain pos­
sibly fewer objects than the original undivided volume . 
Since rays traverse a. predetermined linear path, a com­
putational savings is realized by only considering inter­
section with objects in subvolumes along the path of 
the ray. Space subdivision has shown dramatic reduc­
tions in the number of calculations required to generate 
a.n image a.s the number of objects in a scene ll\crea.se 
[3,4,7,8]. 

Some prevalent methods used for spa.ce subdivision in­
clude the oct tree and grid met.hods. Other popular 
techniques are the ARTS and EXCELL methods . 

All the space subdivision techniques work well depend­
ing upon the scene and the desired view orientation . 

The Oct Tree Method 

The oct tree method [4] recursively subdivides a scene 
volume into 8 equal disjoint subvolumes depending upon 
the number of objects in the volume space . An oct tree 
division algorithm can be tailored to halt based on user 
defined parameters . These parameters are: no objects 
left in the subvolume; the number of objects in subvol­
ume less than some constant; and the height of the oct 
tree greater than some constant. 

Oct-tree works well for a scene t hat has large blank vol­
umes and/or objects that are clustered densely. Since 
oct tree adapts its data structure to the scene, large 
volumes of blank data can be assigned to a single node. 
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When ray traversal begins, these large volumes can be 
bypassed with a single node check. 

A drawback to using oct tree for space subdivision is 
the time involved in traversing the scene volume (i.e., 
moving from subvolume to subvolume) [3). No con­
stant increment can be applied to easily determine the 
next subvolume . Different levels of the oct tree are 
examined to move from one subvolume of the scene to 
another . This computational roller-coaster ride up and 
down the oct ·tree is time consuming and slows down 
ray tracing process. 

The Grid Method 

The Grid Method [3,7) subdivides the ob.iect space 
evenly along the x, y, and z axis. The result of the 
grid method is the creation of equally sized rectangu­
lar volumes called grid volumes or voxels. While ray 
tracing, it allows for easy traversal from voxel to voxel 
by simply adding the subdivision constant(s) to the 
appropriate axes (3DDA [3]). 

The grid method works well for a scene that has a 
fairly equal dispersal of objects throughout the scene 
volume. It is crucial to somehow select. optimal divi­
sion constants for each axis . Ray traversal from voxel 
to voxel is easily computed and a fairly even number 
of objects in each voxel provide a fairly constant ray 
intersection computation time . 

A scene ideally suited for oct tree would run very slug­
gishly under this method . Processing time can be 
wasted traversing through numerous empty voxels. The 
number of objects assigned to a grid voxel depend di­
rectly upon the dispersal of objects in the scene. Ad­
ditiona.ily, ray-object intersections can be duplicated 
when a. large object is assigned to multiple voxels. 

Other Methods 

Other space subdivision methods not detailed In this 
report include the ARTS and EXCELL methods. The 
ARTS method [3] combines the oct tree and grid meth­
ods. The EXCELL method [9] provides a spatial in­
dex to an adaptive cell structure crea.ted by recursive 
bina.ry subdivision. An excellent review of these and 
other techniques appea.r in [3,4.61 . 

The Slicing Extent Technique 

Another space subdivision method called the Slicing 
Extent Technique (SET) was developed in [8J. Inde­
pendently, a similar technique appeared for a different 
application in [11)1 . 

1 In [11], the scene consists of boxes or rectangular par­
allelepipeds, which may not be the case in SET. 
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The SET method uses 3 sets of 2-D projection planes 
or slices instead of volumes to "surround" the object. 

These slices are perpendicular to either the x, y, or z 
axis . The intersection of slices create two-dimensional 
rectangular areas or cells on every slice . Each object 
in the scene is associated with at least 6 cells . Slices 
are tested (for ra.y-object intersection) in sorted order 
along the path of the ray. No tree traversal is necessary 
because there are no trees . 

The SET method works well when a scene has a "rea­
sonable" (not very large) number of objects that are 
not in "close" proximity to each other . A large number 
of objects may require a proportional number of slices 
- creating an unmanageable data structure. However, 
if objects are in close proximity to each other, then 
many objects can be assigned to a single cell . In this 
situation, image generation times are higher. 

The MSET Method 

To alleviate the drawbacks of SET, the Modified Slic­
ing Extent Technique (MSET) was d('veloped [7]. In­
stea.d of placing a possibly large number of slices pro­
portional to the number of objects in the scene, a pre­
defined number of slices are used along each axis. This 
has two advantages . First, a limit on the number of 
slices provides for a predictable and manageable data 
structure. Secondly, by spacing the slices evenly along 
each axis, slice traversal can be done easily by sim­
ply adding an incremental slice constant (resembling 
traversal in the Grid Method) . 

Preprocessing in MSET 

A bounding-box is computed for each object. Slice 
cells that surround this bounding-box are "marked" 
as containing the projection of the object onto their 
slice . Each slice cell has two sides - all "up" side and 
a "down" side . Objects projected ontn a slice are as­
signed to one of these sides of the cell . 

If a ray traveling in the" up" direction would intersect 
the marked slice before intersecting th(' actual object, 
the object. is assigned to the" up" side of the slice cell. 
"Down" cells are marked in a similar fashion. The ob­
ject's address is added to the object-pointer-list for the 
appropriate side. 

Unlike the Grid method, no duplicate ray-object inter­
sections are performed because an object can only be 
a.ssigned to the 6 slices surrounding the bounding-box. 
The" up" and" down" marking scheme ensures that an 
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object is checked a maximum of one time for int!'rsec­
tion with a specific ray. Thi3 property i3 unique to both 
MSET and ASET. 

A grid-volume data structure is also ma.intained. Grid­
volumes or voxels are the parallelepipeds created by 
slices. This grid-volume data structure allows seconds.ry 
rays to check for a possible intersections that might 
occur within the voxel (containing the present position 
of the ray) before any object assigned to a slice-cell is 
checked for nearest intersection. 

Logan's modifications to the SET technique produced 
a . five-fold optimization over the SET implementation 
method [7) . 

Motivation 

When no space subdivision technique is used, it has 
been shown that ray-object intersection calculations 
take up to 95% of the image generation time [4) . The 
oct- tree , grid , ARTS, EXCELL and SET / MSET tech­
niques were designed to alleviate much of the ray-object 
intersection processing. However, a sizable amount of 
intersection checks are still performed . Rays must be 
checked for intersection with each object assigned to 
the subdivided space - with no intersection guaranteed. 

Increasing the number of space subdivisions often re­
duces the number of required ray-object intersections -
at the expense of space subdivision traversal overhead 
and memory. While the traversal overhead is often 
more than offset by the processing time saved by fewer 
ray-object intersections, memory is oft en the limiting 
factor . 

We consider MSET (or any other via hie alternative) 
to be highly efficient for the production of "final" ray 
traced images. Still, image generation time is high . 
Our goal is to produce quicker draft images2

• The 
draft images are close in appearance , but are not exact 
duplicates (See Figures 3-8) . 

To this end, we propose an augmentation to the MSET 
called the" Approximate Slicing Extent Technique" 
(ASET). This implementation includes a technique to 
preprocess a scene volume and assign a single color 
value to each slice cell (only if it had been assigned at 

least one object) . These color values are to be used in 
lieu of color values returned from ray-object intersec­
tion processing. We also allow the specification of a 
recursion level. This is the level where ASET process­
ing take control from regular MSET ra.y t.racing. Rays 

21mage generation time may also b e reduced by using 
more than one processors. A lower resolution image can 
also be traced for quicker draft images . 
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which intersect the cells could either be terminated or 
recursively propagated . 

Our primary objective is to completely eliminate ray­
object intersection processing while ASET is in effect . 
We only perform a single ray-cell intersection to ascer­
tain cell color . ASET would be used to draft initial 
and intermediate images. MSET could then be used 
for final image generation . 

Implementation 

To implement ASET, the MSET package of James Lo­
gan [7) and the Ray Tracing package of Jim Duke is 
used . The current configuration of this software runs 
on an HP9000 graphics workstation . 

Three different optionsJ were designed to assign a sin­
gle color value to each slice cell [2) . The option we have 
implemented is: 

l. Modify the SET data structure to contain a tex­
ture field for both the " up" and " down" sides 
of the slice cell . The texture field is a. structure 
that contains all the parameters used to define 
the attributes of an object including its color, 
transmittance, and reflectivity. 

2. Use the expanded bounding-box around each ob­
ject to compute or update the texture of every 
slice cell. The smallest bounding-box around an 
object is expanded so that box-walls are in fact 
the slices . Each cell that is ma.rked (because of 
the projection of the expa.nded hounding-box) 
will have its corresponding texture updated to 
reflect the existence of the object . Each object 
that is contained in a cell will have an equal ef­
fect on the color of the slice. In other words, 
the textures of all the objects (whose expanded 
bounding-box projects onto a cell) are averaged . 

Figures 1 and 2 show the pseudo-code for ASET im­
plemen tation . 

Results 

The ASET package was tested and compared against 
MSET - producing some very interesting and faster 

3 A detailed comparison of the three options appears in 
[2J . 
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Following is the pseudo-code for AS ET Preprocessing: 

Procedure AS ET _Preprocessing 

Begin 
- Slice the scene volume along the x, y, and z axis 
- Initialize the cells on each slice. 
- For each cell ' on a slice: 

- set value of object counters to zero 
- assign null object pointer lists 
- assign null material to texture pointers 

- end for . 
- For all objects (polygons and spheres): 

- Compute 3D bounding-box around object 
- Project bounding-box ont0 6 nearest outer slices 
(2 slices per axis) 

-end for . 
- For each slice cell that object is projected onto, 
"mark" the slice cell by: 

- Incrementing the slice cell object counter 
- Assigning the object to the slice cell pointer list 
- if aset is invoked: 

- compute temporary texture by averaging 
object material t extur e with slice cell texture 
- search existing texture list for texture match 
- if texture match is found return texture address 
else 

add texture to texture list and return new address 
- assign returned texture address to cell texture pointer 

- end for. 

End AS ET _Preprocessing 

Figure 1: ASET Preprocessing. 

results . MSET was used for primary 4 rays and asso­
ciated shadow- rays6 . For some image renderings, this 
can account for more than 60% of the rays produced. 

The 813 object SNOW scenes (Figures 3-6) were used 
for the majority of ASET tests. Two other scenes, 
TETRA (Figure 7) and GEARS (Figure 8), are from 
Eric Haines's Standard Procedural Databases [5] . 

Analysis 

Detailed analysis of the above data produced some sur­
prising results. Prior to this research, we believed that 
ray-object intersection processing was still taking an 

4 Primary rays are the rays starting from the view-point. 
All other ravs are secondarv rays . 

6 Shadow' rays are genera'ted from point <o f intersection to 
the light source. 

overwhelming percenta.ge of the ima.ge processing time. 
Indeed, it does take some time to process ra.y-object 
intersections and that is the whole idea behind the 
implementation of area subdivision techniques. When 
sufficiently fine subdivision is used, the area subdivi­
sion techniques (e .g., MSET, ARTS , etc.) usually have 
close t o optimal cell density of one object per non­
empty cell. For example, when 100 grid slices are used 
on the SNOW scene, the average number of objects 
assigned to non-empty cells is 1.3 (see Table 2) . 

The following results gathered from numerous ASET 
and MSET runs confirm our belief of near-optimality 
for the scene containing polygonal objects. These are : 

1. On the HP9000, a ray-polygon intersection aver­
ages approximately .00032 seconds of processing 
time. 
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Following is the pseudo-code for ASET ray tracing: 

Proced ure A S ET _Ray _0 bject _In tersection _Processing 

Begin 

- For each ray 
- If ray base point is internal to scene volume and 
it is a first level ray 

- Check grid-volume against object list for 
possible ray-object intersection 

- If intersection is found , return results of 
ray-object intersection (for possibly generating 
lower level reflected and / or transmitted ray) 

- end for. 
- While ray propagation is internal to scene volume: 

- Find next intersected slice cell 
- If any objects assigned to cell: 

-end while. 

- If MSET 
- Check all o b.i ects assigned to cell 
for possible int ersection with ray 
- If intersection occurs before next 
slice intersection, return results of 
ray-object intersection (for possibly 
generating lower level reflected 
and/or transmitted ray) 

- else if ASET: 
- compute ra y-cell intersection 
- return result.s of ra.y-cell 
intersection (for possibly generating 
lower level reflected and/or transmitted ray) 

End ASET _Ray -ObjecLlntersection_Processing 

Figure 2: Ray Object Intersection Processing. 

2. The other overhead associated ",i th a sinp:ie ray 
(not including ray-object intersect ion times) av­
erages approximately .0088 seconds . 

3. Consequently, the overhead of ini t ialization , re­
cursion , slice traversal, etc. for a single ray takes 
about 22 to 30 times more processing time than 
does a single ray-polygon intersection. 

Why Use ASET? 

ASET outperforms MSET by a bigger margin when 
the number of slices or the grid size6 is reduced . This 
is because the cell density (objects per cell) increases 
with the reduction of the grid size (See Tables 1 and 2) . 

6number of divisions along x, y and z axes. 

Why not use a large number of slices and get a. more 
accurate picture in less time? The answer lies in the 
use of memory. If memory is at a premium, ASET may 
be the better way to go . It simply outperforms MSET 
when a small number of slices are used. 

Another reason for using ASET is the strange and in­
teresting special effects that are created because of the 
approximation (See Figure 6). ASET processing often 
prod uces interesting images and artifacts 7 that cannot 
be produced normally. Since a portion of computer 
graphics, and ray tracing in particular , is the produc­
tion of images purely for visualization 's sake, ASET 
provides this capability. 

7These artifacts can be controlled by delaying the use of 
ASET during ray tracing (See Figures 3,4,6). 
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11 Scene If Rendering time I No of Rays I Rays per sec 

11 If MSET ASET H MSET ASET 11 MSET ASET -n 
Snow 100 7943.9 s 8644.6 s 667,239 841 ,883 78 121 
Snow 50 11540.0 s 11330.6 s 667 ,239 851,461 47 114 
Snow 30 22434.6 s 17939.3 s 667 ,239 780,719 21 137 
Teapot 15 3976 .0 s 3089 .9 s 353 ,480 402,145 55 138 
Tetra 10 16791.8 s 12182.6 s 1,049,047 1,668,085 57 148 
Gears 15 3475.4 s 3102.9 5 320,312 327,640 56 92 
Gears 10952.4 s 5543.6 s 697 ,660 643,389 57 148 

Table 1: Rendering times for different images. 

Scene Cell density Avg. non-empty Attempted intersections 
objs/cell cells visited per ray in non-empty cells 

MSET ASET MSET ASET 

Snow 100 1.3 18 1 21 1 
Snow 50 2.1 32 1 64 1 
Snow 30 3.9 43 1 162 1 
Teapot 15 4.6 R 1 36 1 
Tetra 10 11.4 5 1 61 1 
Gears 15 6.8 3 1 18 1 
Gears 6.8 :U; I 25 1 

Table 2: Cell density and attempted intersections. 

In Table I , we have shown some of our results for 
MSET and ASET implementa.tion. Frequently there 
are more rays being traced in ASET . For all scenes , 
ASET traces m ore rays per second than MSET. 

In MSET, on the average more number of ray-polygon 
intersections are performed and more non-empty cells 
a.re traveled before the nearest point of intersection is 
found (Table 2) . 

In Table 3, the hit ratio , total intersections attempted 
and memory usage for MSET and ASET is given . The 
ASET implementation uses only 20-30 percent more 
memory than MSET. Hit ratio is higher in ASET than 
MSET for any grid size . The tota.! number of inter­
sections attempted with the objects in the non-empty 
cells are lower in ASET than the MSET , contributing 
towards better hit ratio . 

In Table 4, number of primary and secondary rays are 
given. In ASET number of secondar.v rays are twice 
that of MSET. We noticed that some ravs are trapped 
inside the boxes and do not contribute significantly to 
the overall intensity of the pixel; but still genera.tes 

several reflected ra.ys . To decrea.se the number of rays 
in ASET, these rays were curtailed

R
. 

In conclusion , our ('xperiments show t.hat any combi­
nation of the following would allow for fast er ASET 
rendering times than MSET: 

1. More complex scene (more objects) are rendered. 

2. Grid size is reduced . 

3. More rays are to be generated as the maximum 
height of the ray tracing tree is increased . 

Future Directions 

We must also focus on decreasing the overhead asso­
ciated with the tracing of a ray and its children . In 
today's space subdivision techniques f':>I ray tracing, 
this appears to be the area that takes up the majority 
of the processing time. 

8The cut off criterion depends upon the distance traveled 
by the ray before it hits another cell [2]. If thj~ distance is 
m ore than certain percentage of the diagonal di,li!!lr.e of the 
yoxel cell then the ray is not pursued furth er. 
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Scene Hit Ratio Total intersection Memory 
attempted in bytes 

MSET ASET MSET ASET MSET ASET 

Snow 100 4.8% 10.7% 6,421,644 4,541,077 5,808,708 7,488,824 

Snow 50 1.9% 3.5% 19,367,605 13,241,396 906,864 1,146,980 

Snow 30 0.6% 1.2% 51,621,849 36,169,829 311,362 390,404 

Table 3: Snow Scene Analysis. 

Scene Primary MSET (Secondary) ASET (Secondary) 
Snow 100 511,547 155 ,692 330,336 
Snow 50 511,547 155,692 339,914 
Snow 30 511,547 155,692 269,172 
Tea.pot 15 244,291 109,189 157,854 
Tetra 10 245,449 803,598 1,422,636 
Gears 15 260,088 60,224 67,552 

Table 4: Total Number of Rays. 
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Figure 3: MSET (left) and ASET (right). ASET 
is used for the primary rays. 

Figure 4: MSET (left) and ASET (right) for grid 
size of 100. 

Figure 5: MC:;P1' (j,..ft) 1md ASE'f (ri~ht) , A 'WT 
used for tracillg :;had"w rays. 
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Figure 6: ASET. Strange Effects. Skull. 

Figure 7: MSET (left) and ASET (right). Tetra 
and a Moon. 

Figure 8: MSET (left) and ASET (right). Gears. 
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