
68

LEFTY: A Two-view Editor for Technical Pictures*

David Dobkin
Department of Computer Science, Princeton University, Princeton, New Jersey 08544

Eleftherios Koutsofios
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

Abstract

This paper describes LEFTY, a two-view graphics edi­
tor for pictures in various contexts. This editor has no
hardwired knowledge about specific picture layouts or
editing operations. A picture is described by a program
containing functions to draw the picture and functions
to perform editing operations appropriate to the spe­
cific picture. Primitive user actions, like mouse and key­
board events , are bound to functions in this program.
Besides the graphical view of the picture itself, the edi­
tor presents a textual view of the program that describes
the picture. Programmability and the two-view inter­
face allow the editor to handle a variety of pictures, but
are particularly useful for pictures used in technical con­
texts, e.g., graphs and trees and VLSI layouts . LEFTY
can communicate with other processes. This feature al­
lows it to use existing tools to compute specific picture
layou ts and allows external processes to use the editor
to display their data structures.

Introduction

There has been significant progress in developing high
quality editors which are driven by text, program or
mouse . The more difficult problem of developing an ed­
itor which can be driven in all these modes remains un­
solved. The complexity here involves the management of
information in different domains and the proper presen­
tation of the same information effectively in the domains .

In this paper , we describe a system which implements
a mnltiview editor. Although we developed the editor to
support the editing of technical pictures , it can also be
used in other domains. Our editor focuses on supporting
those a.spects of a picture that are mos t important in
t.he wo rld of technical pictures . Crucial among these are
accu ra.cy and st ructure.

" This work was partially supported by National Science Foun­
dation G rants D C R85-05517, CCR87-00917, and CCR90-02352,
and by a Von Neumann Fellowship in Supercomputing

Figures 1 a and 1 b show technical pictures. The fractal
in Figure la is derived from a short program which needs
to be able to receive input from the user and then gener­
ate such an image recursively. The binary tree in Figure
1 b conveys information by the locations of its nod"es. In
each case, the accurate representation of structure makes
the picture meaningful.

A

(a) (b)

Figure 1: Two technical pictures

In Figure 1 b, node N must lie to the left of J and D, E,
F, and G must lie on the same horizontal line. Similarly,
B should be positioned midway between its two child
nodes. This is necessary to convey the structure of the
tree.

Accuracy, however, is just the end result of the more
fundamental property structure. In Figure 1 b, the hier­
archy of the tree constrains the graphical representation .
F and G are both children of C; if C is moved to the right, F
and G must also move to the right to preserve the symme­
try. Other parts of the tree also have to move. Moving
F and G in response to moving C should be done by the
editor automatically. Most existing editors, however, do
not provide this kind of functionality.

Graphics Interface '91

Existing Editors

There are numerous graphics editors in existance. Un­
fortunately, most of these editors do not maintain
enough information to specify or preserve the structure
in technical pictures. Editors like MacPaint [1] use the
screen bitmap as the only source of information about
the picture, while editors like MacDraw [2] and Figtool
[19] maintain a database of just the geometric primitives
that appear in the picture. Neither category of editors
can handle technical pictures.

The structure of technical pictures can be best de­
scribed by programs and there are editors that describe
pictures as such. Editors like Sketchpad [20] and Juno
[14] describe pictures using a constraint-based model. A
picture consists of a set of geometric primitives and a
set of constraints between parameters of these primi­
t.ives. For example, the picture of an equilateral trian­
gle consists of a three-piece closed polygonal line and
the constraint that all three line segments must have
t.he same size . The appeal of constraint-based editors
is that users describe a picture as a set of properties­
constraints. The calculation of the actual layout and
how that changes as the user edits the picture is done
by the edi tor.

Constraint-based systems, however, have several dis­
advantages. They can surprise ullers. Adding a con­
straint to a picture can change the picture radically.
Many constraint solvers use standard numerical meth­
ods to compute the solution. Such methods run quickly
on simple pictures bu t they make no attempt to find the
solution that is visually closest to the previous solution .
Solving a system of constraints can be computation ally
expensive on a complex picture . To maintain good re­
sponse, most editors allow only simple constraints for
which efficient solving techniques are known . Unfortu­
nately, such constraints are often inadequate for spec­
ifying interesting layouts. Finally, constraints cannot
adequately specify some pictures. Drawing a directed
graph, for example, is a computationally difficult task.
The programs that attempt to build layouts for graphs
use concepts that cannot be expressed as simple alge­
braic constraints.

Some systems describe a picture as a program in a
procedural language. Essentially, any general-purpose
language can be used; all that is needed is a library
of graphics functions. The problem with such systems,
however, is that editing a picture is equivalent to editing
or generating a program . Mapping editing operations to
changes in a program is not always possible. In fact ,
most procedural-based systems are not interactive. Ex­
amples of such systems are PlC [11] and PostScript [10].

An interesting issue is how many different views the
editor presents to the user. Most graphics editors present
a single view. Just one view, however, is not enough for
a technical picture; there is too much information to dis­
play, and too many ways to operate on a picture to ac­
commodate in a single view. Different views can present

69

different abstractions of the underlying structure of the
technical picture. One approach, appropriate for editors
in which the picture is described as a program, is to
provide two views: the WYSIWYG view of the picture
itself and the textual view of the program that describes
the picture. Tweedle [3] takes this approach. One view
displays the picture itself, while the other displays the
LISP-like program that describes the picture.

Most existing systems have a fixed user interface. Ev­
ery user action, e.g., pressing or releasing a mouse but­
ton, is statically bound to a specific operation. An ad­
vantage of this approach is that the user interface is con­
sistent; an action has the same or similar results in all
contexts. Some systems provide a programmable user
interface, which allows users to customize the system's
behavior. Complex operations that the user does fre­
quently can be programmed and subsequently invoked
like built-ins.

For an editor for technical pictures , having a pro­
grammable user interface is essential, since there is a
large variety of technical pictures and operations that
are meaningful for one type of technical pictures have
no meaning for others. For example, for the tree shown
in Figure 1 b, two meaningful operations are to insert
and delete nodes. These operations, however, have no
meaning for fractals. For the fractal in Figure la, mean­
ingful operations would be to scale and rotate the fractal,
change the subdivision threshold or change the subdivi­
sion rule. Emacs [1 7], a widely used text editor, is an
example of a program-based user interface. Emacs users
can write programs in a LISP-based language that ma­
nipulate the text being edited. These programs can be
bound to keyboard keys or mouse buttons.

The Editor

To better demonstrate the operational aspects of the
editor we present an example. Figure 2 shows a delaunay
triangulation diagram [9] . The property of a delaunay
triangulation is that for any triangle, the circle passing
through its three vertices (sites) does not contain any
other sites.

LEFTY provides two views, a WYSIWYG, and a pro­
gram view. Figure 2a shows the WYSIWYG view of
the picture and Figure 2b shows the corresponding pro­
gram view. The program view consists of a set of data
structures and a set of functions. sites and lines are
arraySj sites holds all the sites currently in the picture
while lines holds all the lines between sites. sitesnurn
contains the number of sites in the picture. insert ,
move, and delete implement the insertion, moving, and
deletion of sites from the picture. delaunay is a func­
tion that implements the delaunay triangulation algo­
rithm. It must be run whenever an editing operation
occurs. insline and delline are called by delaunay
and are used to maintain both the data structures and
the screen. delaunay can be implemented as a function

Graphics Interface '91

sitesnum = 5;
sites = [. ..];
lines = [. ..];

(a) WYSIWYG view

insert = function (...) { ... };
move = function (...) { ... };
delete = function (...) { ... };
delaunay = function (...) { ... };
insline = function (. . .) { ... };
delline = function (...) { ... };
leftdown = function (...) { ... };
leftup = function (...) { ... };

(b) program view

Figure 2: A delaunay triangulation diagram

in our language or it can open a communication channel
to an existing C program.

By default LEFTY displays both data structures and
functions in abstracted form . When the user clicks on
one of these entries, LEFTY expands the entry to show
the contents. For example, clicking over the sites entry
will expand it to :

sites = [

0 ['x' 26; 'y' 26;] ;
1 [' x ' 370; 'y' 26;] ;
2 ['x' 370; 'y' 480;] ;
3 ['x' 26; 'y' 480;] ;
4 ['x' 300; 'y' 310;] ;

] ;

Clicking over insert expands it to:

insert = function (x, y) {
sites[sitesnum] = ['x'
sitesnum = sitesnum + 1;
delaunay 0;

x; 'y'

box (sites[sitesnum - 1], [

};

o = ['x' = x - 5; 'y'
1 = ['x' = x + 5; 'y'
], 1);

y] ;

y - 5;];
y + 5;];

The user can invoke any function by typing expres-

70

sions in LEFTY's language. For example, to insert a
new site the user can type

insert (['x' = 150; 'y' = 110;J);

or the user can click the left mouse bu tton at location
(150, 110) in the WYSIWYG view to achieve the same
effect.

The execution of either of these actions produces the
updated WYSIWYG and program views shown in Fig­
ure 3. The functions leftup and leftdown are supported
by primitives in the language to define actions to be
taken when the user presses or releases the left mouse
button . Figure 4 shows how the picture changes when
the user moves site 5 to a new location via the command

move (5, ['x' = 110; 'y' = 310;]);

or appropriate mouse actions .

sitesnum = 6;
sites ~ [

5 ['x' 150; 'y'
] ;

110;] ;

Figure 3: Delaunay triangulation with site added

Being able to insert or move sites using the mouse and
get immediate feedback of how such actions affect the
picture is convenient. The WYSIWYG view, however ,
is mostly useful for small, local changes to a picture .
Global- algorithmic-changes are easier specified using
a textual interface. For example, the user might decide
to color sites on the convex hull using a different color .
This can be done easily by writing a function in the
textual view of the program that describes the picture .
The user operates on the WYSIWYG view through a set
offunctions , like leftdown and leftup mentioned above .
The textual view can be used to inspect the program
state and to change that state by typing expressions in
the editor's langu age.

A programmable editor can be used for more than
just preparing pictures for printing. For example, th e
reason the user wants to display a delaunay triangula-

Graphics Interface '91

sitesnum = 6;
sites = [

5 ['x'
J;

110; 'y' 310;J;

Figure 4: Delaunay triangulation with site moved

t.ion might b e t o inspect if his triangulation algorithm
is correct. In this case the editor is used as a visual de­
bugger. A graphics editor could be used as a front-end
for any program t ha t needs to display some d at a graphi­
cally. Rath er th an forci ng each program to include code
for handling t he layout of its d ata stru ctures, the edi­
t.or could act as a server th at other programs connect to
and download their d a ta structures. The editor would
t.hen di spl ay th ese da t a s tru ctures graphically. Ch anges
in the way data are displayed could be done at the editor
level ; the code for the use r program need no t be changed .
LEFTY can work as a server. It can es tablish two-way
communication with other p rograms, accept da ta from
these programs and- if desired-send inform ation back
to them . LEFTY can also work as a client. T here are
tools for displ aying t rees [21), DAGs [7), delaunay tri­
angulations [9), and VLSI layouts [22). T hese tools are
usu ally large software packages, and d uplicating th eir
function ality in the editor would be a m ajor undertak­
ing. Inst ead, LE FTY communicates with these tools as
separa te processes . Wh eneve r some aspect of a layout
needs to be upda t.ed, the editor sends a message asking
[or instru c tions on how to perform t he update to the
appropri a te process.

The Language

Since LEFTY was meant to be interac tive, the language
was designed to allow for fast parsing and execution.
There are several existing languages th a t could have
been used . The langu age we implemented was inspired
by EZ [6).

Th e language supports scalars and tables. A scalar is
a number or a cha racter string of arbitrary length . A
table is a one-dimensional arr ay indexed by numbers or
s t.rin gs. For exam ple, sites in F igure '2b is a t able in-

71

dexed by numbers, each number corresponding to the id
of a site. Each element in the table contains the coordi­
nates of the site.

The smallest program unit is the expression. User
actions ClIl the WYSIWYG view result in the execution
of expressions. User-typed text in the program view is a
sequence of expressions. Each user action results in the
immediate evaluation of an expression. For example, if
the user enters num = sqrt (4); in the program view,
sqrt is called a~d its return value, 2, is assigned to num.
Once executed, the input is discarded; the only change
in the program's state is that it now contains num. To
specify code that is meant to be executed later , the user
must define a function, e.g. ,

afunction = function (n) {
num = sqrt (n);

};

"Executing" a function declaration adds the name of the
function to the global name table. Calling afunction
assigns a value to num, e .g ., afunction (4); assigns 2

to num.

The Program View

The program view is a t extual representation of the pic­
ture sta te. The textual representation can be long, so
the editor presents an abbreviated view by default, as
seen in Figure 2b . The values of scalar objects are dis­
played in full , since they can fit in a single line. Tables
and functions are displayed using an abstract represen­
tation , which simply indicates whether the value is a
function or a table.

Unlike in the WYSIWYG view, where changes are
controlled by the program that describes the picture,
the user can do anything in the program view, including
getting th e program into an inconsistent state. All the
functions and tables can be made visible and can be
edited . This flexibility is necessary, since a conceptual
change to the program or the data usually requires a
sequence of modifications to the text of the program.
Although the sequence of modifications leaves the editor
in a consistent state, individual modifications can put
the editor in an inconsistent state temporarily.

The WYSIWYG View

The WYSIWYG view is the graphical representation of
the picture. The program that describes a picture con­
trols the WYSIWYG view; all the objects are drawn by
the program, and all user actions are handled by the
program.

Drawing is handled by a set of built-in functions .
The supported graphical primitives are lines, polygons,
splinegons, elliptic arcs , and text .

When an event occurs, for example , a mouse button
is pressed or released , the editor first checks if the mouse

Graphics Interface '91

coordinates are inside an object at the time of the event.
If so , the editor searches that object, which is assumed
to be a table, for the name of a function corresponding
to the event. The possibilities are :

leftdown
leftup

middledown
middleup

rightdOlm
rightup

keydown
keyup

which have the obvious meaning. If the appropriate
function is found, it is called with the selected object
as argument. If a function is not found in the selected
object, the editor searches the global name table for that
function. If no object is selected, the editor searches only
the global name table, and calls the function with null,
i.e. , the nil table, as argument. There is no restriction on
what these functions do. The programmer must define
t.hem as appropriate for the current picture.

Determining the selected object at a button press or
release has two phases . The editor determines if the
mouse coordinates select a graphical primitive. Closed
shapes , for example, closed polygons and ellipses, are
selected if the mouse coordinates lie inside the shape.
Other shapes are selected if the mouse coordinates are
close to the shape's ou tline. If such a primitive can be
found , the editor finds the table associated with it .

Finding the table that corresponds to the selected
primitive is slightly more complex. This mapping can­
not be done automatically by the editor. Instead, the
table to be associated with a graphical primitive must be
passed to the function that draws the primitive. Graph­
ics functions take as their first argument the table to
associate with the primitive they draw. The table as­
sociated with a primitive can be null , which effectively
makes the primitive unselectable.

Inter-process COlnmunication

Programs can connect to LEFTY and use it to display
t heir data structures graphically. LEFTY can also con­
nect to other tools and use them as layout servers. The
design of the IPC mechanism provides a protocol that is
convenient for both sides.

Inform ation is sent to the editor as programs in the
editor's language; messages are treated exactly as user­
typed input . The technique of communicating by send­
ing programs has been used in several other systems,
most notably in window systems [15 , 18]. Information
is sent to external processes as events. In the case of
the DAG layout process mentioned above, these events
would describe the insertion or deletion of nodes and
edges, which is what that layout process is designed to
handle. Messages have no predefined format; they are a
sequence of strings and numbers . ,

LEFTY can connect to another process using the
attach built-in . Communication with a connected pro­
ce~s is handled by two built-ins , send and receive . For
example, the insert function in the delaunay example

72

can be modified to let the triangulation computation be
performed in a separate process:

insert = function (x,
sites[sitesnum] . x
sites[sitesnum].y

y) {

x' ,
y;

} ;

send (dserv, 'new', sitesnum, x, y);
sitesnum = sitesnum + 1;
receive (dserv);
box (sites[sitesnum - 1], [

o = ['x' x - 5; 'y'
1 "" ['x' = x + 5; 'y'
], 1);

y - 5;];
y + 5;];

The difference between this version and the previous one
is that instead of the call to delaunay, the internal func­
tion for computing the triangulation, there are calls to
send and receive. send sends a message to the process ,
indicating that a new site was inserted at coordinates x
and y. receive waits for the process to send back a re­
sponse, which must be a program . In this example, the
response consists of a sequence of calls to two functions ,
insline, and delline .

dserv holds a unique id for the triangulation process .
The editor can communicate with a number of external
processes at a time. These processes could cooperate;
for example, a DAG layout would cooperate with a DAG
creation process. The creating process)'Vould change the
graph, and the layout process would get a message that
the graph changed and would rearrange the nodes.

Examples

This section presents three examples of picture specifi­
cation. Reference [13] contains the complete listings for
these examples.

Fractals

This is an example of a type of figure easily described
in a procedural language. Fractals are usually created
by starting from a basic figure and recursively replacing
parts of it with more complex constructs. In this exam­
ple, the basic figure is the equilateral triangle and the
replacement rule is to replace each edge with 4 smaller
edges:

original replacement
This replacement rule is i!)1plemented in LEFTY by

specifyi~g a recursive function, fractal.

Graphics Interface '91

fractal = function (level, length, angle) {
local nlength, newpen;

if (level >= maxlevel) {

nellpen = [

'x' pen.x + length * cos (angle);
'y ' = pen.y + length * sin (angle);

] ;
line (tblnull, pen, newpen, 1) ;
pen = newpen;
return;

}

nlength = length / 3;
fractal (level + 1, n]..ength, angle);
fractal (level + 1, nlength, angle + 60);
fractal (level + 1, nlength, angle - 60);

fractal (level + 1, nlength, angle);
};

Recursion is controlled by level. If level exceeds
maxlevel , fractal returns, otherwise it makes the four
recursive calls to itself. The fractal in Figure la was
drawn with maxlevel set to 4 , while the one in Figure 5
was drawn with maxlevel set to 3. The picture is drawn
using the concept of the pen. Drawing is done relative to
pen, which holds the current pen coordinates, and pen
is updated after each line is drawn. Using the mouse,
the user can rotate and scale the fractal . This is done
by invoking a function that changes the initial length
and angle variables.

Figure 5: A fractal

Trees

The program in this example draws trees of arbi­
trary degree. The layout algorithm assigns distinct x­
coordinates to each leaf node, and positions each inter­
mediate node midway between its leftmost and right­
most subtrees. The whole tree is redrawn every time
something changes. Because of the layout style used ,
most changes to the tree result in major changes to

73

the layout- on the average, half the nodes move-so in­
cremental updating techniques do not improve perfor­
mance. Figures 6 and 7 show two search trees; their
structure was copied from Figures 17.5 and 14.11 in Ref­
erence [16] .

Figure 6: A radix search tree

Figure 7: A large binary search tree

DAGs

The program in this example uses DAG [7] to maintain
the layout of a dag. In the previous example, source
code for the external processes was available and could
be changed, if necessary. The code for DAG, however ,
is unavailable. All we know about it are specifications
for input and output . DAG is also designed to be used
in batch mode; it reads an input file and generates the
layout as output. Using DAG through LEFTY makes
DAG appear interactive. The user can insert new nodes
and add edges between existing nodes and the layout is
updated after each change.

The program contains entry points to draw nodes as
either boxes or circles, and to draw edges as either lines
or splines . The coordinates of those lines and splines are

Graphics Interface '91

set by the DAG process itself. Figure 8 shows a sample
DAG.

bnplementation

LEFTY is written in ANSI C [12] and runs under UNIX
on VAXes, SUNs, and IRISes.

Figure 8 shows the editor's modules. GCMA , LEX, PARSE,
and EXEC implement the programming aspects of the edi­
tor: GCMA handles memory management, which includes
garbage collection, TBL implements scalars and tables,
and LEX , PARSE and EXEC scan, parse, and execute pro­
grams, respectively. Implementation of these modules is
similar to that of other very high-level languages, e.g.,
Icon [8] . TXTV and GFXV handle the editing aspects of
the editor, and IPC handles the inter-process commu­
nication. IPC implements inter-process communication
using UNIX sockets.

Figure 8: Editor modules

The editor's graphical operations are implemented
using Cheyenne, which is a local graphics library [4] .
Cheyenne is device independent and allows access to
multiple graphics devices over the network.

Conclusions

A unique feature of LEFTY is the use of a single lan­
guage to describe all aspects of picture handling. Editing

74

operations and layout algorithms are not hardwired in
the editor; they are part of the picture specification. Un­
like the language in Tweedle [3], which was designed with
performance in mind , the language in our system was
designed to facilitate the description of pictures. This
allows the editor to handle a variety of pictures and still
provide, for each type of picture, functionality compara­
ble to that of dedicated tools.

Providing two views, each Qf which presents informa­
tion at a different level of abstraction, gives users more
flexibility in editing a picture . Some changes are eas­
ier to describe in one view than in another. Also, users
have preferences; some prefer describing operations with
programs, while others prefer using the mouse.

The editor's ability to communicate with external pro­
cesses allows it to make use of existing tools whose func­
tionality would be difficult to duplicate. This extensi­
bility also makes it possible to edit pictures for which
the editor's procedural description is not desirable. For
example, a constraint-based editing environment can be
implemented as an external process. Such a process can
display both the picture and the constraints and allow
the user to edit both. This arrangement simplifies the
implementation of a constraint-based system because
the editor already provides support for the user inter­
face, and allows the constraint solver to be written in
any language.

Experience

Based on initial use, LEFTY helps design pictures. All
the programs discussed in this paper took little time to
develop , they are fairly short and they handle pictures
that are usually difficult to manipulate using existing
systems. None of the programs in Reference [13] have
any user-interface code. Such issues, including parsing
events, reading mouse coordinates, and detecting selec­
tion, which usually take many lines of code to handle,
are handled by the editor. User programs deal only with
drawing and changing the picture.

The program implementing delaunay triangulations
was written independently of the editor and is a stan­
dalone program. It was converted to use the editor in a
day by replacing code that implemented its I/O facilities
with shorter code that exchanges messages with the ed­
itor. The triangulation program was reduced from 700
to 500 lines, even though some extra functionality was
added. A programmer implementing delaunay triangu­
lation using the editor as a front end need worry only
about how to implement the algorithm itself, not about
user interface and drawing. All we knew about the DAG
process was its I/O interface described in its manual.

Most of the implementation decisions kept the im­
plementation simple at the expense of performance .
Some decisions were, however, made with performance
in mind. The language, for example, is designed so that
programs can be parsed and executed interactively, and

Graphics Interface '91

the program view is maintained incrementally. The over­
all result of these decisions is that, although the per­
formance of the editor can be improved, the editor is
responsive enough to be used interactively.

Future Work

There are several enhancements that would allow the
editor to be used in other contexts. The current lan­
guage is mostly a subset of EZ and omits EZ's persistent
a.ddress space, extensive string functions, and processes
[6]. It might be worthwhile considering how to add-and
use-such features in the editor. For example, processes
would be useful for handling three-dimensional pictures.
It is generally difficult to understand the topology of a
3D picture unless the picture moves. This could be ac­
complished by creating a process that continuously spins
the picture. This could allow LEFTY to interact with
3D viewers [5].

The editor could be integrated with a textual debugger
to create a visual debugger. In this scheme, the debugger
would stop a process, read its data structures and pass
them to the editor for graphical display. This facility
could be implemented without having to add any code
to the process being debugged. The debugger would
determine whether a specific data structure is a list, a
tree, or a general graph and use the appropriate library
to display it. The user could make changes to the values
of fields-through one of the editor's views-and these
changes would be translated into debugger operations to
change the process's data structures.

The editor could also be used for algorithm animation.
Animating an algorithm is similar to debugging it; in
both cases, what is displayed is the intermediate state of
the data structu res. Most of the differences relate to how
the system is used. For debugging, users make arbitrary
changes to the input to see how changes affect the out­
put. The picture layout does not need to be optimum, as
long as it shows the appropriate information. For anima­
tion, we want to take advantage of the graphical repre­
sentation of the data structures of some algorithm-and
how these change as the algorithm executes-to better
understand how the algorithm works. The layout of the
picture-and how it changes-must be designed care­
fully to convey as much information as possible.

The editor could be changed to support more than
two views. For example, a process implementing a
constraint-based environment could use three views: the
two current views and a view that displays constraints
and allows the user to edit them. In fact, the specifica­
tion of a view could become part of the program.

References

[1] Apple Computer Inc., 20525 Mariani Ave, Cuper­
tino, CA 95014.

MacPaint , 1983 .

75

[2] Apple Computer Inc., 20525 Mariani Ave, Cuper­
tino, CA 95014.

MacDraw, 1984.

[3] P. J . Asente.
Editing Graphical Objects Using Procedural Repre­

sentations.
PhD thesis, Stanford University, 1987.

[4] D. Dobkin and E. E . Koutsofios.
Cheyenne-A Device-independent Graphics Li­

brary.
Princeton University, Dept. of Computer Science,

35 Olden St., Princeton, NJ 08544,1987.

[5] D. Dobkin, S. North, and N Thurston .
A viewer for mathematical structures and surfaces

in 3d.
Computer G,·aphics, 24(2):141-142, 1990.

[6] C. W. Fraser and D . R. Hanson.
High-level language facilities for low-level services .
In 12th ACM Symp. on Prin . of Programming Lan­

guages, pages 217-224, 1985.

[7] E . R. Gansner, S. C. North, and K. P. Vo.
DAG- A program that draws directed graphs.
Software-Practice and Experience, 18(11):1047-

1062, 1988.

[8] R. E. Griswold and M. T . Griswold.
The Implementation of the Icon Programming Lan­

guage.
Prince ton University Press, Princeton , N J , 1986.

[9] L. Guibas and J. Stolfi.
Primitives for the manipulation of general subdivi­

sions and the computation of voronoi diagrams.
ACM T,·ansa ctio ns on Graphics, 4(2):74-123, April

1985.

[10] Adobe Systems Inc .
PostScript Language.
Addison-Wesley, 1988.

[11] B. W. Kernighan.
PIC-A Graphical Language for Typesetting: Re­

vised User Manual.
AT&T Bell Laboratories, 1984.

[12] B . W. Kernighan and D. M. Ritchie.
The C Programming Language.
Prentice Hall, 2nd edition, 1988.

[13] E. Koutsofios.
LEFTY: A Two-view Editor for Technical Pictures.
PhD thesis, Princeton University, 1990.

[14] G. Nelson.
Juno, a constraint-based graphics system.
In SIGGRAPH '85, pages 235-243, 1985.

[15] R. Pike, B. Locanthi, and J . Reiser.
Handware/software trade-offs for bitmap graphics

on the blit.

Graphics Interface '91

Software-Practice and Experience, 15(2):131- 151 ,
1985.

(16) R. Sedgewick.
Algorithms.
Addison- Wesley, 2nd edition, 1988.

(17) Richard StalIman.
GNU Emacs Manual.
Free Software Foundation .

(18) SUN Microsystems Inc ., 2550 Garcia Ave., Moun­
tain View, CA 94043.

NeWS Manual, 1988 .

(19) S. Sutanthavibul .
Figtool.
University of Texas at Austin .

[20) I. E. Sutherland.

Sketchpad - A Man-Machine Graphical Commu­
nication System.

PhD thesis, Massachusetts Institu te of Technology,
1963.

(21) R. Tamassia, G. di Battista, and C. Batini .
Automatic graph drawing and readability of dia­

grams.

IEEE Transactions on Systems, Man, and Cyber­
netics, 18(1) :61- 79, JanuarY/February 1988.

(22) University of California at Berkeley.
Magic , 1985.

76

Graphics Interface '91

