
77

Design Issues for Line-Driven Text Editing / Annotation Systems

Gary Hardock
Computer Systems Research Institute

University of Toronto
Toronto, Ontario
Canada MSS 1A4

gary@dgp.toronto.edu

Abstract

Recent research on interfaces driven by line-markings
indicates that there are many potential benefits and
applications of such interfaces. Benefits include the
exploitation of users' handwriting skills and their skills
in understanding handwritten marks. There are systems
that have exploited one or the other of these benefits but
not both. One application which would take advantage of
both of these benefits is asynchronous collaborative text
editing. In such an application, line-markings could be
used for specifying commands, thereby taking advantage
of users' hand writing skills, and for creating explanatory
notes or annotations, thereby exploiting the users'
understanding of handwritten marks. But there are many
unknown and unsolved issues in designing such an
application and for line-mark driven systems in general.
This paper examines some of these issues in the context
of an asynchronous collaborative text editing system.
This system, termed MATE for Mark-up Annotator / Text
Editor, is currently being designed and implemented.

Keywords: Annotation, Gesture, Line-Drive, Line-
Marking, Mark-up, Text-Editor,
Collaborative Writing.

1. In trod uc tion

Recent research has shown that input in the form of line­
markings,l such as characters, proofreaders' marks and

1 In most of the previous literature on line-markings,
the term gesture has been used to mean a "hand-drawn
mark used to indicate a command and its arguments"
(Wolf & Morrel-Samuels, 1987). This usage is
misleading as the common definition of gesture is "an
expressive movement of part of the body" (Oxford
Paperback Dictionary, 1988). A gesture may leave a
mark, but the mark itself is not a gesture. The hand
and arm movements that created the mark could be
considered gestures. The usage in this paper is
consistent with what Buxton (1990) calls "line­
driven" as opposed to "gestural" interfaces, which
respond to the gesture itself rather than a line.

other symbols, has many potential benefits in a wide
variety of applications. These include spreadsheets,
sketchpads, the entry of mathematical formulae and
musical notation (Wolf, Rhyne & Ellozy, 1989),
educational applications such as teaching writing skills
and vocabulary (Chow & Kim, 1989), and text editing
(Welboum & Whitrow, 1988).

Wolf and Morrel-Samuels (1987) mention a number of
potential benefits of using line-markings to specify
commands:

• Line-markings can specify both a command and its
arguments, often in a single motion.

• Temporal ordering of commands and syntactic
information can be conveyed by the spatial form of the
markings.

• Line-markings allow a more direct form of direct­
manipulation than the "point and select" interfaces of
mouse-based systems. Instead of first choosing an
object and then a command, the command is specified
directly on the object.

Another benefit of line-drive systems is that the exact
placement and size of characters can be specified. For
example, say we want to enter the following equations:

It takes only about 10 seconds to write them out by hand,
but over a minute to enter these using MathType and
Microsoft Word on an Apple Macintosh. Much of this
time is spent selecting menu items, various cursor
positions and sections of text, typing on the keyboard,
and most importantly, switching between these subtasks
(see Buxton, 1990 pp. 13.S for a detailed analysis). Time
is only one aspect, the cognitive load of performing these
subtasks is the major drawback of the point-and-select
method. In contrast, the line-marking method doesn't
present this cognitive load, so the task is both simpler
and faster.

Graphics Interface '91

Line-markings are also useful for making annotations;
notes of explanation. This is readily apparent as
handwritten comments and marks are used in everyday life.
Annotations are useful in collaborative work
environments for communicating ideas amongst the
people. There are several products already on the market
and several research efforts that support collaborative
annotations or markings. Products such as Wa ng
FreeStyle allow one to mark-up a document and send it to
other interested parties. The Collaborative Annotator.
developed by Koszarek et a1. (1990). also allows one to
make annotations. but is menu-based and uses a mouse and
keyboard for input. whereas Wang FreeStyle uses a stylus
and graphics tablet. It should be pointed out that these
systems allow multi-media annotations including voice.
and that the Collaborative Annotator can also be used as a
shared interactive tool.

A useful feature of line-mark annotations on text is what
may be termed figure -ground distinction. That is. the
type-written text tends to be viewed as background. while
the line-markings stand out. This distinction is easily
noticed in typewritten documents annotated with a pen.
The benefit of this distinction is that the markings are
easily distinguished from the text.

Line-markings are particularly useful in a collaborative
environment. As mentioned above. they can be used as
annotations for communicating amongst the members.
They can also be interpreted by computer applications as
commands. In the case of a text editor. these would be
commands such as move. copy. insert and delete. The
benefits are amplified when these two uses are merged into
one system for the same markings can be used both as
editor commands and as annotations.

The reason markings are preferred over other methods of
input is that they are visible. That is. the entire command
specified by a marking can be seen by the user. For
example. one can view the history of editing operations
performed on a document by viewing the marks used to edit
it. This is not the case for typical direct manipUlation
interfaces as button clicks and keypresses are difficult to
visualize. Keyboard-based interfaces can give command
histories but are ill-suited for specifying locations. which
is an integral part of most editing operations.

The visibility characteristic of markings permits actions
or commands to be "deferred". Normally. the action
specified by a mark occurs upon completion of the
command. However. the action may be performed at any
time after the mark is made because the mark can remain
visible. It is this characteristic that allows markings to be
treated as annotations until they are chosen to be applied
as commands.

MATE (Mark-Up Annotator / Text Editor) is a first attempt
to create a system which uses markings as both commands
in text-editing and annotations in a collaborative writing
environment. There are many design issues that must be
examined to achieve this. and for many of these issues
little or no literature exists. This paper describes the
overall structure and design of MATE. examines some of

78

the design issues and solutions. and describes the current
implementation.

2. Overall Design of the Mark-Up Annotator
I Text Editor

2.1 Overview
The MATE system serves as an Annotator. a Text Editor.
and an Annotation Viewer / Selector. In immediate mode it
is a Text Editor. as markings are immediately interpreted
into editor commands and executed. In deferred mode it is
an Annotator. for command execution is deferred or
postponed and the markings stay on the document. In
view/select/edit mode. MATE allows deferred markings to
be viewed and selected for execution.

MATE is intended to support a group of people working
together on writing a document. The general scenario is
that there is a primary author who creates a document.
either with MATE in text-edit (immediate) mode. or by
using a compatible text-editor. This author then sends
this document to the collaborators. who annotate it with
changes and comments. using MATE in annotate (deferred)
mode. They send the marked-up copies back to the
primary author who can then select the annotations to
perform as editor commands. and make additional changes
with MATE in a combined view/select/edit mode.

The following is a brief description of the three modes of
MATE and their integration. Detailed design issues are
covered in the Design Issues. and Current Implementation
sections .

2.2 Annotate I Deferred Mode
In Annotate or deferred mode. MATE serves two purposes.
The first is to facilitate communication amongst users of
the system; the second is to enter text-editing commands
in a deferred mode which can later be viewed and executed.
One of the primary benefits of the MATE system is that
many of the annotations serve both purposes. For
example. if I cross out a word (as shown in figure 1). I am
communicating my intentions to any person who sees the
annotation. This annotation could also be interpreted as
an editing command. which can be executed when desired.

Some annotations can be used as both explanatory notes
and editing commands. while others are only useful as
explanatory notes. Examples of explanatory or comment
annotations are comments such as "reword". "I think you
should mention etc .• which do not correspond directly
to any editing commands. These comments need not be
recognized by the computer. as they are only intended to
be understood by a collaborator.

There is no reason to restrict explanatory annotations to
line-markings. One of the most useful methods of
explanation is speech. Therefore voice recordings will be
implemented into this system. This view is also held by
many designers of annotation systems. including Wang
FreeStyle and the Collaborative Annotator. mentioned
above.

Graphics Interface '91

79

A while ago I asked the question "Why?".

Some of you were a bit~ about the q' 'PstiQYrhere were a couple of

people who didn't reply. In case you were welideli"~ why I asked why, I

think it is a very important question. If we can come up with an answer

that will always satisfy anyone asking "why", then I think think we'll be

very close tO~derst?Ad!T9the universe.

Figure 1 - Some possible deletion marks: cross-out, "pig-tail", stroke-out, and select & delete.

_MATE

A while ago I asked the question "Why?".

I "Some of you were a bit confused about

the questionJfhere were a couple of)

t

(people who didn't reply. n case you

were wondering why I asked why, I

think it is a very important question. If

we can come up with an answer that will

always satisfy anyone asking ·why",

then I think~ we'll be very close to

understanding the universe. 11
e k,~;..

.hJeedlQSS to say my expectations wer} d
bit high. No answer came close to my

hopes, but still there were some

reasonanly good respones. There were

two main schools of thought. One adopted

a context in which the answer makes

sense, these are in the first set of

answers. The second wanted a context,

before answering the question, although

A while ago I asked the question "Why?".

Some of you were a bit confused about

the question. There were a couple of

people who didn't reply. In case you

were wondering why I asked why, I

think it is a very important question. If

we can come up with an answer that will

always satisfy anyone asking ·why·,

then I think think we'll be very close to

understanding the universe.

Needless to say my expectations were a

bit high. No answer came close to my

hopes, but still there were some

reasonanly good respones. There were

two main schools of thought. One adopted

a context in which the answer makes

sense, these are in the first set of

answers. The second wanted a context,

before answering the question, although

Figure 2 - MATE in View/Select/Edit mode

Graphics Interface '91

2 . 3 Edit / Immediate Mode

The immediate mode of MATE is different than the deferred
mode for as soon as a line-marking is completed, it is
interpreted and the corresponding editing command is
performed. Mark-up or line-driven text editors have been
investigated (Welbourn & Whitrow, 1988) and
implemented (GO 1991a & 1991b), and are not the main
focus of this paper. The design strategy for the immediate
and deferred modes of MATE is that they are consistent with
each other.

One issue that occurs due to this attempt at consistency is:
what should be done with markings that are not recognized.
This may cause problems depending upon the user's
intentions. If the user intended a comment annotation to be
included as part of the document, a major problem occurs.
The text document is dynamic, i.e. it changes during the
editing session. Determining what section of text an
annotation applies to, if any, may become a difficult if not
impossible task for both the user and the computer. This
problem exists because annotations usually correspond to
an area of a document. In an editing session, this area may
be deleted, moved, or separated into several sections.
Therefore comment annotations will not be supported in
edit mode However, comments are supported in the
view/select/edit mode of MATE, discussed in the next
section.

The above problem does not apply to voice annotations for
they can be placed at a specific location in the document as
opposed to corresponding to a section of text. However,
the first implementation of MATE will not support voice
annotations in edit mode to avoid unnecessary complexity
as voice annotations are not central to our current research.

2 . 4 View / Select / Edit Mode
This mode allows a user to view an annotated document,
select annotations to be interpreted and performed as
editing commands, and edit the document as in edit mode.
The purpose of this mode is to support an author who may
have annotated copies of a document from several
collaborators, and wishes to incorporate these annotations
along with additional changes. In order to accomplish this
properly, the document is displayed in two windows, as
shown in figure 2.

The right window IS m Edit mode, with the additional
feature that it can accept commands entered in the left
window. The left window is in a mode similar to Annotate
mode. One difference is that annotations can be selected to
be interpreted as editing commands and performed on the
document in the right window as if the command was
entered in the right window. The other difference is that
annotations from several sources may be displayed, using
colour-codes to show the annotations' source. The
integration of these two windows allows an author to
incorporate suggested changes from any of a number of
collaborators, or to ignore the suggestions and make
his/her own editing changes.

80

3. Design Issues

The design issues discussed below have been separated into
sections for presentation purposes; however it is important
to note that no individual problem or solution is in
complete isolation from the rest of the system.

3.1 Line-Marking Device
The important point about the line-marking device is that
there are many small issues which could ruin an otherwise
well-designed system. Computer applications that use line­
markings as input can be assumed to use a stylus as the
input device, in conjunction with either a tablet, flat-screen
display or a regular display with a light pen. For the tasks
of printing characters and drawing proofreaders' marks,
other input devices, such as a touch tablet or mouse are
poorly suited; touch tablets do not have the necessary
resolution due to the size of the fingertip, and mice do not
have the necessary accuracy due to limitations of the muscle
groups used in controlling them.

However, there are many different types of styluses. Some
can sense proximity, pressure and/or angle. Some have
various switches or buttons attached to them. Some have
tips that are stationary while other tips move under
pressure. There are differences in the way the stylus feels to
the user when it is held and moved across the sensing
surface. All these factors have to be considered before
choosing an appropriate input device.

Other hardware factors have to be taken into account as
well. For example, Tappert et al. (1986) found that parallax
was a major problem on a flat screen display. Parallax is
the condition in which the ink-trail does not appear to the
user to be aligned.with the stylus tip. He also noted other
important factors such as the resolution of the surface, the
sampling rate, and the agreement between the user and the
system for when the stylus is "down" (touching the surface)
and when it is "up".

It is important that a proper match is formed between the
hardware and software. Even the metaphor used is
important: the stylus might be considered a pen, pencil,
highlighter, crayon, brush or a piece of chalk. Each
metaphor brings with it certain expectations about the
input device and the interface. For example extra pressure
with a pencil is expected to make bolder lines whereas
pressing down on a fine-tip marker or pen produces
relatively little change in line quality .

The input device used in the current implementation meets
the above criteria and is discussed in greater detail in the
Current Status section.

3.2 Integrating Line-Markings into a Text
Editing System
Line-markings may not be the best method for entering all
of the commands that a complete system requires. There are
two main types of commands for which the use of line­
markings may be inappropriate; navigation commands, and
general system commands such as those for file handling.

The pen and paper analogy gives the useful insight that one
uses the non-dominant hand for auxiliary tasks, such as

Graphics Interface '91

turning pages. moving the paper around. and holding
straight-edges and other devices for guiding the stylus.
However, the pen and paper analogy does not apply to the
general system commands . This is an important
observation as the lack of analogy or a misapplication of
the metaphor may give rise to major inconsistencies in the
system.

Entering Navigation Commands, the Use of
Touch Tablets and Two-Handed Input
There are two main approaches to navigate through a
document. The first is to use a scrolling mechanism such as
a scroll bar, or to "push" the cursor into the edge of the
window to display more text. The second is by making
discrete jumps, usually of a "page" in length.

There is actually an inconsistency in almost all editing
systems used today, which disappears when line-driven
input is used; there is no obvious cursor position after a
navigation command is performed. An examination of a
small sample of editors reveals major differences in the
placement of the cursor after navigation. For example,
editors on the Apple Macintosh keep the insertion point at
the same location in the document, even if that part of the
document does not appear in the window. The vi editor on
UNIX places the cursor at the top of the window after a
PageUp command and at the bottom after a PageDown
command. Other editors have other variations. In contrast,
with line-driven input, a cursor becomes unnecessary as
positional information is given.

Using the pen and paper analogy, navigating by discrete
jumps corresponds to the turning of pages. Touch tablets
are very good input devices to use for this type of scrolling,
as brushing one's finger against a touch tablet is very
similar to turning the pages of a book. One benefit of
touch tablets is that by using left-right motion to turn
pages, forward -backward motion can be used to "scroll"
through the page or document. Another benefit is that the
non-dominant hand is still left free to hold rulers and other
guidance devices.

The use of two-handed input for navigation/selection tasks
has been studied by Buxton and Myers (1986), who showed
that significant performance improvements can be made
when both hands are used in such tasks. These results are
transferable to the use of the touch tablet for entering
navigation commands.

Entering General System Commands
The major difference between system commands and other
editor commands is that they apply to the document or
program as a whole, rather than to a particular part of it. In
this case, the fact that positional data exist may cause
confusion both to the user and to the system. There are
many possible solutions, as the pen and paper analogy
does not guide nor constrain the design of this part of the
system. The most important point is to maintain the
benefits and consistency of line-driven input. In particular,
entering commands should not disrupt the user. What is
meant by disruptive is that the continuity or flow of the
user's actions is interrupted by large movements of the
hand. For example, an Undo command located in a pull­
down menu or a side button would violate the benefit of

81

keeping the stylus near the area of interest by forcing the
user to move to the menu or button and back again.

One solution is to use special symbols or characters to
specify commands. This is very useful for commands with
no arguments, such as Quit, Undo, and Save File . For
commands with arguments the problem becomes greater.
Load File and Save to New File not only require arguments,
but may be required to assist the user in some way. For
example, the Macintosh gives the user a scroll able list of
files to choose from. In these cases the disruption caused
by a scrollable list may be perfectly acceptable, as the
commands themselves tend to cause disruptions - for
example, loading a new file is usually expected to change
the entire contents of the editing window. More
importantly the nondisruptive commands such as Undo and
Save should remain nondisruptive.

A second solution is to use a special area of the window and
input area for entering these commands. This may be one
of the better solutions for commands requiring arguments,
but could be as disruptive as pull-down menus for commands
which should remain nondisruptive.

A third solution is to use the non-dominant hand in some
way. One method of using the non-dominant hand is to
provide buttons for often used commands. The reasoning
behind this is that the dominant hand has a lot to do
already, whereas the non-dominant hand has only been
given the navigation task. In the case of the Un do
command, the two-handed solution has the added benefit
that a command can be undone or canceled before it is
completed thus taking advantage of the parallelism of two­
handed input.

The above solutions are not mutually exclusive, each has
its own advantages and disadvantages. It is possible to
split the commands among the various methods, or to even
allow commands to be entered in a variety of ways.

3.3 Commands That Cross Page Boundaries
A page is considered to be the section of a document which
is displayed in the application's window. Some commands
may need to cross page boundaries in order to specify their
arguments. This includes all commands that require a
section of text to be specified (e.g . Move, Delete, and
Copy), and/or require a destination (e.g. Move, and Copy).
The first situation, specifying a section of text across page
boundaries, is called the Disjoint Scope Specification
Problem, and the second situation, specifying a destination
located on a different page, is called the Rem 0 t e
Destination Problem. These are slightly different problems
and are dealt with separately below.

The Disjoint Scope Specification Problem
There are numerous methods to specify scope (Le. sections
of text): circling, bracketing, and highlighting are three of
the most popular. Circling means to surround the scope
with a closed loop; bracketing means to specify the start
and end points of the scope separately, usually with
symbols resembling brackets; and highlighting is similar
to dragging through text with a mouse. One problem with
highlighting is that it could be confused with the Deletion
or Underline markings. Circling has the dual benefit that it

Graphics Interface '91

is specified in one continuous motion, and that both the
system and user can be in agreement that the scope has been
specified (i.e. once the loop is connected both the system
and user know that the scoping part of the command is
complete). Bracketing has the disadvantage that it requires
more than one continuous mark. This leads to the
"Dangling Brackets Problem". This is the problem that the
system is expecting a second bracket to be entered, but the
user might enter intermediate markings and commands, and
may even forget about the first bracket. The dangling
bracket problem also occurs when a user is viewing
annotations, for the user must attempt to match pairs of
brackets.

Scoping across pages and the dangling brackets problem
are part of a larger problem which Rhyne (1987) terms
Embedded Dialogues. This occurs when a partially specified
command is temporarily interrupted while a sub-dialogue
such as navigation is performed. Once the sub-dialogue is
finished, the user finishes entering the command. Figure 3
shows an example of this in which a user has navigated
down one page before finishing the command. Rhyne
points out that this is a very problematic part of line-driven
input, mainly because embedded dialogues are very difficult
for the computer to decipher. Embedded dialogues also
cause problems for the user. The user may forget about
being in a sub-dialogue, or which sub-dialogue he/she is
currently in. For a user viewing annotations created with
embedded dialogues the problem is even worse, as the user
would need to decipher how the annotations were made.

One solution is to think of the system as a command parser
with the interpreted line-markings as the input to the
parser. Some line-markings could be interpreted as

82

partially specified scopes such as top-half or bottom-half,
left-bracket or right-bracket. If the next line-marking is
not the other half of the partially specified scope, the parse
will fail and the command will be rejected. However,
problems may still exist, for a user viewing annotations
would still need to match bracket pairs.

The problems of embedded dialogues might disappear with
the use of a separate input device for navigation. The input
becomes more of a parallel dialogue, and it may be possible
to avoid the need for embedded dialogues along with the
problems associated with them.

The Remote Destination Problem
This problem is simpler than the scoping problem as a
destination corresponds to a single point rather than to an
area. Here we can borrow a useful technique used with the
pen and paper analogy. When specifying a destination on a
different page, one often makes a mark such as an asterisk
or a circled number or letter as a temporary "destination
placeholder". On the page containing the actual
destination, the placeholder is treated as the source, and the
actual destination is specified normally . Figure 4 shows an
example of this procedure.

This method has many uses other than the one for
specifying distant destinations. It can be considered as a
placeholder serving a similar function to that of the
Macintosh clipboard. In contras t, any number of
placeholders can be specified, whereas the Macintosh only
supports one clipboard. Placeholders can also be used as
markers to certain locations in the document for future
reference. For example, a command to go to the page
containing a certain placeholder would be useful.

Needless to say my expectations were a bit high. No answer came close to

my hopes, but still there were some reasonably good respones. There

were two main schools of thought. One adopted a context in which the

answer makes sense, these are in the first set of answers he secon

wanted a context, before answering the question, although these responses

page boundary

are valid they are boring and don't show much imagination (no I'm not

psychoanalyzing anyone, you obviously didn't know what I was expecting

that's all). he third (yes I know I said two before, but there is always an

extra one) main group didn't adopt nor ask for a context, instead they are

as meaningless as the question. This last type of group may be where the

answer lies, but the ones given sure don't satisfy me.

Figure 3 - An example of a scope crossing page boundaries

Graphics Interface '91

83

Adopted Context: These are quite good. The first one in particular gave me

a good laugh as I lost 5? squash games earlier in the day using orange grip

tape on my racquet. I don't know the context of the second reply but it

sounds like a good answer to me.

~~------------~~
Euse you use orange grip t~

page boundary

because a lot of people have a lot of money investe~ thats whyl ~

'~ ----
Confused?: This is a really original pair of answers, notice that the

second one has an exclamation mark at the end.

Figure 4 - An example of specifying a remote destination using placeholders

4. Current Status

MATE is currently being implemented with a tablet and
stylus made by Pencept. and a separate display using the X
windowing system on a Sun workstation. A more ideal
system would employ a flat-screen display on which the
stylus is directly used. The hardware selected for system
implementation was chosen due to its availability and may
affect user performance and satisfaction. However. the
tablet and stylUS being used are satisfactory according to
Tappert's (1986) findings.

Working versions of Annotation mode and Edit mode exist,
but no formal user testing has been performed. Instead an
informal study has been carried out. Copies of an earlier
draft of this paper were given to several proofreaders. each
of whom was asked to mark up the paper using a coloured
marker on transparencies laid over the paper. A
preliminary analysis shows that the markings become very
cluttered and difficult to see. and that there are many
conflicts among the proofreaders' annotations.

The current version of MATE has borrowed the Move.
Copy. and Delete commands from GEdit (Kurtenbach &
Buxton 1990). These commands were intended for
graphical objects, but little modification was required to
adapt them for text. Future work may involve using more
appropriate markings for text editing.

5 . Summary and Future Work

MATE is being designed and developed to incorporate the
ideas discussed in this paper. There are many unsolved and
unknown issues in the use of line-mark text-editing,
asychronous collaborative writing and line-mark systems
in general . The current emphasis of this project is to
complete the system by supporting the selection of
annotations or deferred editing markings. Once this is
done. MATE will serve as a testbed to further explore these
issues and design problems. as well as bring to light new
issues. It will also serve as a preliminary means for
comparing line-mark based systems versus other systems
that perform similar functions. such as annotating
documents. text-editing, and asynchonous collaborative
text-editing.

This paper is intended to provide an overview of the MATE
project. discuss some of the issues involved in designing
such a system, and shed useful insights for those working
in this field.

Acknowledgements

I would like to acknowledge the members of the Input
Research Group at the University of Toronto who provided
the forum for discussing and contributing to the work
presented in this paper. In particular. I would like to thank
William Buxton and Gordon Kurtenbach who provided
many useful insights, ideas, and the recognition software
from GEdit.

Graphics Interface '91

References

Buxton. W. & Myers. B. (1986). A Study in Two-Handed
Input. Proceedings of CHI' 86. pp. 321 - 326.

Buxton. W. (1990). The Pragmatics of Haptic Input,
Tutorial Notes, CHI'90, Seattle, Washington.

Chow, D & Kim, J. (1989). Paper-Like Interface for
Educational Applications, National Educational
Computing Conference '89. Boston,
Massachusetts, pp. 337 - 344.

GO corp. (1991a). The Point of the Pen. Byte, February,
pp. 211 - 221.

GO corp. (1991b). Video Presentation at Stanford
University, by Robert M. Carr, February 13.

Kosarek, J.L., Lindstrom. T .L., Ensor, J.R. & Ahuja,
S.R. (1990). A Multi-User Document Review
Tool. in S. Gibbs & A.A. Verrijn-Stuart (Eds.),
Multi-User Interfaces and Applications. North­
Holland, Elsevier Science Publishers, pp. 207 -
215.

Kurtenbach, G. & Buxton, W. (1990). GEdit: a testbed for
editing by contiguous gesture. To appear in the
SIGCHI Bulletin, April. 1991.

Rhyne, J.R. (1987). Dialogue Management for Gestural
Interfaces. ACM Computer Graphics 21 -2, pp.
137 - 142.

Tappert, C.C.. Fox, A.S., Kim, J. , Levy, S.E. &
Zimmerman, L.L. (1986). Handwriting
Recognition on Transparent Tablet Over Flat
Display, IBM Technical Report RC 11856
(52695) 3/3/86, also in Society for Information
Display, Digest of Technical Papers, vol 17, San
Diego, pp. 308 - 312.

We1boum, L.K. & Whitrow, R.J. (1988). A Gesture Based
Text Editor, in D. Jones & R. Winder (Eds.).
People and Computers IV, Proceedings of the
Fourth Conference of the British Computer
Society Human-Computer Interaction Specialist
Group. Cambridge, Cambridge University Press,
pp. 363 - 371.

Wolf, C.G. & Morrel-Samuels. P. (1987). The use of
hand-drawn gestures for text editing,
International Journal of Man-Machine Studies,
27, pp. 91 - 102.

Wolf. C.G., Rhyne, J.R. & Ellozy, H.A. (1989). The
Paper-Like Interface, IBM Technical Report RC
14615 (64399) 2/3/89, also in Designing on
Using Human Computer Interfaces and
Knowledge-Based Systems, G. Salvendy & M.J.
Smith (Eds.), EIsevier Science Publ, Amsterdam,
1989, pp. 494 - 501.

84

Graphics Interface '91

