
85

Graphical Interaction Techniques in Constraint-Based Geometric
:rVlodeling

Steve Sistare

Harvard University

Abstract

I present a three-dimensional geometry editor called
Converge which takes advantage of several new interac
tion techniques in constraint-based geometric modeling
to achieve a greater ease of use than that found in com
parable systems. Constraints are presented as graphical
symbols that are incorporated into the geometric design,
and both constraints and geometry may be manipulat
ed with the same graphical gestures through the direct
manipulation paradigm. A novel feature of Converge
is that constraints may be created implicitly as a side
effect of creating geometry, giving the user the benefit
of using constraints without explicitly having to create
them . Lastly, constraints are used in a novel way to facil
itate interactive creation and positioning of geometry in
three space, despite the limitations imposed by common
ly available two-dimensional display and input devices .
A video demonstrating Converge will be presented.

Keywords: direct manipulation, drafting aids, con
straint, geometric modeling, interactive techniques.

1 Introduction

The design of geometric models can be a painstaking
and time-consuming task. While drafting aids are avail
able in many CAD packages, they are often primitive or
deficient in the means they offer for placing geometry
in a design or for subsequently modifying the geometry.
Modification in particular can tax a user's patience when
it requires many deletion, creation, or perturbation op
erations to effect a conceptually simple change in the
design.

One area of research that attempts to address these
deficiencies involves the use of constraints on the geome
try as a means of both specifying and controlling its form
[2][3][4][8] . The additional information about the struc
ture of the geometry that is provided by the constraints
allows the user to specify modifications at a higher con-

Author 's present address: Thinking Machines Corp., 245 First
St ., Cambridge, MA 02142; sistare@think.com

ceptual level, which the system can then translate in
to the lower-level changes needed to achieve the desired
modification. The form in which the constraint informa
tion is demanded from the user determines the ease of
use of any geometric system that is based on constraints,
and is one of the basic problems to be addressed in the
design of such a system.

The Convergel editor achieves ease of use through a
variety of means. It allows the manipulation of both
constraints and geometry using the direct-manipulation
paradigm, which is well established as being of central
importance in many easy-to-use systems. Whenever ge
ometry is modified using direct manipulation , a solver is
called which updates the geometry in accordance with
the existing constraints. The graphical presentation of
constraints makes them easier to understand and use ,
and the fact that they may be created implicitly eases
the burden on the user. Other features, to be explored
in the remainder of this paper, further increase the use
fulness of constraints.

The solver will not be discussed here except to say
that it has been designed to solve robustly and efficient
ly the unstructured network of constraints and geome
try that is produced by Converge. The basic algorithm
is a combination of the Newton-Raphson method and
the conjugat.e-gradient method that can solve for n con
strained variables in O(n 2

) time. However, this algo
rithm is combined with a new traversal algorithm that
simultaneously partitions and solves many networks of
constraints and variables in close to linear time. See [7]
for a detailed presentation of the solver.

2 Graphical Presentation of Constraints

A key distinction that separates Converge from sim
ilar systems is its incorporation of graphical constraint
icons into the geometry. The user can at once see the
geometry and the constraints on it in a unified frame
work. This may be contrasted with Nelson's luno sys
tem [4] and Gross 's Co system [3] in which a textual
programming language description of constraints is used,

1 Constraint soly!:!: for geomet ry

Graphics Interface '91

Figure 1: Architectural floor plan produced with Con
verge.

0 point on point

B point on line

+ point on plane
- line on line

-.J right angle,
line perp plane

/ length equals length

r-7" midpoint

Figure 2: Constraint icons.

and with Borning's Thing/ab [1], in which a network dia
gram is used to convey the constraint description. In
each of these cases, the constraint description is pre
sented disjointly from the geometry. By unifying the
presentation of constraints and geometry in a graphi
cal framework, ConveJye allows the user to more readily
understand the constraints, their relationships to each
other and the geometry, and the structure of the overall
constraint network. A further advantage to unification is
that the same graphical gestures may be used to create,
manipulate, and destroy both constraints and geometry,
making the system easier to use.

The use of graphical constraints is illustrated in Fig
ure 1, which shows an architectural floor plan designed
using Converge. This design has over one hundred con
straints that enforce congruence, coincidence, and or-

86

Figure 3: Square seen in perspective projection.

Figure 4: Table designed using Converge. Legs are
pointing up.

thogonality between various geometric entities in the de
sign. On a color monitor , the constraint icons would be
displayed with a different hue than the geometry, but
we may discern them in black and white with the aid of
the key shown in Figure 2. Several of these icons, the
slash and the right-angle symbol, were taken from math
ematics, while the rest were designed to graphically show
the degrees of freedom available in each constraint. For
more information on the design process that was used to
derive these icons , see [7] .

Certain characteristics of the constraint icons deserve
mention. One is that they are neither three-dimensional
nor two-dimensional objects, but share characteristics of
both. They are planar objects, and as such need to be
displayed parallel . to the screen, which means they are
computed in screen space. However, they are associated
with three-dimensional geometry that has been project
ed onto the screen and has been subjected to perspective
foreshortening which shrinks the geometry with increas
ing distance from the viewer. To avoid visual contradic
tions, the icons must be similarly scaled. Figure 3 shows
a tilted square in which this scaling is apparent.

One problem in displaying constraints graphically
with the geometry is that the user may be subjected to

Graphics Interface '91

Figure 5: Filtered view of previous table.

information overload . There is more information present
in a drawing annotated with constraints than in one that
shows only geometry, and furthermore, the typical user
is not accustomed to dealing with constraints in any form
whatsoever . Thus, Converge provides operations for fil
tering constraint information to the point where the user
is comfortable dealing with the resulting display. Con
straint icons may be made invisible individually, by type,
or by the geometry they use. All icons may also be uni
formly scaled to give them more or less prominence with
respect to the geometry. Lastly, the level of detail that is
displayed for each constraint may be reduced , decreas
ing clutter but increasing ambiguity. The design for a
table (with legs pointing up) may be seen fully detailed
in Figure 4 and filtered in Figure 5. The latter figure is
more appealing to work with , even though some infor
mation is lost. The user can either remember the elided
details having seen the first figure , or he can disregard
them until they are relevant, at which time the detailed
view can be reinstated.

The constraint icons in Figure 2 were designed to be
purposely ambiguous for these same reasons. Specifical
ly, there is ambiguity as to exactly which geometric en
tities are used by each constraint. The ambiguities may
not be obvious, however, because humans are quite good
at resolving ambiguity using context. This is in fact the
justification for allowing such ambiguity! However, the
user may ask Converge to highlight the entities used by
a selected constraint when confusion arises.

3 The Editor

The Converge editor provides most of the basic fea
tures for manipulating geometry that are found in stan-

87

dard geometry editors such as MacDraw on the Macin
tosh and Idraw under the X windows system. In ad
dition, Converge provides operations to manage con
straints and provide control over the constraint solver.
Supported geometric primitives include points, lines, and
polygons. A variety of predefined constraint types exist
that act on these primitives, some of which were list
ed in Figure 2. A new primitive called a scalar is also
available , which is simply a named variable. The floor
plan in Figure 1 contains three scalars named a, h, and
e, which are used in length-equals-length constraints to
control the width of the walls, doorways, and one room.
A separate menu is dedicated to the scalars in a design,
listing their names and current values.

Menus related to constraints include the constraint
menu, which lists the available constraints; the filter
menu, which contains options for filtering constraints as
described in the previous section; and the locus menu,
which implements locus specification, to be described in
Section 5. Other menus are available for editing, file sys
tem access, and three-dimensional viewing specification.

Converge allows both explicit and implicit control over
the solver. By default, the solver is not immediately
called after the addition of each constraint due to the
potentially slow response time for a large design . The
user may thus batch new constraints together and click
on the solve menu option to satisfy the constraints all at
once. It is possible that the design may be unsolvable
due to some of t.he constraints being contradictory, in
which case the design is left as it was before the solver
was called. In this case, the user may select the un
do constraint option, which may be repeatedly called to
delete the last constraint entered , and retry the solver
after some number of constraints have been withdrawn.
Conversely, the solver may succeed, but return with an
undesirable result , perhaps due to the design being un
derconstrained. A menu option is available to restore the
geometry to its previous state in this case . Lastly, design
primitives may be frozen in their present state with the
freeze option , which prevents selected primitives from
being modified by the solver.

In addition to being called explicitly, the solver is
called implicitly whenever the design is modified. This
occurs when the user drags existing points or lines with
the mouse, or changes the value of a scalar by clicking
on its value box in the scalar menu. For example, we can
drag the internal horizontal partition of the floor plan in
Figure 1 and get the result shown in Figure 6, and then
grab the left-most wall and drag it to the left to yield
Figure 7. 2 Note that the plan's first, second, and fourth
sections from the left have expanded equally, while the
third section has remained of constant width. We can
also shrink the walls by changing the scalar parameter a
and get the result in Figure 8. Similarly, we can modify
the width of the legs of the table in Figure 4 by modify
ing a, yielding Figure 9. All of these manipulations are

2The constraints in these figures have been filt e red out for
clarity.

Graphics Interface '91

u u
hi

.... I------+---'J +---r---lL
i

Figure 6: Floor plan after moving interior partition.

u~
h: I.

.... ····t------ii---t
J

...... f--,---'
f-------:.-...J

'--:

Figure 7: Floor plan has been stretched by dragging
the outer walL

~ ~
....................... f---_.j..-.L..,-n: +-r-: ----11

i

Figure 8: Width of walls has been modified.

88

performed by the solver in under one second on a Sun 4.
Thus far, I have presented the basic methods for inter

acting with the Converge editor. In the next few sections,
I will expand upon these methods and present addition
al interaction techniques, many of which are unique to
Converge.

4 Constraint-Based Interaction Techniques

Users of constraint-based geometry editors must work
slightly harder than users of non-constraint based sys
tems while entering their designs, as the former must
input constraints as well as geometry. The extra effort
required may discourage them from trying constraint
based systems. For systems such as Converge to suc
ceed and be accepted, users must be convinced that con
straints are worth using. More specifically, the payoff
that comes from using constraints must outweigh the ef
fort required to enter them, and the ratio of payoff to
effort defines the utility of using such systems. We can
increase the utility by either reducing the effort required
or increasing the payoff, and I will describe methods that
accomplish both objectives.

5 Implicit Constraint Creation

The obvious way to create a new constraint is to ex
plicitly select the constraint type and the (previously cre
ated) geometry that will participate in the constraint.
This can be done fairly rapidly with my system due
to the interactive and graphical nature of my interface;
indeed, more rapidly and easily than with any of the
constraint-based systems described in (2), [3], and (4).
VVhen one chooses a constraint type, constraint-creation
mode is turned on , and all subsequent geometric selec
tion operations are used to create constraints of that
type. To create right angles, one clicks on the right
angle menu item and proceeds to select pairs of lines by
pointing to them with the mouse and clicking. Each pair
will be constrained to form a right angle. The user may
switch to another constraint type at any time or may
cancel constraint-creation mode.

Explicit constraint creation is the most straightfor
ward and versatile way to create constraints. It requires
that the geometry has been previously created and that
explicit operations subsequently be performed to add the
constraints . Constraints may also be created implicitly,
however, by integrating the creation of constraints and
geometry in such a way that they are created as a con
sequence of creating geometry. This is an attempt to
increase the usability of the system by minimizing the
amount of time that the user must spend dealing with
constr ain ts.

How may we achieve such an integration? Suther
land 's Sketchpad implicitly created coincidence con
straints whenever a point was created close to a line or
a circle. By contrast , Converge relies on a previously es
tablished constraint context called a locus that dictates

Graphics Interface '91

how newly-created geometry will be used to form new
constraints.

5.1 Locus Specification

The locus is a means of describing constraints that is
less restrictive than simply listing types such as point
on-line. A locus specification consists of a geometric
primitive such as a point, line, or plane, together with
a constraining relationship, which is not the same as a
constraint type . Conceivable relationships include on,
orthogonal, and parallel. The user specifies a locus by
first selecting a geometric primitive from those that al
ready exist in the design and then selecting a relation
ship from a menu of possibilities that currently include
on and orthogonal.

While a locus remains in effect, there exists an im
plicit constraint between the locus's geometry and any
as yet uncreated geometry. The implicit constraint is
made explicit when new geometry is created, at which
time a new constraint is created whose type is defined
by the concatenation of the locus geometry, the locus
relationship, and the new geometry.

To illustrate the creation of constraints through locus
specification, we construct a small fragment of the floor
plan shown earlier. We first draw a horizontal line and
select it as the current locus, using the on relationship.
We then create several points along the line, and as each
one is created, a point-on-line constraint is automatical
ly supplied by the system, resulting in Figure 10. Next,
we change the locus relationship to orthogonal, without
having to reselect the line - it remains the locus by de
fault. Lastly, we create lines anchored at the existing
vertices. The system automatically supplies the right
angle constraints, and we have constructed the design
in Figure 11 without explicitly creating any constraints.
Most designs can be constructed using a combination of
implicit and explicit constraint creation. Approximately
half of the constraints in the table that was shown in
Figure 4 were created using locus specification.

5.2 Copy Operations

In standard geometry editors, the copy operation pro
vides a quick and easy way to create geometry without
adding it piecemeal. The copy operation extends natu
rally to the constraint domain and provides yet another
way to implicitly create constraints.

It is nonsensical to copy constraints in isolation;
rather, they must be part of a geometric copy opera
tion. To initiate a copy operation, the user first selects
the geometry to he copied. The constraints that may he
copied are then limited to those that constrain the sele~t
ed geometry. These constraints may he divided into the
internal constraints, which apply to selected geometry
only, and external constraints, which apply to selected
geometry and some geometry that is not being copied.
The user next selects the constraints to be copied, either
by picking them individually (for complete generality).

89

Figure 9: Table with thinner legs.

Figure 10: The line is chosen as the locus, and point-on
line constraints are automatically added by the system
when points are created.

Figure 11 : Design fragment that may be produced en
tirely through the use of locus specification.

Graphics Interface '91

h r

Figure 12: An unfinished design that will be developed
in the next few figures using copy operations.

Figure 13: Copies with internal and external con
straints are made and translated .

or by asking the editor to identify and select the inter
nal or external constraints. Copying a geometric object
and its internal constraints yields an identical but isolat
ed copy of its geometry, and copying an object with its
internal and external constraints yields a duplicate with
the same geometric context as its parent .

An example serves to illustrate these distinctions.
Consider the design shown in Figure 12. If we selec
t the perimeter of the vertical rectangle, ask the system
to select the internal constraints, and perform a copy op
eration, we will get a new rectangle that is free to trans
late about the screen. However , if we ask the system
to select internal and external constraints, then we get
a copy that is constrained to lie between the upper and
lower rails. The state of being selected is automatically
transferred to the new primitives after a copy operation,
so we may repeatedly click on the copy menu item to
generate several replicas of the original rectangle. We
next translate the copies to their approximate destina
tions as shown in Figure 13. Lastly, we invoke the solver
to satisfy the constraints, which gives us Figure 14 .

6 Constraints and Interactive Manipula
tions

We have seen that the use of constraints in a de
sign affords an ease of modification not found in non
constraint-oriented systems, and this forms the founda-

90

H F=j
f--J L f--J L f--J L f--J L

h rj h r h r h r:

~ ~

Figure 14: The solver is called to satisfy the copied
constraints.

tion of their utility. However, there are further applica
tions of constraints that increase their basic utility and
make const.raint-based systems look even more attrac
tive. This section details several such applications, all
of which involve using constraints to guide interactive
manipulations of geometry by the user.

6.1 Locus Constraints

Locus specification was presented in the previous sec
tion as a means of automatically creating constraints
when new geometry is cre'l-ted . However, it can also be
used to give the user greater interactive control over the
placement of the same new geometry. To achieve this
control, the implicit constraint that is defined by the lo
cus is applied to the new geometric primitive during its
initial placement. For example , if a line locus with re
lationship on is in effect and the user creates a point
the point will move back and forth along the line as th~
mouse is moved in approximately the same direction .
When the user clicks the mouse, the point is permanent
ly incorporated into the design at its current position,
and the implicit constraint is made explicit. One nice
feature of this operation is that the constraint is already
satisfied at the time it is created. This is not true of con
straints that are explicitly created by the user rather
the solver must be called to satisfy them. ' ,

The solver is used to enforce the constraint during the
placement operation. In the example above, for every
small motion of the mouse, the change in mouse position
is added to the current position of the point. In general,
this will move the point away from the line. The new
coordinates are passed to the solver, which modifies them
slightly to bring the point back to the line. As long as
there is a component of mouse movement in the direction
~f the line, the point will experience some motion along
It. The solver works quickly under these circumstances
because the perturbations to the point are small, and
the constraint system it must solve consists of only one
constraint and three variables. 3 Thus, the user enjoys

3 On a Sun 4 , the solver can process dozens of these requests
per second .

Graphics Interface '91

rapid, real-time response to mouse movements, which
results in smooth motion of the point along the line.

The point-on-line scenario outlined above becomes
even more interesting when we consider that in a three
dimensional object space, the line need not lie in the
plane of the screen, in which case motion along the line
also implies motion towards and away from the viewer.
Locus constraints thus give us the ability to precisely po
sition a point in three space using a mouse with only two
degrees of freedom! Other combinations of locus and ge
ometry yield a similarly useful result. If a polygon locus
with relationship "on" is chosen, subsequently created
points will track the polygon in three space as they are
moved by the mouse during initial placement . Selection
of a line or polygon locus with relationship "orthogonal"
will affect placement of new lines. The first end point of
a new line may be maneuvered freely by the mouse until
the user clicks to set the point in its place. As the second
end point is dragged with the mouse, the line between the
end points will telescope in and out in a fixed direction
that is perpendicular to the locus polygon or line.

The interactive three-dimensional positioning capabil
ity offered by locus constraints is one of the unique fea
tures of Converge.

6.2 Constrained Transformation

Aggregations of geometric primitives may be translat
ed and rotated in Converge just as they may be in any
geometry editor. In addition, however , Converge offers
a limited form of constrained translation, in which an
object may be translated as a rigid body subject to sim
ple constraints. Specifically, the user may request that
constraints on one vertex of the object be maintained
as the object is translated . For example, an object may
be translated such that one of its vertices remains co
incident with a stationary plane. This gives the user a
degree of control over the translation operation similar
to that provided by a locus constraint, and the solution
process for the constrained point is in fact identical. The
object is rigidly translated in lockstep with the point by
taking the difference between the position of the point
from one step to the next and adding it to every ver
tex in the object. Thus, as the mouse is moved, the
object moves in three space, maintaining contact with
the plane at one vertex. Other constraints that are ap
propriate for use in this manner include point-on-line,
line-on-line, right-angle, and several others.

6.3 Constrained Perturbation

The perturbations that we applied to the floor plan de
veloped in section 3 were unconstrained in that we were
free to drag a wall or vertex in any direction whatsoever
without resistance. This of course violated many of the
constraints in the design, which had to be restored by
calling the solver when the dragging operation was com
plete. However, a violated design can have many possible
solutions, and it is not always clear which one is desired

91

by the user. For this reason, several forms of constrained
perturbation are also available in which some of the con
straints are continuously maintained while the geometry
is being manipulated. Constrained transformation and
locus specification are special cases of constrained per
turbation in which exactly one constraint is interactively
maintained.

Ideally, we would like to be able to maintain all the
constraints in a design while continuously dragging ge
ometry with the mouse. In any design of significant size,
however, the solver is simply too slow to allow interac
tive manipulation in this fashion . Someday, this will be
an excellent way to use up the hundreds of mips that
will sit on our desktops. For the present, however, we
must look for alternatives that approximate this ideal be
havior. The obvious alternative is to maintain a subset
of the constraints while the manipulation is in progress,
and call the solver to satisfy the rest of the constraints
when the manipulation terminates. This can give a good
approximation of how the design should look while it is
being perturbed if the constraints are chosen appropri
ately.

One possibility is to choose those constraints that use
the vertex or line being perturbed. If we allow only the
single vertex or line to move, and hold the rest of the
geometry fixed during the dragging operation, then this
subset provides good results in some but not all cases. If
one side of a rectangle were dragged, for example, all four
right-angle constraints of the rectangle would be consid
ered, as each endpoint of the side is used in the right
angle at its vertex and at two other vertices. Thus, the
rectangle would scale nicely. If we tried to drag a single
vertex of the rectangle, however, the other three vertices
would remain fixed, and the three right-angle constraints
acting on the vertex would lock it in place. This situ
ation may be rectified by defining a variant of the drag
operation that can modify the geometry used by the con
straints as well as the vertex being dragged. Of course,
this adds more free variables to the constraint system
that must be solved and degrades interactive response,
but still gives good results for some geometries.

For complete generality, the constraints that control
a perturbation may also be individually selected by the
user. As before, the dragged vertex or line may be mod
ified solely, or all geometry of the constraint set may be
modified.

6.4 Automatic Positioning

The previous sections detail ways in which constraints
are used to guide the interactive manipulations that the
user must perform to move an object into its place in a
larger design . However, constraints may also be used to
accomplish this task without the need for any manipu
lation on the part of the user. By creating constraints
between an object and the larger design and calling the
solver, the object may be pulled into place.

The walls of the architectural floor plan shown earlier

Graphics Interface '91

p -- --- ----- --- ----- --- --- ----- ----------- --- --------------1.1

'I \
5 ~
i 5 & tL ____ _________ ____ ____________ ____ _______ ______ _____ _____ [j

Figure 15: The walls will be positioned using con
straints.

hE ["
~ r:

F-1aL ..JL..:

::"'1i hr::

~~ at.::
r:

Figure 16: Previous figure after calling the solver.

may be positioned in such a manner. Figure 15 shows an
early stage in the design of the floor plan in which the
outline of the plan is present along with several random
ly placed walls . Point-on-point constraints have been
added between the corners of the walls and the outline,
but the solver has not yet been called. Figure 16 shows
that the desired result has been achieved after calling
the solver.

7 Summary

Converge employs a number of new constraint-based
interaction techniques that make constraint-based edit
ing easier. Constraints may be created implicitly using
locus specification and copy operations, relieving the us
er from the need to explicitly add constraints to a design .
The techniques of constrained perturbation and con
strained transformation provide the user with a means of
intemctively modifying parts of a design under the con
trol of constraints that can be selected by the user . This
allows local modifications to be made to a design without

92

solving the entire design. In addition , locus specification,
constrained perturbation, and constrained transforma
tion offer a a new solution to the problem of positioning
geometry in three space; they reduce the available de
grees of freedom to one or two, allowing the positioning
to be done with a standard mouse.

The Converge editor is the first constraint-based sys
tem to effectively incorporate constraints graphically in
a geometric design. This feature, together with the use
of the direct-manipulation paradigm and new interaction
techniques, yields an editor with a look and feel that is
substantially different from that of existing constraint
based systems. The result is a system that is easier to
use and understand .

Acknowledgments

This research was supported in part by contracts from
the Lockheed Corporation.

References

[1] Borning, A. , "Defining Constraints Graphically",
SIGCHI Bulletin, 17(4), April 1986, pp. 137-143.

[2] Borning, A., "Constraint Hierarchies" , SIGPLAN
Notices, 22(12), October 1987, pp. 48-60.

[3] Gross, M., Ervin, S. , Anderson, J. , Fleisher, A .,
"Constraints: Knowledge Representation III De
sign", Design Studies, 9(3) , July 1988.

[4] Nelson , G., "Juno, A Constraint-Based Graphics
System", Computer Graphics, 19(3), July 1985, pp.
235-243.

[5] Olsen, D., and Allan, 1<. , "Creating Interac
tive Techniques by Symbolically Solving Geometric
Constraints", Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software, October
1990, pp. 102-107.

[6] Shu, Nan C., Visual Programming, (New York: Van
Nostrand Reinhold Company), 1988.

[7] Sistare, S., A Gmphical Editor for Three
Dimensional Constraint-Based Geometric Model
ing, Ph.D. dissertation , Harvard University, 1990.
Available as technical report TR-06-91 , Center for
Research in Computing Technology, Harvard Uni
versity.

[8] Sutherland, I. "Sketchpad: A Man-Machine Graph
ical Communication System", Proceedings of the
Spring Joint Computer Conference, IFIPS, 1963,
pp. 329-345.

Graphics Interface '91

