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Abstract 

I present a three-dimensional geometry editor called 
Converge which takes advantage of several new interac
tion techniques in constraint-based geometric modeling 
to achieve a greater ease of use than that found in com
parable systems. Constraints are presented as graphical 
symbols that are incorporated into the geometric design, 
and both constraints and geometry may be manipulat
ed with the same graphical gestures through the direct
manipulation paradigm. A novel feature of Converge 
is that constraints may be created implicitly as a side 
effect of creating geometry, giving the user the benefit 
of using constraints without explicitly having to create 
them . Lastly, constraints are used in a novel way to facil
itate interactive creation and positioning of geometry in 
three space, despite the limitations imposed by common
ly available two-dimensional display and input devices . 
A video demonstrating Converge will be presented. 

Keywords: direct manipulation, drafting aids, con
straint, geometric modeling, interactive techniques. 

1 Introduction 

The design of geometric models can be a painstaking 
and time-consuming task. While drafting aids are avail
able in many CAD packages, they are often primitive or 
deficient in the means they offer for placing geometry 
in a design or for subsequently modifying the geometry. 
Modification in particular can tax a user's patience when 
it requires many deletion, creation, or perturbation op
erations to effect a conceptually simple change in the 
design. 

One area of research that attempts to address these 
deficiencies involves the use of constraints on the geome
try as a means of both specifying and controlling its form 
[2][3][4][8] . The additional information about the struc
ture of the geometry that is provided by the constraints 
allows the user to specify modifications at a higher con-
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ceptual level, which the system can then translate in
to the lower-level changes needed to achieve the desired 
modification. The form in which the constraint informa
tion is demanded from the user determines the ease of 
use of any geometric system that is based on constraints, 
and is one of the basic problems to be addressed in the 
design of such a system. 

The Convergel editor achieves ease of use through a 
variety of means. It allows the manipulation of both 
constraints and geometry using the direct-manipulation 
paradigm, which is well established as being of central 
importance in many easy-to-use systems. Whenever ge
ometry is modified using direct manipulation , a solver is 
called which updates the geometry in accordance with 
the existing constraints. The graphical presentation of 
constraints makes them easier to understand and use , 
and the fact that they may be created implicitly eases 
the burden on the user. Other features, to be explored 
in the remainder of this paper, further increase the use
fulness of constraints. 

The solver will not be discussed here except to say 
that it has been designed to solve robustly and efficient
ly the unstructured network of constraints and geome
try that is produced by Converge. The basic algorithm 
is a combination of the Newton-Raphson method and 
the conjugat.e-gradient method that can solve for n con
strained variables in O(n 2

) time. However, this algo
rithm is combined with a new traversal algorithm that 
simultaneously partitions and solves many networks of 
constraints and variables in close to linear time. See [7] 
for a detailed presentation of the solver. 

2 Graphical Presentation of Constraints 

A key distinction that separates Converge from sim
ilar systems is its incorporation of graphical constraint 
icons into the geometry. The user can at once see the 
geometry and the constraints on it in a unified frame
work. This may be contrasted with Nelson's luno sys
tem [4] and Gross 's Co system [3] in which a textual 
programming language description of constraints is used, 

1 Constraint soly!:!: for geomet ry 
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Figure 1: Architectural floor plan produced with Con
verge. 
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Figure 2: Constraint icons. 

and with Borning's Thing/ab [1], in which a network dia
gram is used to convey the constraint description. In 
each of these cases, the constraint description is pre
sented disjointly from the geometry. By unifying the 
presentation of constraints and geometry in a graphi
cal framework, ConveJye allows the user to more readily 
understand the constraints, their relationships to each 
other and the geometry, and the structure of the overall 
constraint network. A further advantage to unification is 
that the same graphical gestures may be used to create, 
manipulate, and destroy both constraints and geometry, 
making the system easier to use. 

The use of graphical constraints is illustrated in Fig
ure 1, which shows an architectural floor plan designed 
using Converge. This design has over one hundred con
straints that enforce congruence, coincidence, and or-
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Figure 3: Square seen in perspective projection. 

Figure 4: Table designed using Converge. Legs are 
pointing up. 

thogonality between various geometric entities in the de
sign. On a color monitor , the constraint icons would be 
displayed with a different hue than the geometry, but 
we may discern them in black and white with the aid of 
the key shown in Figure 2. Several of these icons, the 
slash and the right-angle symbol, were taken from math
ematics, while the rest were designed to graphically show 
the degrees of freedom available in each constraint. For 
more information on the design process that was used to 
derive these icons , see [7] . 

Certain characteristics of the constraint icons deserve 
mention. One is that they are neither three-dimensional 
nor two-dimensional objects, but share characteristics of 
both. They are planar objects, and as such need to be 
displayed parallel . to the screen, which means they are 
computed in screen space. However, they are associated 
with three-dimensional geometry that has been project
ed onto the screen and has been subjected to perspective 
foreshortening which shrinks the geometry with increas
ing distance from the viewer. To avoid visual contradic
tions, the icons must be similarly scaled. Figure 3 shows 
a tilted square in which this scaling is apparent. 

One problem in displaying constraints graphically 
with the geometry is that the user may be subjected to 
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Figure 5: Filtered view of previous table. 

information overload . There is more information present 
in a drawing annotated with constraints than in one that 
shows only geometry, and furthermore, the typical user 
is not accustomed to dealing with constraints in any form 
whatsoever . Thus, Converge provides operations for fil
tering constraint information to the point where the user 
is comfortable dealing with the resulting display. Con
straint icons may be made invisible individually, by type, 
or by the geometry they use. All icons may also be uni
formly scaled to give them more or less prominence with 
respect to the geometry. Lastly, the level of detail that is 
displayed for each constraint may be reduced , decreas
ing clutter but increasing ambiguity. The design for a 
table (with legs pointing up) may be seen fully detailed 
in Figure 4 and filtered in Figure 5. The latter figure is 
more appealing to work with , even though some infor
mation is lost. The user can either remember the elided 
details having seen the first figure , or he can disregard 
them until they are relevant, at which time the detailed 
view can be reinstated. 

The constraint icons in Figure 2 were designed to be 
purposely ambiguous for these same reasons. Specifical
ly, there is ambiguity as to exactly which geometric en
tities are used by each constraint. The ambiguities may 
not be obvious, however, because humans are quite good 
at resolving ambiguity using context. This is in fact the 
justification for allowing such ambiguity! However, the 
user may ask Converge to highlight the entities used by 
a selected constraint when confusion arises. 

3 The Editor 

The Converge editor provides most of the basic fea
tures for manipulating geometry that are found in stan-
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dard geometry editors such as MacDraw on the Macin
tosh and Idraw under the X windows system. In ad
dition, Converge provides operations to manage con
straints and provide control over the constraint solver. 
Supported geometric primitives include points, lines, and 
polygons. A variety of predefined constraint types exist 
that act on these primitives, some of which were list
ed in Figure 2. A new primitive called a scalar is also 
available , which is simply a named variable. The floor 
plan in Figure 1 contains three scalars named a, h, and 
e, which are used in length-equals-length constraints to 
control the width of the walls, doorways, and one room. 
A separate menu is dedicated to the scalars in a design, 
listing their names and current values. 

Menus related to constraints include the constraint 
menu, which lists the available constraints; the filter 
menu, which contains options for filtering constraints as 
described in the previous section; and the locus menu, 
which implements locus specification, to be described in 
Section 5. Other menus are available for editing, file sys
tem access, and three-dimensional viewing specification. 

Converge allows both explicit and implicit control over 
the solver. By default, the solver is not immediately 
called after the addition of each constraint due to the 
potentially slow response time for a large design . The 
user may thus batch new constraints together and click 
on the solve menu option to satisfy the constraints all at 
once. It is possible that the design may be unsolvable 
due to some of t.he constraints being contradictory, in 
which case the design is left as it was before the solver 
was called. In this case, the user may select the un
do constraint option, which may be repeatedly called to 
delete the last constraint entered , and retry the solver 
after some number of constraints have been withdrawn. 
Conversely, the solver may succeed, but return with an 
undesirable result , perhaps due to the design being un
derconstrained. A menu option is available to restore the 
geometry to its previous state in this case . Lastly, design 
primitives may be frozen in their present state with the 
freeze option , which prevents selected primitives from 
being modified by the solver. 

In addition to being called explicitly, the solver is 
called implicitly whenever the design is modified. This 
occurs when the user drags existing points or lines with 
the mouse, or changes the value of a scalar by clicking 
on its value box in the scalar menu. For example, we can 
drag the internal horizontal partition of the floor plan in 
Figure 1 and get the result shown in Figure 6, and then 
grab the left-most wall and drag it to the left to yield 
Figure 7. 2 Note that the plan's first, second, and fourth 
sections from the left have expanded equally, while the 
third section has remained of constant width. We can 
also shrink the walls by changing the scalar parameter a 
and get the result in Figure 8. Similarly, we can modify 
the width of the legs of the table in Figure 4 by modify
ing a, yielding Figure 9. All of these manipulations are 

2The constraints in these figures have been filt e red out for 
clarity. 
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Figure 6: Floor plan after moving interior partition. 
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Figure 7: Floor plan has been stretched by dragging 
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Figure 8: Width of walls has been modified. 
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performed by the solver in under one second on a Sun 4. 
Thus far, I have presented the basic methods for inter

acting with the Converge editor. In the next few sections, 
I will expand upon these methods and present addition
al interaction techniques, many of which are unique to 
Converge. 

4 Constraint-Based Interaction Techniques 

Users of constraint-based geometry editors must work 
slightly harder than users of non-constraint based sys
tems while entering their designs, as the former must 
input constraints as well as geometry. The extra effort 
required may discourage them from trying constraint
based systems. For systems such as Converge to suc
ceed and be accepted, users must be convinced that con
straints are worth using. More specifically, the payoff 
that comes from using constraints must outweigh the ef
fort required to enter them, and the ratio of payoff to 
effort defines the utility of using such systems. We can 
increase the utility by either reducing the effort required 
or increasing the payoff, and I will describe methods that 
accomplish both objectives. 

5 Implicit Constraint Creation 

The obvious way to create a new constraint is to ex
plicitly select the constraint type and the (previously cre
ated) geometry that will participate in the constraint. 
This can be done fairly rapidly with my system due 
to the interactive and graphical nature of my interface; 
indeed, more rapidly and easily than with any of the 
constraint-based systems described in (2), [3], and (4). 
VVhen one chooses a constraint type, constraint-creation 
mode is turned on , and all subsequent geometric selec
tion operations are used to create constraints of that 
type. To create right angles, one clicks on the right
angle menu item and proceeds to select pairs of lines by 
pointing to them with the mouse and clicking. Each pair 
will be constrained to form a right angle. The user may 
switch to another constraint type at any time or may 
cancel constraint-creation mode. 

Explicit constraint creation is the most straightfor
ward and versatile way to create constraints. It requires 
that the geometry has been previously created and that 
explicit operations subsequently be performed to add the 
constraints . Constraints may also be created implicitly, 
however, by integrating the creation of constraints and 
geometry in such a way that they are created as a con
sequence of creating geometry. This is an attempt to 
increase the usability of the system by minimizing the 
amount of time that the user must spend dealing with 
constr ain ts. 

How may we achieve such an integration? Suther
land 's Sketchpad implicitly created coincidence con
straints whenever a point was created close to a line or 
a circle. By contrast , Converge relies on a previously es
tablished constraint context called a locus that dictates 
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how newly-created geometry will be used to form new 
constraints. 

5.1 Locus Specification 

The locus is a means of describing constraints that is 
less restrictive than simply listing types such as point
on-line. A locus specification consists of a geometric 
primitive such as a point, line, or plane, together with 
a constraining relationship, which is not the same as a 
constraint type . Conceivable relationships include on, 
orthogonal, and parallel. The user specifies a locus by 
first selecting a geometric primitive from those that al
ready exist in the design and then selecting a relation
ship from a menu of possibilities that currently include 
on and orthogonal. 

While a locus remains in effect, there exists an im
plicit constraint between the locus's geometry and any 
as yet uncreated geometry. The implicit constraint is 
made explicit when new geometry is created, at which 
time a new constraint is created whose type is defined 
by the concatenation of the locus geometry, the locus 
relationship, and the new geometry. 

To illustrate the creation of constraints through locus 
specification, we construct a small fragment of the floor 
plan shown earlier. We first draw a horizontal line and 
select it as the current locus, using the on relationship. 
We then create several points along the line, and as each 
one is created, a point-on-line constraint is automatical
ly supplied by the system, resulting in Figure 10. Next, 
we change the locus relationship to orthogonal, without 
having to reselect the line - it remains the locus by de
fault. Lastly, we create lines anchored at the existing 
vertices. The system automatically supplies the right
angle constraints, and we have constructed the design 
in Figure 11 without explicitly creating any constraints. 
Most designs can be constructed using a combination of 
implicit and explicit constraint creation. Approximately 
half of the constraints in the table that was shown in 
Figure 4 were created using locus specification. 

5.2 Copy Operations 

In standard geometry editors, the copy operation pro
vides a quick and easy way to create geometry without 
adding it piecemeal. The copy operation extends natu
rally to the constraint domain and provides yet another 
way to implicitly create constraints. 

It is nonsensical to copy constraints in isolation; 
rather, they must be part of a geometric copy opera
tion. To initiate a copy operation, the user first selects 
the geometry to he copied. The constraints that may he 
copied are then limited to those that constrain the sele~t
ed geometry. These constraints may he divided into the 
internal constraints, which apply to selected geometry 
only, and external constraints, which apply to selected 
geometry and some geometry that is not being copied. 
The user next selects the constraints to be copied, either 
by picking them individually (for complete generality). 
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Figure 9: Table with thinner legs. 

Figure 10: The line is chosen as the locus, and point-on
line constraints are automatically added by the system 
when points are created. 

Figure 11 : Design fragment that may be produced en
tirely through the use of locus specification. 
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Figure 12: An unfinished design that will be developed 
in the next few figures using copy operations. 

Figure 13: Copies with internal and external con
straints are made and translated . 

or by asking the editor to identify and select the inter
nal or external constraints. Copying a geometric object 
and its internal constraints yields an identical but isolat
ed copy of its geometry, and copying an object with its 
internal and external constraints yields a duplicate with 
the same geometric context as its parent . 

An example serves to illustrate these distinctions. 
Consider the design shown in Figure 12. If we selec
t the perimeter of the vertical rectangle, ask the system 
to select the internal constraints, and perform a copy op
eration, we will get a new rectangle that is free to trans
late about the screen. However , if we ask the system 
to select internal and external constraints, then we get 
a copy that is constrained to lie between the upper and 
lower rails. The state of being selected is automatically 
transferred to the new primitives after a copy operation, 
so we may repeatedly click on the copy menu item to 
generate several replicas of the original rectangle. We 
next translate the copies to their approximate destina
tions as shown in Figure 13. Lastly, we invoke the solver 
to satisfy the constraints, which gives us Figure 14 . 

6 Constraints and Interactive Manipula
tions 

We have seen that the use of constraints in a de
sign affords an ease of modification not found in non
constraint-oriented systems, and this forms the founda-
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Figure 14: The solver is called to satisfy the copied 
constraints. 

tion of their utility. However, there are further applica
tions of constraints that increase their basic utility and 
make const.raint-based systems look even more attrac
tive. This section details several such applications, all 
of which involve using constraints to guide interactive 
manipulations of geometry by the user. 

6.1 Locus Constraints 

Locus specification was presented in the previous sec
tion as a means of automatically creating constraints 
when new geometry is cre'l-ted . However, it can also be 
used to give the user greater interactive control over the 
placement of the same new geometry. To achieve this 
control, the implicit constraint that is defined by the lo
cus is applied to the new geometric primitive during its 
initial placement. For example , if a line locus with re
lationship on is in effect and the user creates a point 
the point will move back and forth along the line as th~ 
mouse is moved in approximately the same direction . 
When the user clicks the mouse, the point is permanent
ly incorporated into the design at its current position, 
and the implicit constraint is made explicit. One nice 
feature of this operation is that the constraint is already 
satisfied at the time it is created. This is not true of con
straints that are explicitly created by the user rather 
the solver must be called to satisfy them. ' , 

The solver is used to enforce the constraint during the 
placement operation. In the example above, for every 
small motion of the mouse, the change in mouse position 
is added to the current position of the point. In general, 
this will move the point away from the line. The new 
coordinates are passed to the solver, which modifies them 
slightly to bring the point back to the line. As long as 
there is a component of mouse movement in the direction 
~f the line, the point will experience some motion along 
It. The solver works quickly under these circumstances 
because the perturbations to the point are small, and 
the constraint system it must solve consists of only one 
constraint and three variables. 3 Thus, the user enjoys 

3 On a Sun 4 , the solver can process dozens of these requests 
per second . 
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rapid, real-time response to mouse movements, which 
results in smooth motion of the point along the line. 

The point-on-line scenario outlined above becomes 
even more interesting when we consider that in a three
dimensional object space, the line need not lie in the 
plane of the screen, in which case motion along the line 
also implies motion towards and away from the viewer. 
Locus constraints thus give us the ability to precisely po
sition a point in three space using a mouse with only two 
degrees of freedom! Other combinations of locus and ge
ometry yield a similarly useful result. If a polygon locus 
with relationship "on" is chosen, subsequently created 
points will track the polygon in three space as they are 
moved by the mouse during initial placement . Selection 
of a line or polygon locus with relationship "orthogonal" 
will affect placement of new lines. The first end point of 
a new line may be maneuvered freely by the mouse until 
the user clicks to set the point in its place. As the second 
end point is dragged with the mouse, the line between the 
end points will telescope in and out in a fixed direction 
that is perpendicular to the locus polygon or line. 

The interactive three-dimensional positioning capabil
ity offered by locus constraints is one of the unique fea
tures of Converge. 

6.2 Constrained Transformation 

Aggregations of geometric primitives may be translat
ed and rotated in Converge just as they may be in any 
geometry editor. In addition, however , Converge offers 
a limited form of constrained translation, in which an 
object may be translated as a rigid body subject to sim
ple constraints. Specifically, the user may request that 
constraints on one vertex of the object be maintained 
as the object is translated . For example, an object may 
be translated such that one of its vertices remains co
incident with a stationary plane. This gives the user a 
degree of control over the translation operation similar 
to that provided by a locus constraint, and the solution 
process for the constrained point is in fact identical. The 
object is rigidly translated in lockstep with the point by 
taking the difference between the position of the point 
from one step to the next and adding it to every ver
tex in the object. Thus, as the mouse is moved, the 
object moves in three space, maintaining contact with 
the plane at one vertex. Other constraints that are ap
propriate for use in this manner include point-on-line, 
line-on-line, right-angle, and several others. 

6.3 Constrained Perturbation 

The perturbations that we applied to the floor plan de
veloped in section 3 were unconstrained in that we were 
free to drag a wall or vertex in any direction whatsoever 
without resistance. This of course violated many of the 
constraints in the design, which had to be restored by 
calling the solver when the dragging operation was com
plete. However, a violated design can have many possible 
solutions, and it is not always clear which one is desired 
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by the user. For this reason, several forms of constrained 
perturbation are also available in which some of the con
straints are continuously maintained while the geometry 
is being manipulated. Constrained transformation and 
locus specification are special cases of constrained per
turbation in which exactly one constraint is interactively 
maintained. 

Ideally, we would like to be able to maintain all the 
constraints in a design while continuously dragging ge
ometry with the mouse. In any design of significant size, 
however, the solver is simply too slow to allow interac
tive manipulation in this fashion . Someday, this will be 
an excellent way to use up the hundreds of mips that 
will sit on our desktops. For the present, however, we 
must look for alternatives that approximate this ideal be
havior. The obvious alternative is to maintain a subset 
of the constraints while the manipulation is in progress, 
and call the solver to satisfy the rest of the constraints 
when the manipulation terminates. This can give a good 
approximation of how the design should look while it is 
being perturbed if the constraints are chosen appropri
ately. 

One possibility is to choose those constraints that use 
the vertex or line being perturbed. If we allow only the 
single vertex or line to move, and hold the rest of the 
geometry fixed during the dragging operation, then this 
subset provides good results in some but not all cases. If 
one side of a rectangle were dragged, for example, all four 
right-angle constraints of the rectangle would be consid
ered, as each endpoint of the side is used in the right 
angle at its vertex and at two other vertices. Thus, the 
rectangle would scale nicely. If we tried to drag a single 
vertex of the rectangle, however, the other three vertices 
would remain fixed, and the three right-angle constraints 
acting on the vertex would lock it in place. This situ
ation may be rectified by defining a variant of the drag 
operation that can modify the geometry used by the con
straints as well as the vertex being dragged. Of course, 
this adds more free variables to the constraint system 
that must be solved and degrades interactive response, 
but still gives good results for some geometries. 

For complete generality, the constraints that control 
a perturbation may also be individually selected by the 
user. As before, the dragged vertex or line may be mod
ified solely, or all geometry of the constraint set may be 
modified. 

6.4 Automatic Positioning 

The previous sections detail ways in which constraints 
are used to guide the interactive manipulations that the 
user must perform to move an object into its place in a 
larger design . However, constraints may also be used to 
accomplish this task without the need for any manipu
lation on the part of the user. By creating constraints 
between an object and the larger design and calling the 
solver, the object may be pulled into place. 

The walls of the architectural floor plan shown earlier 
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Figure 15: The walls will be positioned using con
straints. 
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Figure 16: Previous figure after calling the solver. 

may be positioned in such a manner. Figure 15 shows an 
early stage in the design of the floor plan in which the 
outline of the plan is present along with several random
ly placed walls . Point-on-point constraints have been 
added between the corners of the walls and the outline, 
but the solver has not yet been called. Figure 16 shows 
that the desired result has been achieved after calling 
the solver. 

7 Summary 

Converge employs a number of new constraint-based 
interaction techniques that make constraint-based edit
ing easier. Constraints may be created implicitly using 
locus specification and copy operations, relieving the us
er from the need to explicitly add constraints to a design . 
The techniques of constrained perturbation and con
strained transformation provide the user with a means of 
intemctively modifying parts of a design under the con
trol of constraints that can be selected by the user . This 
allows local modifications to be made to a design without 
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solving the entire design. In addition , locus specification, 
constrained perturbation, and constrained transforma
tion offer a a new solution to the problem of positioning 
geometry in three space; they reduce the available de
grees of freedom to one or two, allowing the positioning 
to be done with a standard mouse. 

The Converge editor is the first constraint-based sys
tem to effectively incorporate constraints graphically in 
a geometric design. This feature, together with the use 
of the direct-manipulation paradigm and new interaction 
techniques, yields an editor with a look and feel that is 
substantially different from that of existing constraint
based systems. The result is a system that is easier to 
use and understand . 
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