
101

Spatio-Temporal Coherence m Ray Tracing

J. Chapman
T. w. Calvert

School of Computing Science

J. Dill
School of Engineering Science

Simon Fraser University
Burnaby, British Columbia

Abstract

The majori ty of images being rendered on sys
tems today are portions of contiguous sequences of
frames yet the usual practice is to render each frame as
an isolated image. These frames exhibit a high degree
of temporal coherence, i .e. each frame is usually very
similar to immediately preceding and succeeding frames.
This coherence is the result of an underlying spatio
temporal coherence in the model used to represent the
scene to be animated. An adaptation of the basic ray
tracing algorithm is presented which exploits this
spatio-temporal coherence. The algorithm reduces the
computational cost of image generation in sequences by
calculating the continuous solution to ray-polygon
intersections thus avoiding mul tiply redundant discrete
intersection calculations. An implementation of the
proposed algorithm is described and empirical results
are presented .

Keywords: ray tracing, image space, coherence, tem
poral , spatial

1. Introduction

Ray tracing is an extension , of the Appel! ray
casting technique, due to Whitted .2 Ray tracing is an
attractive method of rendering images because of its
simplicity, elegance, and the realism of the images it is
capable of producing. Ray tracing is based on a model
of a pinhole camera; a ray is cast from a viewing point
and passes through an element of a regular mesh over
laid on the image plane. The value given to the image
plane at the mesh element is determined by using the
ray to point sample as it interacts (reflecting, diffusing,
refracting) with the environment being modelled . As
rays are cast from the viewpoint through each of the
mesh elements a raster image of the scene is generated.
In addi tion it is often possible to extract clues to the
realistic rendering of new phenomena from the physical
method of image generation upon which the rendering
process is modelled . As a rendering technique the major
drawbacks to ray tracing are a large computational cost,

due mainly to calculating ray-object intersections, and
difficulties in the generation of realistic diffuse reflection
phenomena, e.g. colour bleeding.

The majority of work on ray tracing has been
either to expand the range of phenomena which it can
successfully render, e.g. Amanatides,3 Cook,4 Kajiya,5
Peachey,6 and Fournier,7 or to reduce the rendering
time by reducing the cost of ray-object intersections.
Reducing the cost of intersection calculations generally
requires either substituting geometrically simpler primi
tive objects for more complex ones or restructuring the
data in some way so as to eliminate unnecessary inter
section tests. The former can range from the work of
Kay8 which has provided faster intersection algorithms
for objects with convex hulls to Bouville's9 work in
finding more efficient bounding volumes for intersection
testing. In the latter area significant results have been
achieved in the hierarchical structuring of the data, not
ably the application of Octrees by Glassner10 which
employ space partitioning of the data so that a ray is
tested against objects in the order in which it would
encounter them , and the idea of hierarchically nested
bounding volumes by Rubin ll and Whitted2 which
employ object partitioning to provide bounding volume
intersection tests at increasing levels of detail in the
object . Weghorst!2 has further investigated the relative
computational advantages of bounding volume selec
tion , hierarchical environment descriptions and visible
surface preprocessing.

As in scanline rendering algorithms, attempts
have been made to exploit coherence of various types in
ray tracing algorithms. Heckbert13 has introduced the
notion of 'beams' which exploit the image coherence of
polygonal surfaces to perform antialiasing and reduce
rendering time. Rather than cast individual rays Heck
bert casts beams with the initial beam covering
(corresponding to) the en tire image plane. As the beam
strikes objects it is subdivided and the process continues
recursively in a manner reminiscent of Warnock.14

Aliasing is reduced since we are no longer simply point

Graphics Interface '91

sampling. Since coherence is maintained through
refl ection by a polygonal (planar) surface, duplicate
reflection calculations are avoided (as compared to
several discrete rays which strike the same object). A
perhaps more subtle approach to using coherence is
made by Joy15 in the calculation of ray intersections
with parametric surface patches. The calculation is
made by a quasi-Newton iterative method and informa
tion from the previous ray intersection is used to pro
vide the initial values for the iteration. Hubschman16

has attempted to take advantage of frame- to-frame
coherence in reducing calculations. In his model the
only movement allowed is that of the view point and
objects are required to be convex. Preprocessing occurs
for the initial frame to determine object visibility and
succeeding frames are then generated after determining
which objects have changed their visibility status thus
reducing redundant visibility tests. Glassner17 has
demonstrated modest performance increases, rendering
simple (small numbers of spheres and polygons) motion
blurred sequences, by employing 4D bounding volumes
(Boyse,18 Wang19) to reduce redundant intersection
calculations. Korein20 has employed image and object
space coherence to reduce temporal aliasing artifacts,
however this method is reported [Cook21 1 to suffer
drawbacks, among them ' holes' in objects that change
perspective severely during one frame.

Each of the above methods relies on some form of
object space coherence. In its simplest form ray tracing
generates a single image from a kinetically static, three
dimensional, model. The sampling process proceeds in
a regular manner with adjacent pixels being rendered
sequentially. In any scene signifi cant portions of the
image exhibit coherence due simply to the " physical"
coherence of the objects being modelled .

If a temporal dimension is added to the process
the ray tracer can generate a sequence of frames ; this is
usually done by generating each frame sequentially to
produce a contiguous sequence of frames. There is a
great deal of image space (frame-to-frame) coherence in
such a sequence. If this were not so the human viewer
would be unable to make sense of the image sequence
being presented. Further details on image space coher
ence in (commercial) animation and an associated algo
rithm can be found in Chapman.22 This form of coher
ence is a direct result of the spatial and temporal coher
ence represented in the model used to produce the ani
mation, i.e. each primitive object has spatial coherence
and each trajectory has both spatial and temporal
coherence and thus each combination of object and tra
jectory exhibits spatio-temporal coherence. We are thus
led to ask if we can construct an algorithm which can
successfully exploit this spatia-temporal coherence to
reduce the rendering time of an animation. The algo
rithm described in this paper is an attempt to address
this problem.

102

2. Spatio-Temporal Coherence

Consider a 'typical' ray-tracer used to produce a
sequence of frames for an animation. A data structure,
representing the model at time 0, is constructed and the
ray-tracer is invoked to produce the first frame of the
animation. Then the data structure is modified to
represent the state of the model at the next frame (time)
and the ray-tracer is invoked again to produce the next
frame of the animation. Repetition of this process con
tinues until each frame of the animation has been pra
duced. When the ray-tracer is rendering frame n it
employs none of the information determined during the
rendering of frames n-1 , n-2 , 1, o. Figure 1 illus
trates this process for three contiguous frames; the large
square represents the portion of the image plane being
rendered and the central square represents an arbitrary
pixel, P~j of this image; the polygon moves from right
to left as time increases.

Figure la.

Figure lb.

Graphics Interface '91

Figure 1c.

Figure 1. Intersection of a pixel with a moving polygon,
in three successive frames.

As each frame is rendered in turn a ray R~j is cast to
point sample the value for P~j; each time this occurs
R~j must undergo an intersection test with the polygon
(and surrounding bounding volumes if they are
employed in the data structure) and, as can be seen, a
different intersection point on the polygon's surface is
determined for each frame. This process occurs in a
manner which does not appear to recognize any rela
tionship between the three intersection points generated
however the three points are related to each other by a
function of both the polygon's trajectoryand orientation
and the origin and direction of R~j' This function can
be determined and all the intersection points between
R~j and the polygon can thus be determined once for
the entire duration of the animation.

The following is a description of an algorithm
which operates in the suggested manner:

Procedure RayTrace
1. Read model descrption
2. Create data structure representing model.
3. FOR i =1 TO number of rows
4. FOR j=l TO number of columns
5. Create primary ray R~j for pixel P~j
6. Trace(P~j, R~j, T.tart , Tend)

Proced ure Tr ace(R, T 1, T 2)
1. Find all object intersections Ik with R during

(T1 , T2)

2. Sort intersections by initial intersection time
3. FOR EACH h
4. Discard portions of Ik occluded by some 1/
5. Let Ir be remainder of Ik
6. Let m = start time of Ir
7. Let n = end time Ir
8. FOR EACH secondary ray S~j generated by Ir
9. Trace(P~j, S~j, m, n)
10. Shade P~j for the time period represented by Ir

103

There are several potential advantages to the
above approach. The model is only read once and the
internal data structure is created once regardless of the
number of frames to be rendered; for large models and
complex structuring schemes this could result in
significant time reductions. If bounding volumes are
employed then the ray for a given pixel P~j will partici
pate in an intersection test with any given bounding
volume at most once (in contrast to the 'traditional'
algorithm which may intersect the ray for P~j with the
same bounding volume once for each frame). As for the
bounding volume intersections, the ray for P~j will be
intersected with any given primitive object at most
once, regardless of the duration of the animation. Addi
tionally, portions of the shading calculation for a sur
face can be calculated once regardless of the duration of
the intersection.

3. Ray Intersections

The algorithm must be capable of performing two
types of intersections: ray-bounding volume and ray
object. In the algorithm, as implemented, a typical
hierarchical data structure is employed to represent the
model with bounding volumes (axis aligned boxes) con
structed from slabs [Kay23) . The bounding volumes are
static, i.e. each bounding volume is fixed for all time.
When an object is added to the data structure the tra
jectory (if any) associated with it is examined and the
bounding volume is created so as to contain the object
at all times during the animation sequence. This means
that ray intersections with the bounding volumes can
proceed in the usual manner. There are potential penal
ties for this approach however. If we make the simpli
fying assumption that the object exists in a flux of rays
with both uniform density and a uniform distribution of
ray direction, then the number of ray-bounding volume
intersection tests required will increase as a function of
the increase in surface area of the bounding volume
(further discussion is available in Arv024) .

This surface area in turn depends on the relative (to the
object size) motion of the object along each coordinate
axis, e.g. if the object trajectory and object size are such
that the component, of object motion, along each axis is
twice the extent of the object in that direction then the
surface area of the bounding volume will be eight times
larger than if the object were static. This in turn means
that eight times as many rays will pierce the bounding
volume during the animation as would pierce the
corresponding bounding volume during one frame of
animation using a 'standard' ray tracer. Therefore, on
average, more bounding volume intersection tests will
be required by this algorithm if the average relative
motion is greater than the number of frames to be ren
dered. Further investigation of alternative bounding
volume techniques is clearly in order.

Graphics Interface '91

4. Ray-Polygon Intersections

The essential requirement of the algorithm is to
be able to produce a description of all the intersection
points between a ray and a (possibly) moving polygon
for any given temporal interval. In the case of calculat
ing the intersection of a ray with a static convex or con
cave polygon a common method (see also Snyder25) is
to first calculate the intersection of the ray with the
plane in which the polygon lies. Then the polygon and
ray-plane intersection point are projected onto a plane,
usually either the X - Y, X -Z, or Y -Z plane for
efficiency's sake. The coordinate system is then
translated so that the ray-plane intersection point lies at
the origin and the number of zero-crossings of the posi
tive X-axis (in the case of projection onto the X - Y or
X -Z plane) by polygon edges is counted. If an odd
number of crossings is detected the intersection point is
within the polygon else the ray does not intersect the
polygon. In order to adapt this to the case of a moving
polygon, in a straightforward way it would be necessary
to calculate the periods during which an edge produces
a zero crossing. These periods would have to be calcu
lated for each polygon edge and then sorted and merged
to produced a list of zero-crossing counts ordered by
time which in turn determines at what periods the ray
intersects the polygon (if at all). This still leaves the
question of calculating the actual ray-polygon intersec
tion points for the periods of intersection. A simpler
approach is to note that intersecting a static ray with a
dynamic (moving) polygon is equivalent to intersecting
a dynamic (changing origin and/or direction) ray with
a static polygon . In what follows it is assumed that
each polygon has three translation fun ctions and three
rotation functions and that these can be represented as
polynomial functions of time.

Assume we have a parametrically represented ray
R,

where Ro = [xo Yo zo] and Rd = [Xd Yd Zd] and s is the
ray parameter; a polygon P , with normal Fr = [AB C],
which lies in the plane defined by

Ax+ By+ Cz+ D=O

When P is static the intersection of R with P's plane is
given by

s=

Now if P is dynamic it will have three translation poly
nomials of the form

104

PTy(t)=ay+byt+ cyt2
... and

PTz(t)=az+bzt+ cz t2 (4)

and , similarly, three rotation polynomials PRr(t),
PRy(t) and PRz(t). As stated above it is equivalent to
move R rather than P, e.g. to apply -Pr(T) ,-Py(T)
and - Pi T) to the ray origin . This results in a form u
lation of R in two parameters

with

Xo(t) , Yo(t) , Zo(t) , Xd(t) , Yi t) and Zd(t) being poly
nomial functions of time. As in the static case we wish
to determine at what points, if any, R intersects the
plane of P; this intersection is now given by

set) = Fr' Ro(t) + D

Fr·Rd(t)

and so we can evaluate s, and thus R, for any time t.
Note that if the coefficients of t in s(t) are all zero then
the intersection point is fixed in space for all t, i.e. even
though the polygon may be moving the intersection
point is fixed in space for the duration of the
intersection(s) of R with P; this only occurs if P is static
or if P is only translated and the direction of translation
is orthogonal to P's surface normal.

We now have a parameterized description of the
intersection points of R and the projection plane as a
function of time. Specifically, the intersection values of
each coordinate are given by:

X(t) = Xo(t) + s(t)Xd(t) (1)
Yet) = Yo(t) + set) Yd(t) (2)
Z(t) = Zo(t) + s(t)Zit) (3)

The two functions which correspond to the axes of the
projection plane (e.g . X (t) and Y(t) if the projection
plane is X - Y) describe a curve of intersection in the
plane. The next step is to determine which portions(s)
of this curve, if any, lie within the projection of P onto
the plane. Assume that the projection plane is the
X - Y plane and an edge of the projected polygon is
coincident with the line
y(x) = go + glx (4)

then combining equations 1, 2 and 4
Yo(t) + set) Yit)=go+gdXo(t) + s(t)Xit)] (5)

If we let ,

Graphics Interface '91

P2 (t) = N· Rd (t)
P3(t) = Yo(t)-glXo(t) - go
and
p~(t) = Yit) - glXit)

then equation 5 becomes

The solution to this gives the time(s) at which the curve
intersects the line and must still be checked, e.g. to see
if an intersection is on the portion of the line
corresponding to the polygon edge (Figure 2). If the
rotation functions, Hit), are all degree 0 then solving
set) requires solving polynomials whose degree is at
most the maximum degree of the polynomials compris
ing Ro(t) . Otherwise it may be necessary to solve poly
nomials of degree twice that of the maximum degree of
the polynomials comprising Hd (t). As this intersection
testing is repeated for each edge, a list of intersections,
sorted by intersection time, is created. These points del
ineate sections of the curve which are inside/outside the
polygon (see Figure 3); an inside/outside test, such as
that described at the beginning of this section, must be
applied to determine whether the first point is an entry
or exit to the polygon.

Figure 2. The false intersection (C) is culled .

Intersects: AB

Figure 3a.

105

.. -.-. . -. .'
" -. : . . ~

Intersects: AB, CD

Figure 3b.

· · · · ~
D~

~ . .

Figure 3. Examples of intersection curves.

When the resulting list of intersections between
the ray and polygon has been generated a record is con
structed for each which describes the duration of the
intersection, the minimum and maximum values of s
and the coefficients of the polynomial which generates s.
These records are placed on a list in sorted (by initial
intersection time) order; since a list head is kept for
each frame this is a constant time operation. After all
intersection records for the ray have been generated for
all polygons which the ray intersects, the list is pro
cessed so that entries which overlap in time are split
according to their respective values for s, e.g. if one
record represents a partial occlusion of another the
occluded record is truncated or split. The result is a
time ordered list of intersections which are closest to the
ray origin. The pixel's value. for the duration of the
animation can now be determined; shading for opaque
surfaces can be done directly and as each record is pro
cessed reflected rays are generated as needed. In the
case of a record resulting from the intersection of a ray
with a moving polygon the origin of the secondary rays
will only be constant under the conditions previously
stated . Initially this may seem to imply that the capa
bility to exploit coherence has now been lost, that it will
be necessary to cast individual secondary rays for each
frame when the primary ray intersects a moving surface.
However we have already embedded the ability to deal
with dynamic rays in order to treat moving polygons
and since the functions describing the movement of the
secondary ray are simply polynomials in t, of the same
order as the original polygon's movement polynomials,
we need merely include this information in the descrip
tion of a ray - when the secondary ray is tested against
a moving polygon the polynomials from both are com
bined prior to performing an intersection test.

5. Empirical Results

A partial (translation only) im plemen tation of
the algorithm has been tested on a Silicon Graphics Iris
4D platform. Three test cases were constructed and ani-

Graphics Interface '91

mations generated both wi th the algorithm descri bed
herein and with a "standard " ray tracer. In the first
case the model consi ts of a single static polygon filling
the entire image. In the second case the model consists
of two polygons: one large " background " polygon
which fill s the entire image plane and a smaller polygon
placed in front of the form er, which moves from the
lower left corner of the image to the upper right corner
of the image. While these two cases are simple they
provide information as to the relative performance of
the algorithm under easily understood conditions. The
first case is 'ideal ' from the point of view of the algo
rithm and essentially defin es the maximum speedup, for
the particular implementation , for a sequence of that
length. In order to assess the algorithm performance
with a scene of more realistic complexity a model con
sisting of 2312 polygons was constructed from digital
terrain data. In this case the animation consisted of a
' fly-by ' of the terrain, i.e. every polygon was in motion
(Figure 4 shows two frames from this animation). Each
animation was 100 fram es in length , was rendered at a
frame rate of thirty frames per second and an image size
of 400 (rows) by 512 (columns) pixels. The perfor
mance measurements resulting from these tests are given
in Figure 5. Columns AI, A2, and A3 report results
from the standard ray t.racer for each of t.he t.hree ani
mations; similarly columns BI, B2 and B3 report results
for the ray tracer described in this paper for each of the
three animations. The first row of each table is the
number (thousands) of bounding volume tests that
occurred ; t.he second row is the number (thousands) of
bounding volume tests that resu lted in an intersection
with the bounding volume; the third row is the latter
figure as a percentage; the fourth row is the number
(thousands) of polygon intersection tests and the fifth
row is the number (t.housands) of these tests which pro
duced an intersection between the ray and polygon
being tested; the sixth row is this latter figure expressed
as a percentage and the last row is the observed cpu
time in seconds.

6. Conclusions

It can be seen that th e program based on the pro
posed algorithm fllns significantly faster and produces
significantly fewer polygon and bounding volume inter
section tests than the 'standard' ray tracing program.
Work is currently under way both to add the polygon
rotation capability and to investigate potential furth er
speed ups. Areas of interest in th e latter case include
intersection heuristics, bounding volumes and texture
mapping . Calculating the continuous solution to a
ray-polygon intersection can be relatively expensive in
comparison to a single discrete intersection calculation ;
if a candidate polygon is sufficiently small or moving
sufficiently rapidly t.he dynamic algorithm requires more
t.ime than repeat.ed invocat.ions of the static algorithm.
It is expected that employing a simple (rapid) heuristic
to select between which of th e in ter ection algorithms to
employ , for each case, will produce a hybrid rendering

106

algorit.hm with increased performance. As previously
mentioned the bounding volume scheme described in
this paper is naive and suffers from inflation due to
object motion. This is substantiated by the results
shown in Figure 5 (columns A3 and B3) for the most
complex test animation; the number of bounding
volume intersections by rays has increased and the
number of ray-polygon tests which actually produce an
intersect.ion has decreased by a proportional amount.
Given that any given ray is only tested against a partic
ular bounding volume once, independent of the number
of frames , it may be worthwhile to use a bounding
volume scheme which would normally be considered too
expensive (slow) in a standard single frame ray tracer.
In the area of texture maps it seems possible to exploit
the information contained in the in tersection records to
access a map more efficiently, e.g. calculating the map
index for an arbitrary quadrilateral can be a relatively
expensive operation and it appears possible to eliminate
many redundant calculations if the number and loca
tion of all intersections with a polygon are known in
advance. The interested reader may also wish to refer
to Catmull 26 which presents an image space solution to
multiple intersections of a pixel by dynamic polygons,
as part of an algorithm to produce motion-blurred am
mation from polygonal models.

Figure 4. Two fram es from the third test animation .

Graphics Interface '91

Al A2 A3

B.Vol. Test 20,480 61,440 422,532

B. Vol. Succ. 20,480 40,960 139,316

% 100 66 33

Poly. Test 20,480 20,480 28,913

Poly. Succ. 20,480 20,480 12,215

% 100 100 42

Seconds 4080 5160 16,020

Figure 5a. Discrete algorithm.

B1 B2 B3

B.Vol. Test 204 614 17,309

B.Vol. Succ. 204 614 11,515

% 100 100 67

Poly. Test 204 409 5,620

Poly. Succ. 204 327 1,137

% 100 80 20

Seconds 349 411 2,025

Figure 5b. Continuous algorithm .

Figure 5. Experimental results of 'standard ' ray tracer
(5a) and ray tracer exploiting spatio-temporal coherence
(5b) each rendering three animation sequences.

References

1.

2.

3.

4.

5.

6.

A. Appel, "Some Techniques for Shading
Machine Renderings of Solids," Proc. AFIPS
JSCC, vo!. 32, pp. 37-45, 1968.

T. Whitted, "An Improved Illumination Model
for Shaded Display," CA CM, vol. 23, no. 6, pp.
343-349, June 1980.

J. Amanatides, "Ray Tracing with Cones," Com
puter Graphics, vol. 18, no. 3, pp. 129-135, July
1984.

R . L. Cook, T. Porter, and L. Carpenter, "Distri
buted Ray Tracing," Computer Graphics, vol.
18, no. 3, pp. 137-145, July 1984.

J . T . Kajiya and B. P . VonHerzen, "Ray Tracing
Volume Densities," Computer Graphics, vo!. 18,
no. 3, pp. 165-175, July 1984.

D. R. Peachey, "Modelling Waves and Surf,"
Computer Graphics, vol. 20, no. 4, pp. 65-74,
August 1986.

107

7. A. Fournier and W. T. Reeves, "A Simple Model
of Ocean Waves," Computer Graphics, vol. 20,
no. 4, pp. 17-27, August 1981.

8. T. L. Kay and J. T. Kajiya, "Ray Tracing Com
plex Surfaces," Computer Graphics, vol. 20, no.
4, pp. 269-278, Aug. 1986.

9. C. Bouville, "Bounding Ellipsoids for Ray
Fractal Intersection," Computer Graphics, vol.
19, no. 3, pp. 45-52, July 1985.

10. A. S. Glassner, "Space Subdivision for Fast Ray
Tracing," IEEE Computer Graphics & Applica
tions, vol. 4, no. 10, pp. 15-22, Oct. 1984.

11. S. M. Rubin and T. Whitted, "A 3-Dimensional
Representation for Fast Rendering of Complex
Scenes," Computer Graphics, vol. 14, no. 3, pp.
110-116, July 1980.

12. H. Weghorst, G. Hooper, and D. P . Greenberg,
"Improved Computational Methods for Ray
Tracing," ACM TOG, vol. 3, no. 1, pp. 52-69,
January 1984.

13. P . S. Heckbert and P. Hanrahan, "Beam Tracing
Polygonal Objects," Computer Graphics, vol. 18,
no. 3, pp. 119-128, July 1984.

14. J. Warnock, "A Hidden-Surface Algorithm for
Computer Generated Half-Tone Pictures, " TR
4-15, University of Utah Computer Science Dept.,
1969.

15. K. I. Joy and M. N. Bhetanabhotla, "Ray Trac
ing Parametric Surface Patches Utilizing Numeri
cal Techniques and Ray Coherence," Computer
Graphics, vol. 20, no. 4, pp. 279-285, Aug. 1986.

16. H. Hubschman and S. W . Zucker, "Frame to
Frame Coherence and the Hidden Surface Com
putation: Constraints for a Convex World,"
A CM TOG, vol. 1, no . 2, pp. 129-162, April
1982.

17. A. S. Glassner, "Spacetime Ray Tracing For Ani
mation," IEEE Computer Graphics & Applica
tions, vol. 8, no . 2, pp. 60-70, March 1988.

18. J . W. Boyse, "Interference Detection Among
Solids and Surfaces, " CA CM, vol. 22, no. 1, Jan .
1979.

19. W. P . Wang and K. K. Wang, "Geometric
Modeling for Swept Volume of Moving Solids,"
IEEE Computer Graphics and Applications, vol.
6, no. 12, pp. 8-17, Dec. 1986.

20. J. Korein and N. Badler, "Temporal anti-aliasing
in computer generated animation," Computer
Graphics, vol. 17, no. 3, pp. 377-388, July 1983.

21. R. L. Cook, "Stochastic Sampling and Distri
buted Ray Tracing, " in An Introduction To Ray
Tracing, ed. A. S. Glassner, p . 181, Academic
Press, 1989.

Graphics Interface '91

22. J . Chapman, T . W. Calvert, and J. Dill,

"Exploiting Temporal Coherence in Ray Trac

ing," Proc. Graphics Interface ' 90, pp. 196-204,

May 1990.

23. T . 1. Kay and J . Kajiya, " Ray tracing complex

scenes," Computer Graphics, vo!. 20, no. 4, pp.

269-278 , August 1986.

24. J . Arvo, " A Survey of Ray Tracing Acceleration

Techniques," in An Introduction To Ray Trac

ing, ed. A. S. Glassner, pp. 209-213, Academic

Press, 1989.

25. J. M. Snyder and A. H. Barr, " Ray Tracing

Complex Models Containing Surface Tessella

tions," Computer Graphics, vo!. 21, no. 4, pp.

119-128, July 1987.

26. E. Catmull , " An Analytic Visible Surface Algo

ri thm for Indepenen t Pixel Processing ," Com

puter Graphics, vo!. 18, no . 3, pp. 109-115, July

1984.

108

Graphics Interface '91

