
109

Exploiting Shadow Coherence in Ray Tracing

Andrew Pearce

Alias Division, Alias Research Inc.
110 Richmond Street East

Toronto, Ontario
M5C IPl

David Jevans

Apple Computer Inc.
20705 Valley Green Dr.

Cupertino, California
95014

1. Abstract

We present a method, based on Haines' shadow
caches, for accelerating shadow ray calculations for ray trac­
ing processes which use spatial subdivision and surface tessel­
lation. Trees of shadow voxel caches, containing references
to both objects and voxels, are used to quickly determine
whether or not a surface lies in shadow. This method does
not require an additional preprocessing stage before render­
ing, and its memory requirements are small.

2. Resume

Nous presentons une methode basee sur les ombres en
memoire cache de Haines, qui utilise la subdivision spatiale et
la tessellation de surfaces afin d'accelerer le calcul de rayons
d'ombre dans un programme de lance de rayon. Des arbres de
voxels d' ombre en memo ire cache, contenant des references
aux objets ainsi qu'aux voxels, sont utilises pour determiner
rapidement si une surface se trouve dans une region d'ombre.
Celle methode ne rcquiert pas d'etape additionelle de
pretraitement avant le rendu de l'image, et ses besoins en
memoire sont faibles .

Keywords: Ray Tracing, Shadow Testing, Shadow Caching,
Spatial Subdivision

3. Introduction

Shadow calculation is essential to the synthesis of real­
istic computer generated images. Ray tracing and radiosity
are two commonly used rendering techniques that produce
shadows as a natural part of the rendering process. Despite
the recent advances in radiosity techniques [Cohe88J, ray
tracing is still the most practical solution for rendering scenes
which contain specularly transmissive surfaces, and can be

used in the calculation of radiosity form factors [Wal187,
Wa1l89J. It is with this in mind that we examine the ray trac­
ing shadow testing calculation.

Ray tracing [Whit80J is one of the simplest and most
elegant rendering algorithms in existence. The ray tracing
algorithm traces rays of light backwards from the eye, through
the pixel grid of the screen, and into the scene where they
reflect off or refract through surfaces and finally hi t a diffuse
surface or exit the bounds of the scene. Shadows are calcu­
lated by tracing a ray from each ray/surface intersection point
toward each light source. If a shadow ray strikes an opaque
surface before reaching the light source, then the intersection
point is in shadow.

When testing a ray/surface intersection point to see if it
lies in shadow, it is sufficient to know that some opaque
object lies between it and the light source. This is a simpler
problem than visible surface determination, where the first
object that is intersected by the ray must be found, and a
number of acceleration techniques have been developed.

The scenes we are interested in ray tracing contain
thousands of parametric surface patches that are tesselated
into meshes of triangles to facilitate and accelerate ray/patch
intersection calculations [Swee 86, Snyd87J. Since spatial
subdivision techniques [Glas84, Fuji86, Avr087, Snyd87,
Jeva89J are widely used to accelerate the ray tracing process,
it is desireable to take advantage of these spatial subdivision
structures in a shadow testing acceleration algorithm. This
paper presents such an algorithm.

4. Previous Work

Haines and Greenberg [Hain86J introduced the light
buffer to quickly identify and reduce the number of potential
shadowing objects . A light buffer is a cube surrounding a

Graphics Interface '91

light source, where each side of the cube is subdivided into
regions which contain a list of the objects that could poten­
tially block light travelling from the light source in the
region's direction. When testing a ray/surface intersection
point for shadowing, the region of each light buffer which
contains the projected intersection point is queried. In many
cases, trivial shadowing or nonshadowing can be determined
without casting a shadow ray, substantially improving perfor­
mance. The main drawback of the light buffer method is that
it requires the creation of large data structures which are used
only for shadow acceleration. The creation of these data struc­
tures entails preprocessing every object 6 times for each light
source in the scene. This takes NxLx6 operations, where N is
the number of objects and L is the number of lights. As N
becomes large, this approach becomes less desirable.

Eo and Kyung [E089] introduced a hybrid shadow test­
ing scheme for ray tracing which combines shadow polygons
[Crow77] with traditional ray tracing shadow testing tech­
niques. The algorithm calculates shadow polygons, which
define shadow volumes, for each light source and places them
into the scene. When a ray is traced through the scene, a
count is made of the number of shadow polygons that it inter­
sects before hitting a surface. When a ray/surface intersection
is found, the shadow polygon intersection count indicates
whether or not the point lies within a shadow volume. At
points where shadow determination is too difficult to deter­
mine via shadow polygons, the algorithm resorts to the tradi­
tional shadow testing method, and traces a shadow ray toward
each light source. Creating shadow polygons requires
knowledge of object silhouettes and requires special case sha­
dow polygons to be stored in the scene, leading to extra inter­
section calculations for every ray, and the added costs of
preprocessing and increased memory use. The complexity of
creating shadow polygons for even simple patches is a limit­
ing factor of this hybrid approach.

Woo and Amanatides [Woo90] introduced voxel occlu­
sion testing, a shadow testing acceleration technique that
makes use of uniform space subdivision grid structures. In a
preprocessing step, each voxel of the uniform space subdivi­
sion grid is marked as full, null or complicated occlusion for
each light source in the scene. The occlusion status of a voxel
is calculated by projecting silhouette edges of objects from
the point of view of a light source onto the voxel grid struc­
ture. Voxels that lie entirely inside or outside these silhouette
edges are marked as full or null occlusion, and voxels that lie
on a silhouette edge are marked as complicated occlusion. If
a ray/surface intersection point lies in a voxel which is
marked as full occlusion, then it is in shadow. If the intersec­
tion point lies in a voxel marked as null occlusion, it is not in
shadow. When a ray/surface intersection point lies in a voxel
that is marked as complicated occlusion, a shadow ray is
traced toward the light source. If the shadow ray encounters a
voxel that is marked as full or null occlusion as it travels
toward the light source, then traversal can halt. As with the
previous method, this technique requires the calculation of
object silhouettes from the point of view of each light source.
Further, the marking of voxels becomes complicated if the

110

spatial subdivision structure is other than a uniform voxel
grid, more so if lazy voxel subdivision is involved.

5. Shadow Caching

Haines [Hain86] proposed the shadow cache method to
accelerate shadow testing without preprocessing or
knowledge of object silhouettes. Each light source maintains
a shadow cache, which stores a reference to the opaque object
that last cast a shadow from the light source, or a null refer­
ence if the last shadow ray fired toward the light source did
not encounter a shadowing object. Before a shadow ray is
traced toward a light source, the object in the light source's
shadow cache is tested for intersection. If the shadow ray
intersects the object, then the object occludes the light source,
and further processing is not required. If the shadow ray does
not intersect the object, then it must be traced toward the light
source until it hits the light source or an occluding object.

The shadow cache method takes advantage of the spa­
tial coherence of a scene by assuming that successive shadow
rays fired toward a light source will emanate from intersection
points adjacent to previous intersection points, an assumption
that is valid for scenes consisting largely of diffuse surfaces.
This assumption may not be valid, however, if the scene con­
tains spccularly reflective or transparent objects, because suc­
cessive shadow rays will generally not emanate from adjacent
intersection points.

6. Shadow Voxel Caching

Our method is a two-part extension of Haines' shadow
cache method. Since we are dealing with surface tessellations,
the expected amount of object coherence is smaller than if we
were dealing with polygonal or implicit surfaces which tend
to be larger than triangles and cover more of the screen. To
improve upon the small amount of object coherence, shadow
caches are modified to additionally store a reference to the
voxel which contains the cached occluding object. This sha­
dow voxel cache technique is based on the assumption that if
the cached object does not occlude the light source, it is likely
that one of the objects in the same voxel does.

7. Shadow Voxel Cache Trees

To avoid incorrect shadow caches when shadow test­
ing ray/surface intersection points of reflected and refracted
rays, each light source maintains a binary tree of shadow
voxel caches, where each node has a child for reflected rays
and a child for refracted rays. When testing a point for sha­
dowing, the tree level of the ray which spawned the shadow
ray is used to index into the shadow voxel cache tree of the
light source.

8. Drawbacks
The drawback of shadow cache methods is that the

cached objects are always tested for intersection with a sha­
dow ray, even if they do not lie near the path of the ray. This
can happen when the spawning location, the intersection point
that is being shaded, changes drastically from ray to ray. The

Graphics Interface '91

spawning location changes drastically when adjacent rays
intersect objects at different locations in the scene; when the
tracing of a new scanline begins; and when a highly curved
surface causes reflected or refracted rays to scatter widely.

Part of the problem can be avoided by setting the sha­
dow voxel caches to null at the begining of each new scan­
line, or by tracing scanlines in alternating directions, where
even numbered scanlines sweep left to right across the screen
and odd numbered scanlines sweep right to left.

9. Avoiding Multiple Checks of the Shadow Voxel
Cache Objects

If a shadow ray does not intersect the cached object or
any of the objects in the cached voxel, it is traced through the
scene toward the light source. A potential waste of computa­
tion will occur if the shadow ray enters the voxel that is refer­
enced by the light source's shadow voxel cache, since the ray
will be retested for intersection with all of the objects in the
voxel. A simple technique to avoid this duplication of com­
putation (Ama87,Pear87,Aman87] is to assign a unique
identification number to each ray so that objects will be tested
for intersection with any given ray only once. Once an object
is tested for intersection, the ray's number is stored in a last
ray field in that object. Before testing an object for intersec­
tion, the ray's number and the last ray field of the object are
compared. If the numbers match, then the object has already
been encountered and tested for intersection with the ray and
has been eliminated from the set of possible intersecting
objects, and should not be retested.

To avoid testing the spawing object for intersection
with a shadow ray, a common technique is to add a small
epsilon value to the origin of the shadow ray along its direc­
tion of travel. An alternate technique for planar objects is to
set the object's last ray field to the shadow ray's number
before starting the shadow test.

Field Size Purpooe

last_object 4 bytes .> last object intersected at this level

last_voxel 4 bytes .> the voxel which the last object was in

refraction_ray 4 bytes .> another of these structures

reflection_ray 4 bytes .> another of these structures

Table 1. Shadow Tree Structure

10. Shadow Voxel Cache Tree Data Structure
Each light source must have a tree of shadow voxel

cache structures. The shadow voxel cache data structure is
small in size, and its fields are outlined in Table 1. If a rea­
sonably deep shadow tree is allowed, for example a maximum
of 10 bounces, the storage requirements of a shadow voxel
cache tree on a 4 byte integer machine is 32 kilobytes. For
most scenes a more reasonable maximum of 5 bounces
requires less than 1 kilobyte per shadow voxel cache tree. We
shall refer to a shadow voxel cache structure as a shadow_tree
structure for the purposes of our example algorithm.

111

11. The Shadow Voxel Cache Tree Algorithm
Figure 1 gives an outline of the shadow voxel cache

tree method in C pseudo. The shadow ray has been generated
before the check _shadowing routine is called, but the
ray/voxel traversal initialization does not occur until the
traverse _ yoxels Jor _shadows routine is called. Note that only
opaque occluding objects are stored in shadow caches.

The routine test_ objs _In _ voxel_for _ sbadowsO
returns hit = TRUE on first affirmed intersection with an
opaque object, and ignores transparent objects.

The routine traverse _ voxels Jor _ sbadowsO intersects
transparent and opaque objects and sorts the intersections for
proper attenuation of the light intensity. If mUltiple objects are
hit, then all of the objects intersected must be transparent, and
the object returned is arbitrarily the first one. Tracing of the
shadow ray halts once the light source has been reached.

float checx_,hadowing (ray, light, path, spawning_rAy_level)

RAY_REC ·ray; 1* Ray from shading point *1

I- to light source - I
LIGHT REC - light; I- The light source we are -I

int

int

-
I- i nterested in . -I

path; I- Bit table describi ng current -I
I - position in the vision ray tree. -I

spawning_ra y_ level; I- Level of the ray -/

,a spawning the shadow ray . *'
unsigned int Mask :

shadow tree *cac he :

cache - light->cache_tree:

Mask - OxO} ; '* If the spawning ray's level is 0 (primary ray), *' ,a then we use the head of the cache_tree. a,
for Cl - 0; i < Spawning_ray_level: ++i) (

if (Mask , path) cache - cache->refraction_ray:

e l se cache - cache->reflection_ray;

Mask - Mask « 1 ; '* Shift mask left 1 bit *'
if (cache->last_object ! - NULL)

, . intersect_o b ject() marks object as having *' '* been intersect ed by this ray . *'
hit - intersect_object{ ray , cache->last_ object,

'object);

if (hit) (

return{l.O); '* full shadowing *'
cache->last_object - NULL: '* object was not hit *'
if (cache->last_voxel ! - NULL) ('* implied !hit *'

if (hit - test_objs_in_voxel_for_shadows

(ray, cache->last_voxel, 'object))

if (hit_not_in_ voxel(ray, object))

cache->last_ voxel - NULL ;

cache->last_object - object ;

return (l .O);

'* voxel did not supply a hit *1
cache->last_voxel - NULL;

Graphics Interface ' 91

if C !hit - traverse_ vo xels_for_shadows(ray , ' ob ject ,

&voxel , 'shadow_ percent)

11 (objec t->transparency_value> 0.0» (

cache->last_ob ject - NULL;

c ache-> la s t_voxel - NU LL;

else (

/- The object was NOT transparent, - /

/- cache the into . * /

cache->last_objec t - object:

cache->last_voxel - voxel ;

return (shadow_percent);

Figure 1. Shadow Voxel Cache Algorithm

12. Creation or the Ray Path Bit Table
Indexing into the shadow voxel cache tree is aided by a

bit table, the paJh variable in Figure I, which represents the
path that the spawning ray took in terms of reflection and
refraction bounces. A set bit in the bit table indicates that the
ray refracted at that level, while an unset bit indicates a
reflection. Each new ray that is spawned updates the bit table
to mark its path, as shown in Figure 2.

Refraction Ray:
Mas k ~ axa l « Spawning_ray_ level ;
1* Turn on correct bit . *1
path = path I Mask;
trace(1* refraction ray *1);
path = path & -Mask ;

ReHection Ray:
Mask = axOl « Spawn ing_ray_level ;
path - path & - Mask;
trace (1* reflection ray *1);

1* NOTE: *1
1* « is a bitwise left shift of the

1* left operator by right operator

I' is a bitwi se logical OR operation
bits

1* & is a bitwise logical AND operation

1* is a bitwise negation operatio n

*1
*1
*1
*1
*1

Figure 2. Creating the Path Bittable for Secondary Rays

13. Results

All of the test scenes were rendered on an unloaded
SGI VOX, a 33MHz MIPS processor based machine with
64Mb of real memory. A vendor specific profiler named pixie
was used to count machine cycles in various routines. The
cycle count is accurate and does not vary due to processor
load. All times and specdups in Table 2 are in terms of
machine cycles. The speedups reported are with respect to
total number of cycles for the entire ray tracing operation
including reading the scene description files, and tessellation
of objects. All images except Spanky were calculated at 640
by 486 pixels with 9 samples per pixel (some samples shared
between adjacent pixels). Spanky was calculated at 512 by
512 pixels.

112

In Table 2, the Number of Rays represents the total
number of rays, including shadow rays.

The Shadow Cache Success Rate reports the percen­
tage of times a shadow cache object provided positive sha­
dowing when tested for intersection.

The Voxel Cache Success Rate shows the percentage of
times the cached voxel provided positive shadowing when the
shadow cache failed .

The Voxel Cache Speed Up Over Shadow Cache Alone
describes the percentage fewer cycles which the voxel cache
method used, and Voxel Cache Tree Speed Up Over Voxel
Cache Alone shows the percentage cycles saved when a tree
of voxel caches is employed (a negative value indicates a
slow down). Note that these speedups are with regard to the
entire ray tracing process, not just with regards to shadow
testing .

Scene 64.000 ji~=I 64,000 jiru:=I Spanky Chair Room

DeJaiptioo polygON (0.2) polygON (1.0) !he Drum

('pone) (derue)

Nwnber of 551,408 551,408 59,692 40,937

Triangle.

Number of

Shadow CL,ting IS IS 6 •
Light>

Number of Ray. 11,324,318 8 ,427 ,~ 2,230,193 19,269,028

Shldew C.che

Success Rate 50.7% 90.9% 47.8% 2.5%

(H.inc.)

Voxel Cache

Success Rate 23 .4% 39.3% 76.9% 2.76%

Voxel Cache

SpcedUp 1.04% 3.6% 5.53% 3.62%

Over Sh.dow

C.cheAlorz:

(entire procell)

Voxel Cache

T"",Spced Up -0.003% ·0.00002% 2.7% 7.27%

Over Voxel Cad-=

Alorz:

(entire process)

Table 2. Timing Results

Four test scenes were used, as shown in Figures 3, 4, 5
and 6. Two of the scenes were jittered distributions of
polygons within a closed area, while the other two were more
typical of scenes used in computer animation and product
evaluation, The jittered distribution scenes contained a
40x40x40 array of polygons . Each polygon is approximately
a unit square and is tessellated into 8 triangles. The polygons

Graphics Interface '91

are initially placed at unit distances from each other. A Gaus­
sian pseudo-random number generator is then called to jitter
the location of the center of a polygon in each of the three
orthogonal axes by a value in the range of -1 .0 to 1.0, and the
orientation by values of -90 degrees to 90 degrees. In the
sparse jittered scene, the polygons are scaled by 0.2, and in
the dense scene they are left at their original size.

For all four of the test scenes, the addition of a voxel
cache to the shadow cache improves shadow testing perfor­
mance. The jittered scenes contain no reflective or refractive
objects, therefore maintaining a tree of shadow voxel caches
does not improve performance over a single shadow voxel
cache, in fact the performance is slightly worse in the sparse
scene due to the overhead of maintaining and accessing a tree
of caches instead of a single cache at each light source

When rendering the snare drum scene (Spanlcy), the
use of a tree of shadow voxel caches results in somewhat
better performance than the use of a single shadow voxel
cache at each light source, due to the small number of
reflective surfaces in the scene. Because the chair room scene
is highly specular, however, maintaining a tree of shadow
voxel caches yields significant performance gains over main­
taining a single shadow voxel cache with each light source.

14. Future Work

If the ray/surface intersection point and a shadow ray
direction vector are stored at each level of the voxel cache
tree, then a tolerance check could be performed to avoid test­
ing object and voxel caches which are not along the path of
the current shadow ray.

A further improvement to the algorithm, suggested by
Andrew Woo, is to only maintain a voxel pointer in each
cache, and to move the shadowing object to the front of a
voxel's object list. In addition to simplifying the shadow
cache data structure, this process ensures that the most
recently intersected shadowing objects are at the head of a
voxel's object list. This approach will be examined in a
future publication.

15. Conclusion

A method has been presented to accelerate shadow
testing for ray tracing. The technique performs well when the
scene contains specular surfaces, and can utilize an existing
spatial subdivision structure to increase performance when
rendering tessellated surfaces. It is easy to implement, and
can be used in conjunction with other shadow testing
acceleration techniques.

16. Acknowledgements

We would like to thank Andrew Woo for his
encouragement and helpful suggestions, Stanley Liu and Gary
Mundell for modeling the room and chairs in the Chair Room
image, and Peter Schoeler and Marie France Roy for provid­
ing the french translation of the abstract. Silicon Graphics is a
registered trademark of Silicon Graphics, Inc.

113

17. References

[Aman87] Amanatides, J. and A. Woo, "A Fast Voxel Traver­
sal Algorithm for Ray Tracing," EuroGraphics '87, pp.
1-10, 1987.

[Ama87] Amaldi, B. T. Priol, and K. Bouatouch, "A New
Space Subdivision Method for Ray Tracing CSG
Modelled Scenes," The Visual Computer, 3(2), pp.
98-108, 1987.

[Avro87] Avro, 1, and D. Kirk, "Fast Ray Tracing by Ray
Classification," Computer Graphics (SIGGRAPH '87),
21(4), pp. 55-64, 1987.

[Cohe88] Cohen, M., S. E. Chen, 1 Wallace, and D. Green­
berg, "A Progressive Refinement Approach to Fast
Radiosity Image Generation," Computer Graphics
(SIGGRAPH '88),22(4), pp. 75-84, 1988.

[Crow77] Crow, F., "Shadow Algorithms for Computer
Graphics," Computer Graphics (SIGGRAPH '77),
11 (2), pp. 242-248, 1977.

[E089] Eo, D., and C. Kyung, "Hybrid Shadow Testing
Scheme for Ray Tracing," Computer Aided Design,
21(1), pp. 38-48, January 1989.

[Fuji86] Fujimoto, A., T. Tanaka, and K. Iwata, "ARTS:
Accelerated Ray-Tracing System," IEEE Computer
Graphics and Applications, 6(4), pp. 16-26, April
1986.

[Glas84] Glassner, A., "Space Subdivision for Fast Ray Trac­
ing," IEEE Computer Graphics and Applications,
4(10), pp. 15-22, October 1984.

[Jeva89] Jevans, D. and B. Wyvill, "Adaptive Voxel Subdivi­
sion for Ray Tracing," Proc. Graphics Interface '89,
pp. 164-172, 1989.

[Hain86] Haines, E. A., and D. P. Greenberg, 'The Light
Buffer: A Ray Tracer Shadow Testing Accelerator,"
IEEE Computer Graphics and Applications, 6(9), pp.
6-16, September 1986.

[Pear87] Pearce, A., "An Implementation of Ray Tracing
Using Multiprocessing and Spatial Subdivision,"
Master's Thesis, University of Calgary, Dept. of Com­
puter Science, 1987.

[Snyd87] Snyder, J., and A. Barr, "Ray Tracing Complex
Models Containing Surface Tessellations," Computer
Graphics (SIGGRAPH '87),21(4), pp. 119-128,1987.

[Swee86] Sweeney, M., and R. Bartels, "Ray Tracing Free­
Form B-Spline Surfaces," IEEE Computer Graphics
and Applications, 6(2), pp. 41-49, February 1986.

[Wa1l87] Wallace, l ., M. Cohen, and D. Greenberg, "A Two­
Pass Solution to the Rendering Equation: A Synthesis
of Ray Tracing and Radiosity Methods," Computer
Graphics (SIGGRAPH '87),21(4), pp. 311-320,1987.

[Wa1l89] Wall ace, J., K. Elmquist. E. Haines, "A Ray Tracing
Algorithm for Progressive Radiosity," Computer
Graphics (SIGGRAPH '89),23(3), pp. 315-324,1989.

Graphics Interface '91

[Whit80] Whitted, T., "An Improved IIlwnination Model for
Shaded Display," Communications of the ACM, 23(6),
pp. 343-349, June 1980.

[Woo90] Woo, A., and 1. Amanatides, "Voxel Occlusion
Testing: A Shadow Determination Accelerator for Ray
Tracing," Proc. Graphics Interface '90, pp. 213-220,
1990.

114

Graphics Interface '91

115

Figure 3. Sparse jittcred polygons.

Figure 4. Dense jitlered polygons.

Graphics Interface '91

116

Figure s. Spanky the Snare Drum

Figure 6. Chair Room

Graphics Interface '91

