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1. Abstract 

We present a method, based on Haines' shadow 
caches, for accelerating shadow ray calculations for ray trac­
ing processes which use spatial subdivision and surface tessel­
lation. Trees of shadow voxel caches, containing references 
to both objects and voxels, are used to quickly determine 
whether or not a surface lies in shadow. This method does 
not require an additional preprocessing stage before render­
ing, and its memory requirements are small. 

2. Resume 

Nous presentons une methode basee sur les ombres en 
memoire cache de Haines, qui utilise la subdivision spatiale et 
la tessellation de surfaces afin d'accelerer le calcul de rayons 
d'ombre dans un programme de lance de rayon. Des arbres de 
voxels d' ombre en memo ire cache, contenant des references 
aux objets ainsi qu'aux voxels, sont utilises pour determiner 
rapidement si une surface se trouve dans une region d'ombre. 
Celle methode ne rcquiert pas d'etape additionelle de 
pretraitement avant le rendu de l'image, et ses besoins en 
memoire sont faibles . 

Keywords: Ray Tracing, Shadow Testing, Shadow Caching, 
Spatial Subdivision 

3. Introduction 

Shadow calculation is essential to the synthesis of real­
istic computer generated images. Ray tracing and radiosity 
are two commonly used rendering techniques that produce 
shadows as a natural part of the rendering process. Despite 
the recent advances in radiosity techniques [Cohe88J, ray 
tracing is still the most practical solution for rendering scenes 
which contain specularly transmissive surfaces, and can be 

used in the calculation of radiosity form factors [Wal187, 
Wa1l89J. It is with this in mind that we examine the ray trac­
ing shadow testing calculation. 

Ray tracing [Whit80J is one of the simplest and most 
elegant rendering algorithms in existence. The ray tracing 
algorithm traces rays of light backwards from the eye, through 
the pixel grid of the screen, and into the scene where they 
reflect off or refract through surfaces and finally hi t a diffuse 
surface or exit the bounds of the scene. Shadows are calcu­
lated by tracing a ray from each ray/surface intersection point 
toward each light source. If a shadow ray strikes an opaque 
surface before reaching the light source, then the intersection 
point is in shadow. 

When testing a ray/surface intersection point to see if it 
lies in shadow, it is sufficient to know that some opaque 
object lies between it and the light source. This is a simpler 
problem than visible surface determination, where the first 
object that is intersected by the ray must be found, and a 
number of acceleration techniques have been developed. 

The scenes we are interested in ray tracing contain 
thousands of parametric surface patches that are tesselated 
into meshes of triangles to facilitate and accelerate ray/patch 
intersection calculations [Swee 86, Snyd87J. Since spatial 
subdivision techniques [Glas84, Fuji86, Avr087, Snyd87, 
Jeva89J are widely used to accelerate the ray tracing process, 
it is desireable to take advantage of these spatial subdivision 
structures in a shadow testing acceleration algorithm. This 
paper presents such an algorithm. 

4. Previous Work 

Haines and Greenberg [Hain86J introduced the light 
buffer to quickly identify and reduce the number of potential 
shadowing objects . A light buffer is a cube surrounding a 
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light source, where each side of the cube is subdivided into 
regions which contain a list of the objects that could poten­
tially block light travelling from the light source in the 
region's direction. When testing a ray/surface intersection 
point for shadowing, the region of each light buffer which 
contains the projected intersection point is queried. In many 
cases, trivial shadowing or nonshadowing can be determined 
without casting a shadow ray, substantially improving perfor­
mance. The main drawback of the light buffer method is that 
it requires the creation of large data structures which are used 
only for shadow acceleration. The creation of these data struc­
tures entails preprocessing every object 6 times for each light 
source in the scene. This takes NxLx6 operations, where N is 
the number of objects and L is the number of lights. As N 
becomes large, this approach becomes less desirable. 

Eo and Kyung [E089] introduced a hybrid shadow test­
ing scheme for ray tracing which combines shadow polygons 
[Crow77] with traditional ray tracing shadow testing tech­
niques. The algorithm calculates shadow polygons, which 
define shadow volumes, for each light source and places them 
into the scene. When a ray is traced through the scene, a 
count is made of the number of shadow polygons that it inter­
sects before hitting a surface. When a ray/surface intersection 
is found, the shadow polygon intersection count indicates 
whether or not the point lies within a shadow volume. At 
points where shadow determination is too difficult to deter­
mine via shadow polygons, the algorithm resorts to the tradi­
tional shadow testing method, and traces a shadow ray toward 
each light source. Creating shadow polygons requires 
knowledge of object silhouettes and requires special case sha­
dow polygons to be stored in the scene, leading to extra inter­
section calculations for every ray, and the added costs of 
preprocessing and increased memory use. The complexity of 
creating shadow polygons for even simple patches is a limit­
ing factor of this hybrid approach. 

Woo and Amanatides [Woo90] introduced voxel occlu­
sion testing, a shadow testing acceleration technique that 
makes use of uniform space subdivision grid structures. In a 
preprocessing step, each voxel of the uniform space subdivi­
sion grid is marked as full, null or complicated occlusion for 
each light source in the scene. The occlusion status of a voxel 
is calculated by projecting silhouette edges of objects from 
the point of view of a light source onto the voxel grid struc­
ture. Voxels that lie entirely inside or outside these silhouette 
edges are marked as full or null occlusion, and voxels that lie 
on a silhouette edge are marked as complicated occlusion. If 
a ray/surface intersection point lies in a voxel which is 
marked as full occlusion, then it is in shadow. If the intersec­
tion point lies in a voxel marked as null occlusion, it is not in 
shadow. When a ray/surface intersection point lies in a voxel 
that is marked as complicated occlusion, a shadow ray is 
traced toward the light source. If the shadow ray encounters a 
voxel that is marked as full or null occlusion as it travels 
toward the light source, then traversal can halt. As with the 
previous method, this technique requires the calculation of 
object silhouettes from the point of view of each light source. 
Further, the marking of voxels becomes complicated if the 
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spatial subdivision structure is other than a uniform voxel 
grid, more so if lazy voxel subdivision is involved. 

5. Shadow Caching 

Haines [Hain86] proposed the shadow cache method to 
accelerate shadow testing without preprocessing or 
knowledge of object silhouettes. Each light source maintains 
a shadow cache, which stores a reference to the opaque object 
that last cast a shadow from the light source, or a null refer­
ence if the last shadow ray fired toward the light source did 
not encounter a shadowing object. Before a shadow ray is 
traced toward a light source, the object in the light source's 
shadow cache is tested for intersection. If the shadow ray 
intersects the object, then the object occludes the light source, 
and further processing is not required. If the shadow ray does 
not intersect the object, then it must be traced toward the light 
source until it hits the light source or an occluding object. 

The shadow cache method takes advantage of the spa­
tial coherence of a scene by assuming that successive shadow 
rays fired toward a light source will emanate from intersection 
points adjacent to previous intersection points, an assumption 
that is valid for scenes consisting largely of diffuse surfaces. 
This assumption may not be valid, however, if the scene con­
tains spccularly reflective or transparent objects, because suc­
cessive shadow rays will generally not emanate from adjacent 
intersection points. 

6. Shadow Voxel Caching 

Our method is a two-part extension of Haines' shadow 
cache method. Since we are dealing with surface tessellations, 
the expected amount of object coherence is smaller than if we 
were dealing with polygonal or implicit surfaces which tend 
to be larger than triangles and cover more of the screen. To 
improve upon the small amount of object coherence, shadow 
caches are modified to additionally store a reference to the 
voxel which contains the cached occluding object. This sha­
dow voxel cache technique is based on the assumption that if 
the cached object does not occlude the light source, it is likely 
that one of the objects in the same voxel does. 

7. Shadow Voxel Cache Trees 

To avoid incorrect shadow caches when shadow test­
ing ray/surface intersection points of reflected and refracted 
rays, each light source maintains a binary tree of shadow 
voxel caches, where each node has a child for reflected rays 
and a child for refracted rays. When testing a point for sha­
dowing, the tree level of the ray which spawned the shadow 
ray is used to index into the shadow voxel cache tree of the 
light source. 

8. Drawbacks 
The drawback of shadow cache methods is that the 

cached objects are always tested for intersection with a sha­
dow ray, even if they do not lie near the path of the ray. This 
can happen when the spawning location, the intersection point 
that is being shaded, changes drastically from ray to ray. The 
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spawning location changes drastically when adjacent rays 
intersect objects at different locations in the scene; when the 
tracing of a new scanline begins; and when a highly curved 
surface causes reflected or refracted rays to scatter widely. 

Part of the problem can be avoided by setting the sha­
dow voxel caches to null at the begining of each new scan­
line, or by tracing scanlines in alternating directions, where 
even numbered scanlines sweep left to right across the screen 
and odd numbered scanlines sweep right to left. 

9. Avoiding Multiple Checks of the Shadow Voxel 
Cache Objects 

If a shadow ray does not intersect the cached object or 
any of the objects in the cached voxel, it is traced through the 
scene toward the light source. A potential waste of computa­
tion will occur if the shadow ray enters the voxel that is refer­
enced by the light source's shadow voxel cache, since the ray 
will be retested for intersection with all of the objects in the 
voxel. A simple technique to avoid this duplication of com­
putation (Ama87,Pear87,Aman87] is to assign a unique 
identification number to each ray so that objects will be tested 
for intersection with any given ray only once. Once an object 
is tested for intersection, the ray's number is stored in a last 
ray field in that object. Before testing an object for intersec­
tion, the ray's number and the last ray field of the object are 
compared. If the numbers match, then the object has already 
been encountered and tested for intersection with the ray and 
has been eliminated from the set of possible intersecting 
objects, and should not be retested. 

To avoid testing the spawing object for intersection 
with a shadow ray, a common technique is to add a small 
epsilon value to the origin of the shadow ray along its direc­
tion of travel. An alternate technique for planar objects is to 
set the object's last ray field to the shadow ray's number 
before starting the shadow test. 

Field Size Purpooe 

last_object 4 bytes .> last object intersected at this level 

last_voxel 4 bytes .> the voxel which the last object was in 

refraction_ray 4 bytes .> another of these structures 

reflection_ray 4 bytes .> another of these structures 

Table 1. Shadow Tree Structure 

10. Shadow Voxel Cache Tree Data Structure 
Each light source must have a tree of shadow voxel 

cache structures. The shadow voxel cache data structure is 
small in size, and its fields are outlined in Table 1. If a rea­
sonably deep shadow tree is allowed, for example a maximum 
of 10 bounces, the storage requirements of a shadow voxel 
cache tree on a 4 byte integer machine is 32 kilobytes. For 
most scenes a more reasonable maximum of 5 bounces 
requires less than 1 kilobyte per shadow voxel cache tree. We 
shall refer to a shadow voxel cache structure as a shadow_tree 
structure for the purposes of our example algorithm. 
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11. The Shadow Voxel Cache Tree Algorithm 
Figure 1 gives an outline of the shadow voxel cache 

tree method in C pseudo. The shadow ray has been generated 
before the check _shadowing routine is called, but the 
ray/voxel traversal initialization does not occur until the 
traverse _ yoxels Jor _shadows routine is called. Note that only 
opaque occluding objects are stored in shadow caches. 

The routine test_ objs _In _ voxel_for _ sbadowsO 
returns hit = TRUE on first affirmed intersection with an 
opaque object, and ignores transparent objects. 

The routine traverse _ voxels Jor _ sbadowsO intersects 
transparent and opaque objects and sorts the intersections for 
proper attenuation of the light intensity. If mUltiple objects are 
hit, then all of the objects intersected must be transparent, and 
the object returned is arbitrarily the first one. Tracing of the 
shadow ray halts once the light source has been reached. 

float checx_,hadowing (ray, light, path, spawning_rAy_level) 

RAY_REC ·ray; 1* Ray from shading point *1 

I- to light source - I 
LIGHT REC - light; I- The light source we are -I 

int 

int 

-
I- i nterested in . -I 

path; I- Bit table describi ng current -I 
I - position in the vision ray tree. -I 

spawning_ra y_ level; I- Level of the ray -/ 

,a spawning the shadow ray . *' 
unsigned int Mask : 

shadow tree *cac he : 

cache - light->cache_tree: 

Mask - OxO} ; '* If the spawning ray's level is 0 (primary ray), *' ,a then we use the head of the cache_tree. a, 
for Cl - 0; i < Spawning_ray_level: ++i) ( 

if (Mask , path) cache - cache->refraction_ray: 

e l se cache - cache->reflection_ray; 

Mask - Mask « 1 ; '* Shift mask left 1 bit *' 
if (cache->last_object ! - NULL) 

, . intersect_o b ject() marks object as having *' '* been intersect ed by this ray . *' 
hit - intersect_object{ ray , cache->last_ object, 

'object); 

if (hit) ( 

return{l.O); '* full shadowing *' 
cache->last_object - NULL: '* object was not hit *' 
if (cache->last_voxel ! - NULL) ( '* implied !hit *' 

if ( hit - test_objs_in_voxel_for_shadows 

( ray, cache->last_voxel, 'object) ) 

if ( hit_not_in_ voxel( ray, object) ) 

cache->last_ voxel - NULL ; 

cache->last_object - object ; 

return (l .O ); 

'* voxel did not supply a hit *1 
cache->last_voxel - NULL; 

Graphics Interface ' 91 



if C !hit - traverse_ vo xels_for_shadows(ray , ' ob ject , 

&voxel , 'shadow_ percent ) 

11 (objec t->transparency_value> 0.0» ( 

cache->last_ob ject - NULL; 

c ache-> la s t_voxel - NU LL; 

else ( 

/- The object was NOT transparent, - / 

/- cache the into . * / 

cache->last_objec t - object: 

cache->last_voxel - voxel ; 

return ( shadow_percent ); 

Figure 1. Shadow Voxel Cache Algorithm 

12. Creation or the Ray Path Bit Table 
Indexing into the shadow voxel cache tree is aided by a 

bit table, the paJh variable in Figure I, which represents the 
path that the spawning ray took in terms of reflection and 
refraction bounces. A set bit in the bit table indicates that the 
ray refracted at that level, while an unset bit indicates a 
reflection. Each new ray that is spawned updates the bit table 
to mark its path, as shown in Figure 2. 

Refraction Ray: 
Mas k ~ axa l « Spawning_ray_ level ; 
1* Turn on correct bit . *1 
path = path I Mask; 
trace( 1* refraction ray *1 ); 
path = path & -Mask ; 

ReHection Ray: 
Mask = axOl « Spawn ing_ray_level ; 
path - path & - Mask; 
trace ( 1* reflection ray *1 ); 

1* NOTE: *1 
1* « is a bitwise left shift of the 

1* left operator by right operator 

I' is a bitwi se logical OR operation 
bits 

1* & is a bitwise logical AND operation 

1* is a bitwise negation operatio n 

*1 
*1 
*1 
*1 
*1 

Figure 2. Creating the Path Bittable for Secondary Rays 

13. Results 

All of the test scenes were rendered on an unloaded 
SGI VOX, a 33MHz MIPS processor based machine with 
64Mb of real memory. A vendor specific profiler named pixie 
was used to count machine cycles in various routines. The 
cycle count is accurate and does not vary due to processor 
load. All times and specdups in Table 2 are in terms of 
machine cycles. The speedups reported are with respect to 
total number of cycles for the entire ray tracing operation 
including reading the scene description files, and tessellation 
of objects. All images except Spanky were calculated at 640 
by 486 pixels with 9 samples per pixel (some samples shared 
between adjacent pixels). Spanky was calculated at 512 by 
512 pixels. 
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In Table 2, the Number of Rays represents the total 
number of rays, including shadow rays. 

The Shadow Cache Success Rate reports the percen­
tage of times a shadow cache object provided positive sha­
dowing when tested for intersection. 

The Voxel Cache Success Rate shows the percentage of 
times the cached voxel provided positive shadowing when the 
shadow cache failed . 

The Voxel Cache Speed Up Over Shadow Cache Alone 
describes the percentage fewer cycles which the voxel cache 
method used, and Voxel Cache Tree Speed Up Over Voxel 
Cache Alone shows the percentage cycles saved when a tree 
of voxel caches is employed (a negative value indicates a 
slow down). Note that these speedups are with regard to the 
entire ray tracing process, not just with regards to shadow 
testing . 

Scene 64.000 ji~=I 64,000 jiru:=I Spanky Chair Room 

DeJaiptioo polygON (0.2) polygON (1.0) !he Drum 

('pone) (derue) 

Nwnber of 551,408 551,408 59,692 40,937 

Triangle. 

Number of 

Shadow CL,ting IS IS 6 • 
Light> 

Number of Ray. 11,324,318 8 ,427 ,~ 2,230,193 19,269,028 

Shldew C.che 

Success Rate 50.7% 90.9% 47.8% 2.5% 

(H.inc.) 

Voxel Cache 

Success Rate 23 .4% 39.3% 76.9% 2.76% 

Voxel Cache 

SpcedUp 1.04% 3.6% 5.53% 3.62% 

Over Sh.dow 

C.cheAlorz: 

(entire procell) 

Voxel Cache 

T"",Spced Up -0.003% ·0.00002% 2.7% 7.27% 

Over Voxel Cad-= 

Alorz: 

(entire process) 

Table 2. Timing Results 

Four test scenes were used, as shown in Figures 3, 4, 5 
and 6. Two of the scenes were jittered distributions of 
polygons within a closed area, while the other two were more 
typical of scenes used in computer animation and product 
evaluation, The jittered distribution scenes contained a 
40x40x40 array of polygons . Each polygon is approximately 
a unit square and is tessellated into 8 triangles. The polygons 
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are initially placed at unit distances from each other. A Gaus­
sian pseudo-random number generator is then called to jitter 
the location of the center of a polygon in each of the three 
orthogonal axes by a value in the range of -1 .0 to 1.0, and the 
orientation by values of -90 degrees to 90 degrees. In the 
sparse jittered scene, the polygons are scaled by 0.2, and in 
the dense scene they are left at their original size. 

For all four of the test scenes, the addition of a voxel 
cache to the shadow cache improves shadow testing perfor­
mance. The jittered scenes contain no reflective or refractive 
objects, therefore maintaining a tree of shadow voxel caches 
does not improve performance over a single shadow voxel 
cache, in fact the performance is slightly worse in the sparse 
scene due to the overhead of maintaining and accessing a tree 
of caches instead of a single cache at each light source 

When rendering the snare drum scene (Spanlcy), the 
use of a tree of shadow voxel caches results in somewhat 
better performance than the use of a single shadow voxel 
cache at each light source, due to the small number of 
reflective surfaces in the scene. Because the chair room scene 
is highly specular, however, maintaining a tree of shadow 
voxel caches yields significant performance gains over main­
taining a single shadow voxel cache with each light source. 

14. Future Work 

If the ray/surface intersection point and a shadow ray 
direction vector are stored at each level of the voxel cache 
tree, then a tolerance check could be performed to avoid test­
ing object and voxel caches which are not along the path of 
the current shadow ray. 

A further improvement to the algorithm, suggested by 
Andrew Woo, is to only maintain a voxel pointer in each 
cache, and to move the shadowing object to the front of a 
voxel's object list. In addition to simplifying the shadow 
cache data structure, this process ensures that the most 
recently intersected shadowing objects are at the head of a 
voxel's object list. This approach will be examined in a 
future publication. 

15. Conclusion 

A method has been presented to accelerate shadow 
testing for ray tracing. The technique performs well when the 
scene contains specular surfaces, and can utilize an existing 
spatial subdivision structure to increase performance when 
rendering tessellated surfaces. It is easy to implement, and 
can be used in conjunction with other shadow testing 
acceleration techniques. 
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Figure 3. Sparse jittcred polygons. 

Figure 4. Dense jitlered polygons. 
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Figure s. Spanky the Snare Drum 

Figure 6. Chair Room 
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