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A_bstract 

The fundamental software components useful for a zonal 
ray tracing system are described. The interface protocols 
and some implementational observations are outlined for 
each of the key components. Components for sampling, 
ray-object intersection, and zonal (radiosity) calculations 
are emphasized. Some results from a global illumination 
program assembled from the components are discussed. 
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1 Introduction 

In recent years many researchers have investigated ray 
tracing solutions to the global illumination problem [54, 
13 , 12,29,53,52,1,47,25]. Other authors have applied 
object-oriented design to ray tracing programs [32, 24]. 
In this paper, we discuss the major components1 of an 
object oriented ray tracing system for global illumination. 

There are several existing systems that enable program­
mers to construct user interfaces from basic components 
(e .g menus, scrollbars, windows). In a similar fashion, 
graphics programmers should be able to compose a global 
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1 Components are defined by their behavior and their inter­

face protocols. This is the same as the blllck box fromework 
described by Johnson and Foote [28]. 

illumination renderer from basic components. Such com­
ponents are specified only by their interface protocols, 
so different implementations of the same component can 
be invisibly exchanged in a particular system, which al­
lows isolated testing of particular component implemen­
tations. This, of course, is simply an instance of abstract 
data typing. 

The design strategy outlined above is not novel. We are 
simply applying this strategy to the global illumination 
problem, and thus identifying the key components of such 
a system. In this paper, we focus on the functionality and 
interface protocols of these components . We also dis­
cuss some implementation strategies for particular com­
ponents. 

The fundamental components of a distributed ray tracing 
system are described in Section 2. This extends the basic 
framework presented by Kirk and Arvo [32]. In Section 3 
we describe the new components that are needed for zonal 
calculations, and discuss how the ray tracing components 
can be reused. Some results using our components and 
some open issues are discussed in Section 4. 

The terminology we use in this paper is borrowed from 
C++, however the ideas should be easily translated to 
most object-oriented languages. The word class will be 
used for particular components and their associated im­
plementation. As discussed in [55], an abstract class 
specifies the behavior of an object (i.e. a component 
interface) without defining how the behavior should be 
implemented and a .mbcla.u is a specialization of an ab­
stract class because it defines the implementation of the 
behavior. 
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2 Ray Tracing Components 

In this section, we describe the basic components of our 
ray tracing framework. In Section 2.1 we present sev­
eral simple classes that are useful in graphics programs. 
The components which manage sample distributions on 
l,he pixel are discussed in Section 2.2. The ray-object 
intersection component is described in Section 2.3. The 
ray-material interaction component, our variation of a 
shader [51, 23], is outlined in Section 2.4. 

2.1 Graphics Utility Classes 

Some utility classes are obviously needed: points, vectors, 
4 by 4 transformation matrices, and colors. Operations 
involving these classes are defined using operator over­
loading mechanisms. Only operations that have mathe­
matical meaning are allowed, as suggested by Goldman 
[19]. The allowed expressions include addition and sub­
traction on vectors, addition and subtraction between a 
point and a vector, subtraction between points, and oper­
ations between a scalar and a vector. Denying operations 
such as the addition of two points makes mistakes in ex­
pressions easier to catch. Unfortunately, it also makes it 
difficult to take the centroid of a set of points. However, 
it is always possible to create a special purpose function 
to perform such a task. 

Colors have the operators of addition, multiplication, di­
vision, and subtraction with themselves, and multipli­
cation and division with scalars . Initially, a RGB color 
model was used . This was later replaced by a very gen­
eral spectral model, where each color was approximated 
by a piecewise linear approximation with arbitrary node 
locations. When two colors were combined by an opera­
tion, a new color with possibly more nodes was generated. 
This meant that unbounded lists had to be used to store 
the node locations and amplitudes. Though this gen­
eral color representation was well suited for complicated 
spectral distributions, such as the emission spectrum of 
a fluorescent light, and was spatially efficient for simple 
spectra, the time needed to manage the color variables 
was too large to justify the switch from RGB (typically, 
the run time more than doubled) . Next, we switched to 
twenty evenly spaced nodes to represent color spectra. 
Because this had a high storage cost (especially for im­
ages using zonal calculations), the four unevenly spaced 
node locations suggested by Meyer was used [34]. There 
was no qualitative loss in image quality observed going 
from the twenty to four samples, but this may say more 
about the arbitrary nature of most of the input spectral 
curves than about the quality of the spectral approxima­
tion. We suspect that filtering the input spectra before 
point sampling them will avoid most problems associated 
with using only a few sample locations. 

118 

x 

) 
Figure 1: Use one corner of a board to find a solid noise 
seed point for an index into the tree . 

Another basic utility class is the ray class, represented by 
a point of origin, and a vector representing direction. The 
ray class has no allowed operations, but does have the 
basic 'method' (member function) that finds the point a 
certain distance along the ray. We have found that it is 
helpful to associate two other characteristics with a ray. 
The first is a material id which stores the material the ray 
is in (e.g. 'this ray is now traveling through glass'). The 
second characteristic is the attenuation of the ray. This 
makes the bookkeeping associated with adaptive ray tree 
pruning [22] straightforward. 

A utility class that has been surprisingly useful is an or­
thonormal basis of three vectors. Though any two of 
these vectors uniquely defines the basis, all three are ex­
plicitly stored, trading space for execution time. These 
bases are used in viewing calculations, and to assign a 
local coordinate system to a surface. 

Another utility class is the (u, v) pair. This class is use­
ful for pixel sampling and texture mapping. The texture 
class itself adds another useful utility. In this implemen­
tation, the texture abstract class takes both a point in 
3D, and a (u,v) pair . Surface textures and solid tex­
tures [38] are both subclasses of the texture class. A 
solid texture will use the point for texture generation, 
and the surface texture will use the (u, v) coordinate for 
color lookup. This 'send all information, needed or not' 
strategy can be inefficient, but it is a simple way to guar­
antee that the needed information is passed to a texture 
module. 

A very useful utility class is a solid noise generator. We 
have implemented the generator given in Perlin's 1989 
paper [39], and found it to be mechanical to implement. 
While it has been demonstrated that solid noise is useful 
in generating uniform textures such as marble, we have 
found that these techniques are too simple for semistruc­
tured patterns such as board floors , brick walls, and car­
peted floors. Each element of these patterns (e .g. an 
individual brick) can be modeled using various transfor­
mations on solid noise. To accomplish this, one adds one 
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or more randomly or semi-randomly varying parameters 
to make the elements vary among themselves. 

As an example, a single board has a random grain pat­
tern associated with a plane passing through a tree. The 
woodgrain of a tree is modeled in a manner similar to 
Perlin's marble: the basic structure of the tree is light 
and dark concentric rings , where the area (not distance) 
between rings is roughly constant . The radius of a given 
ring will decrease slightly as it moves up the tree (it is vi­
sually important that the rings are not perfect cylinders). 
Noise is used to add some irregularity to the geometry 
of the rings. The particular location of a board in a tree 
is what gives it its unique character. Since the tree is of 
finite volume there are a finite set of specific boards that 
come form a tree, and each can be given a specific integer 
id. 

We create our board texture by putting down an algorith­
mic (predefined) board pattern, and associating a specific 
board id to each board. This is easily accomplished by 
using the solid noise at a particular corner of the board 
as a seed to generate the board location in the tree (Fig­
ure 1). This guarantees that all points on a board are 
mapped to the same id in the tree . This procedure gives 
some irregularity to what types of boards (fine-grained 
versus loose-grained) are adjacent in the pattern. To en­
sure that there is no visible correlation between the ids 
of adjacent boards, we scale the corner points by some 
large factor before calling the solid noise function. 

A similar approach can be used to generate bricks . Solid 
noise evaluated at one corner of a brick will give a seed 
to control some global parameter for that brick. If more 
than one parameter is needed, the other corners (or mid­
points, etc.) can be also used for solid noise seed points. 
All of the textures in Figures 7 and 6 used this type of 
procedural texture. 

To generate the colors of wood or brick, we attempt to use 
physical spectral curves. Unfortunately this data can be 
hard to come by, and directly specifying spectral curves 
is not intuitive. In these cases we generate curves by 
'mixing' standard artist's pigments, the curves for which 
can be found in [9]. When we have existing RGB data, we 
use Glassner's conversion method [18]. It has been our 
experience that using smooth curves for this conversion 
is highly preferable to using impulses. 

2.2 Sample Point Generation 

A basic module in any ray tracing code selects sam­
ple points on the pixel (in some systems the samples 
are chosen more globally on the screen). In a stochas­
tic ray tracing system, sample points must be chosen 
from a larger multidimensional space (e.g. screen-lens­
reflection-shadow-time space). Cook recommends choos-

ing sample point module one or two dimensions at a 
time and then combining these choices for full multidi­
mensional sample distributions. For example, we might 
choose screen locations uniformly on the pixel area, and 
lens points uniformly on the lens disk. These points 
could then be paired randomly or deterministic ally to 
form sample points in four-dimensional screen-lens space. 
Cook calls his specific version of this method uncorrelated 
jittering. There has been much discussion on how to get 
a 'good' set of sample points on a square two-dimensional 
region [13, 35]. 

Many spaces we need to sample (e.g lens area, reflec­
tion ray direction) are not square. One way to generate 
sample points on a non-square region is a special purpose 
algorithm, such as the one used by Cook for reflected rays 
[12]. The other is to generate points on the square and 
then apply a warping function so that their distribution 
is changed. An example of this method is the transforma­
tion used by Ward et 801. to generate a cosine distribution 
of sample points on a hemisphere [53]. The first abstrac­
tion is to make the sampling distribution come from an 
abstract class. This lets the user flexibly choose and add 
sampling methods and filter functions in a natural way. 

In this section we discuss two basic modules useful for 
sample point generation. The first generates sample 
points on the unit square, and the second module acts 
as a filter to create specific sample point distributions by 
'warping' uniform distributions . 

2.2.1 Uniform Sample Point Generation 

The sample-generator module is passed a non-negative 
integer, n, and generates n (u, v) sample points that are 
equidistributed on the unit square (0 :5 u :5 1,0 :5 v :5 
1). The basic implementations of this module are com­
monly regular sampling, jittering, and poisson disk sam­
pling. All of these strategies have problems. Regular 
sampling can cause extreme aliasing. Jittering requires 
n to be a perfect square for optimum performance, or 
requires some factoring system otherwise (n = 17 would 
imply a 1 by 17 sampling partition). Poisson disk has 
non-deterministic running time, and choosing the disk 
radius is not straightforward. Mitchell addressed the first 
problem with an approximation to poisson disk sampling 
based on error diffusion [35]. 

We have several strategies, and most often use n-roob 
!ampling. This scheme, to our knowledge, was first used 
in the OPTIK system [56], and first reported in the 
Monte Carlo literature by Kalos [30]. N-rooks is a varia­
tion of Cook's uncorrelated jittering. We generate the u 
coordinates of the n points by jittering in one dimension, 
and then generate n v coordinates in the same way. We 
then randomly link the u and v coordinates to form n 
(u, v) pairs. This forms n sample points in a way that 
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is unbiased in relation to the probability of selecting any 
particular point. Another way to look at the sample gen­
eration is to draw an n by n chessboard, and randomly 
place n rooks on the board subject to the constraint that 
the rooks cannot capture each other in one move. This 
results in a pattern where every row and column has ex­
actly one rook. We now select one (11., v) pair from each 
square where a rook sits. 

The n-rooks strategy is really a simplification of uncor­
related jittering (rather than a generalization), because 
none of the dimensions are really linked. N-rooks has the 
advantages that it can generate a set of n samples for 
any n, that it takes a deterministic amount of time, and 
that there are no parameters that need to be set other 
than n. It is not surprising that n-rooks performs well 
for pixels containing horizontal or vertical edges, because 
it fully jitters each dimension. To our surprise, it has so 
far almost always been more accurate than other sam­
pling methods on the images we have tested. These test 
results, and some analysis on why this might be true can 
be found in [45, 48J. 

2.2.2 Sample Distribution Transformations 

Suppose we want to apply weighted area averaging to a 
pixel rather than simple area averaging [14J. We could 
simply apply weights to each sample point based on its 
(11., v) coordinate. If we sample each pixel independently 
it is better to apply importance sampling by placing the 
sample points in a way that is distributed according to 
the weighting function [12J. In this section, we describe a 
module that takes a set of n uniformly distributed points, 
and warps them in such a way that they are distributed 
according to the desired weighting function. 

As a simple example, suppose we want the trivial 'box' 
weighting function, which simply samples the pixel area 
uniformly (w(x,y) = 1 inside the pixel). The warping 
module would take n sample points generated by a mod­
ule described in the last section, and apply the mapping 
x = 11. - 0.5, Y = v - 0.5. This assumes we are using 
a coordinate system where the pixel center is the origin 
and the pixel width is 1. 

In practice we will want non-uniform weighting functions. 
For example, suppose we have the width 2 weighting 
function: 

w(x,y) = (1 -lxl)(I-lyl) (1) 

If we just want to generate independent random points 
with density w, we apply standard techniques to trans­
form canonical2 random numbers into these points [33J. 
Since this particular w is separable, we can generate x 
according to w(x) = (1 -lxI), and y the same way. We 

2 A canonical random number e is unifonnly distributed 
between 0 and 1. 
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Figure 2: A transformation for non uniform filter sam­
pling. 

define the distribution function, F, associated with w: 

F(x) = j" (1 -lx'l)dx' = .!. + x - .!.xlxl (2) 
-1 2 2 

To get our desired independent (x, y) distributed accord­
ing to w, we simply take canonical (6,6) and apply 
x = F-1(6), and y = F-1(6), where F-1 is the inverse 
function of F. 

This idea can be extended by taking our set of sample 
points and transforming them as if they were canoni­
cal. This will preserve some of the good qualities of the 
original sampling distribution, but will have our desired 
distribution properties. Applying this idea to the filter 
in Equation 1, we can take our n uniform sample points 
and apply the transformation: 

{
-I + v'2ti" 

x = 1 _ J'--2(""-I---1I.-=-) 
if 11. < 0.5 

if 11. 2: 0.5 

followed by a similar transformation involving y and v. 
This transformation on 16 jitter cells is shown in Figure 2. 
Note that this will transform nonuniformly within each 
cell, so the sample point selection must take place before 
the transformation. 

The uniform sampling transformation can also apply to 
non-separable density functions, and to functions defined 
on non-Cartesian manifolds. This requires dealing with 
the joint distribution function and non-constant metrics, 
but otherwise the same techniques apply. Details can be 
found in [44, 45J. 

We have found several other transformations to be use­
ful. For example, to choose points uniformly from a 
disk of radius R, apply the transformation 8 = 211'11., 
T = R.,fV. To choose points in a cosine distribution on 
a hemisphere (p( 8, t/J) = (1/11') cos 8), apply the trans­
formation 8 = arccos( .J1=U), t/J = 211'v . A general­
ization is to choose directions according to a 'phong' 
distribution (p(8,t/J) = «n+l)/(211'))cos"8), byap­
plying the transformation 8 = arccos«1 _ 11.)1/(,,+1)), 
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rP = 21["v. To choose random points on a triangle de­
fined by vertices po, Pl, and P2, apply the transformation: 
a = 1 - v'1=U, b = (1 - a)v, and the random point p 
will is: p = po + a(Pl - po) + b(p2 - po). 

2.3 Ray-Object Intersection 

From a functional point of view, the ray-object intersec­
tion component simply finds the first object, if any, hit 
by a ray3. With this simple definition, this component 
can be implemented as a black box framework [28). Our 
goal here is to present the design of a framework to facili­
late the independent development of different algorithms 
for this component. We use the Faster Ray Intersection 
Techniques as described by [8] as a base to discuss our 
design and show that our design unifies the approaches. 
This section concludes with some implementation obser­
vations. 

2.3.1 Class Hierarchy 

Heckbert observed that geometrical objects should be 
viewed as basic components with common interface pro­
tocols, so that a ray tracing system can be designed in­
dependently from the geometrical primitive types (e.g. 
spheres, polygons) [24] . Like Kirk and Arvo [32], we 
have implemented geometrical primitives (e.g. sphere, 
polygon) and collection structures (e.g. octree, bounding 
volume) as subclasses of the same geom-object abstract 
class. In this way, they can have the same interface pro­
to cols and behaviors. This allows a particular collection 
structure (e.g. octree) to contain, as members, other col­
lection structures (e.g. bounding volume, regular grids). 
For example, both geometrical primitives and collection 
structures respond to the Hit(ray) message by returning 
the geom-object hit by the input ray. Since both geomet­
rical primitives and collection structures are subclasses 
of geom-object, the result of Hit message could be either. 
In this way, it is possible to have nested octrees or have 
regular grid nested inside an octree structure. Intelligent 
use of this generality can reduce the system execution 
time. Unfortunately, just how to attain intelligent use is 
not obvious [32). 

This general grouping of spheres, polygons, octrees, etc. 
emphasizes an important point: classes with common ac­
cess (member) functions should be subclasses of the same 
abstract class, even if their underlying representations are 
very different . Classes with different access rules, even if 
their underlying representations are identical, should not 
be grouped together, as seen with points and vectors in 
the previous section. 

3If we want to do constructive solid geometry, we might 
want the intersection routine to find the list of all intersection 
points[40j. 

2.3.2 Functional Modules 

It is well known that linear exhaustive testing of prim­
itives with rays for potential intersection is inadequate. 
The geometric model should be processed into some in­
ternal representation (e.g. collection structures like oc­
tree) for efficient candidate primitive look up during in­
tersection testings. Since current ray tracers and zonal 
renderers only model geometrical optics [29], the pro­
cessed internal representation could be viewed as an ef­
ficient primitive/geometric characteristic association list 
storage and look up mechanism. 

From the design level, the ray-object intersection com­
ponent consists of three functional modules: Builder, 
Structurer, and Traverser. For each primitive, the builder 
module asks for certain geometric characteristic from the 
primitive, and sends requests to the structurer module 
to associate the characteristic with the primitive. The 
traverser module extracts the relevant geometric char­
acteristic from an input ray and requests the structurer 
module to look up the associated primitives stored. It is 
a primitive's responsibility to calculate for possible inter­
sections. Under this design, the ray-object intersection 
component becomes the coordinator that assists and thus 
speeds up the process of searching for potential intersect­
ing primitives. 

The acceleration techniques for faster intersection calcu­
lations as described in [8] are unified under this design : 

Bounding Slabs [31]. The Builder module asks for the 
bounding slab distances from the primitive. In this case, 
the bounding slab is the 'geometric characteristic'. The 
Structurer module associates the primitive with the corre­
sponding slab and slab distances . The construction of the 
bounding slab hierarchy is also the responsibility of the 
structurer module. The Traverser module takes a ray ge­
ometry and pierces the bounding slab hierarchy to locate 
potential intersecting primitives. Notice that a bounding 
slab is also a primitive in the sense that it must respond 
to the Hit protocol message by returning the primitives 
(including children slabs) bounded by the current slab. 

Spatial Subdivision [17, 15] . The Builder module asks 
for the extent from a primitive and determines which 
spatial cell should be associated with the primitive. The 
actual implementation of spatial cell and the associa­
tion between the primitive is performed by the Structurer 
module. The Structurer module stores the association of 
primitives and spatial cell units in such a way that later 
retrieval of primitives can be done efficiently (when given 
a ray). The Traverser module takes a ray geometry and 
traverses the spatial structure to locate the potential in­
tersection primitives. Again, a spatial cell unit must be 
able to respond to the Hit protocol message by returning 
primitives (including children spatial cells in the case of 
adaptive subdivision algorithms) contained in the current 
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spatial cell. 

New algorithms could be formulated by identifying the 
geometric characteristic that the approach is taking ad­
vantage of. For example, the ray coherence theorem [36] 
uses a direction and an acute angle as the geometric char­
acteristic. In this case, the builder module finds out the 
list of candidate primitives that are visible from a di­
rection/angle pair of a primitive. When tracing a sec­
ondary ray, the traverser module uses the ray direction 
and reflecting angle to request the structurer module to 
extract the candidate primitives associated with the cor­
responding direction/angle pair for potential intersection 
calculations. 

The reason to separate this component into three mod­
ules is such that the implementation of each module can 
be isolated and replaced without affecting the others. For 
example, for an octree spatial subdivision implementa­
tion, the builder can build the octree structure statically 
before ray tracing starts, or dynamically during ray trac­
ing. The structurer module is the underlying implemen­
tation of an octree, this could be built around a hash 
table, or a hierarchy of pointers. The traverser module 
knows how to traverse an octree, but does not need to 
know the detailed implementation of the octree struc­
ture. Some of the examples of octree traversers are: tree 
walking [16], Glassner's algorithm [17], and DDA octree 
traverser [50]. 

2.3.3 hnplementation Notes 

Following the design approach described in this section, 
it is possible to replace a module in this component with 
the rest of the system remaining unchanged. As a result, 
we are able to isolate and observe the effect of different 
algorithms. 

Octree Traversal. It is believed that the original oc­
tree traversal algorithm [17] can be improved by real­
izing tree location coherence [16]. In his original octree 
approach [17], Glassner proposed always beginning the 
search for next octant from the root of an octree. It 
has been pointed out by various researchers [27, 16] that 
theoretically, starting the next octant search from the 
parent of current octant should be faster (this approach 
has been called tree walking [16]) . We note that the only 
difference between the two algorithms is in the process of 
getting the next octant: tree walking recognizes the tree 
location coherence and starts searching from the parent 
of the current octant, while Glassner's algorithm always 
starts searching from the root of the octree. A fact that 
generally has been overlooked is that it takes extra time 
for the tree walking algorithm to ascend the octree [7]. 
When traversing between two octants of different first 
level parents, the two algorithms take the same amount 
of time to descend the octree, but tree walking needs ex-

tra time to ascend the octree. The recursion the extra 
time needed to ascend the octree usually causes the im­
plementation of the tree walking algorithm to result in a 
slower system [50]. 

Mail box. The mail box concept was proposed inde­
pendently by [5, 4]. The idea is to avoid multiple ray­
object intersection calculation between the same object 
and the same ray in different spatial cell units . The un­
derlying assumption is that the primitive objects usu­
ally stretch across many spatial cell units, thus the time 
saved in avoiding multiple intersection calculations off­
sets the overhead involved in maintaining the extra in­
formation. We note that when the size of the objects in a 
scene is small in comparison to the size of the spatial cell 
units, the probability of objects spanning multiple spa­
tial cell boundaries also becomes small. The overhead 
involved in performing the pre-intersection checking and 
post-intersection information recording eventually offsets 
the time saved in avoiding the small number of multiple 
intersection calculations. In some cases , the mailbox im­
plementation actually results in a slower system [50], and 
its utility may be highly dependent on the general spatial 
character of the geometric primitives used. 

2.4 Ray-Material Interaction 

Several researchers have noted that reflection behavior 
should be encapsulated as one unit of a rendering sys­
tem [32, 51, 23] . We treat light-material interaction as a 
component, where the reflection behavior is determined 
strictly from a set of material parameters. Traditionally 
this might be accomplished with parameters including k8, 
kt, and kd [21]. One problem with such an approach is 
that physically implausible parameter combinations can 
be chosen by the user (e.g. kd = ks = 0, kt = 1). Implau­
sible combinations may be useful for many applications, 
but if realism is desired, we think it is better to limit the 
user's choices. 

We have used the idea that materials can be classed as 
families, each grouped by the parameters that affect their 
behavior. This way the user only needs to choose the 
relevant parameters for a particular material. Once the 
material is chosen it is treated as a black box component 
that responds to a limited protocol (much like geomet­
rical objects for ray-object intersection). The first way 
in which a material can be queried is , given an incoming 
ray r, a point p on the surface, and a surface normal ii, 
asking what rays ri are reflected/transmitted by the ma­
terial, and what is the attenuation ki for each ray'. This 
will allow us to handle building the ray propagation code. 
For other lighting calculations, such as the direct light­
ing component, we need to ask a material, 'what is your 
radiance, L( V out), that comes from a source of radiance 
L(Vin) that subtends a solid angle w?' . We also need to 
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ask a material if it is a luminaire (source of light), and if 
so, how much light it emits in a particular direction. 

The materials that we have implemented are: 

conductor: Parameters n (refractive index), le (extinc­
tion coefficient), e (phong-style exponent). Exam­
ple: aluminum. 

dielectric: Parameters n (refractive index), a (filter 
coefficient), e (phong-style exponent) . Example: 
glass. 

lambertian: Parameter led (diffuse coefficient). Exam­
ple: matte paint. 

polished: Parameters led (diffuse coefficient of sub­
strate), n (refractive index of polish), e (phong-style 
exponent). Example: gloss paint. 

translucent: Parameters Ie~ (diffuse coefficient of first 
side), Ie~ (diffuse coefficient of first side) , let (trans­
mission coefficient). Example: lampshade. 

luminaire: Parameters led (diffuse coefficient), e 
(phong-style exponent) . Example: light bulb. 

These basic materials can be extended, but they have 
proven to be fairly good approximations to common real 
world materials. Conductors are sometimes a little diffi­
cult because the parameters n and le are not intuitively 
controllable . We have found most of the data we use for 
conductors in [37]. The behavior of both conductors and 
dielectrics is determined using the Fresnel Equations, the 
full form of which can be found in [49, 45] . The polished 
surface is an approximation to a diffuse substrate with a 
thin dielectric covering. This means that for a given di­
rection we first calculate the specular reflectivity Ie.( 8), 
and then the remaining light is reflected diffusely, giving 
a diffuse reflect ance of (1 - le. ( 8) ) led. This allows glare 
effects to be approximated accurately. The phong-style 
exponent e is used to allow some spread in the reflected 
component of conductors, dielectrics, and polished mate­
rials. For smooth surfaces e is set to a large number. 

The translucent surface reflects light diffusely from either 
side, and also allows some light to be diffusely transmit­
ted. The luminaire acts as a diffuse reflector, and also 
emits power in a phong-style distribution. Large expo­
nents are used if spot lights are desired. 

The ray reflection/transmission behavior can be summa­
rized as: 

conductor: Generate one reflected ray with attenuation 
determined by Fresnel Equations. Perturb ray ran­
domly if e #- 00. 

dielectric: Generat e one reflected ray and one trans­
mitted ray with attenuations determined by Fresnel 
Equations. Perturb both rays randomly if e #- 00 . 

lambertian/luminaire: Generate one reflected ray 
randomly with a cosine distribution. 

polished: Generate one reflected ray from the polish 
with attenuation determined by Fresnel Equations. 
Perturb ray randomly if e #- 00. Generate one re­
flected ray from the diffuse substrate randomly with 
a cosine distribution . 

translucent: Generate two rays randomly, one re­
flected, one transmitted, each with a random cosine 
distribution. 

It is useful to be able to turn off reflections from a particu­
lar material. We allow this to be done when the material 
is initialized. A conventional Whitted-style ray tracer 
would turn off reflections for the lambertian, translu­
cent, and luminaire surfaces, and would turn off reflec­
tions from the substrate (but not the polish) of the pol­
ished surfaces. To maintain some form of dependent 
sampling, such as uncorrelated jittering, the reflection 
protocol should also accept a canonical (tt, v) pair (Sec­
tion 2.2), to be used as a basis for any probabilistic re­
flection that might occur . 

3 Zonal Calculations 

Several recent zonal· systems are based on progressive re­
finement techniques [11, 2]. The theoretical basis for such 
systems is straightforward to extract. The progressive 
refinement technique can be viewed as power transport 
simulation, which implies fairly direct non-diffuse zonal 
solutions [6, 47, 20, 46, 42]. These solutions are easy 
to construct if we view the zone as a black box which 
collects power carrying rays, and later emits a group of 
power carrying rays that represent reflected power accu­
mulated since the previous emission step. 

This abstraction underlying zonal calculations can be 
stated: zones should receive, accumulate, and send 
power, and the mechanics of how this happens should 
be hidden. This is accomplished by defining a zonal-data 
module. In addition, the module should, after the zonal 
calculations are completed, be able to provide the radi­
ance of the patch when viewed from a certain direction. 

For a lambertian zone, the zonal-data module is easy 
to implement because there is no dependency on the in­
coming direction of intensity. We need to store the to­
tal power, cf>, and the unsent accumulated power, cf>". 
Each new incoming ray carrying power cf>i will imply 
cf> = cf> + ledcf>i and cf>" = cf>" + ledcf>i. When it is time 
for the zone to emit, it will send N rays each carrying 
power cf>,,/ N. These rays will be sent in a cosine distribu­
tion. Just as was done with pixel sampling in Section 2.2, 

·In a zonal system lighting information is stored at a finite 
set of zones. Radiosity programs use zonal methods. 
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Figure 3: The two crucial methods of an adf (angular 
distribution function): receive power, and send power 
according to some set of sample points. 

we can derive N (u, v) pairs and then transform these to 
the appropriate (e, 4» pairs. The radiance of the zone 
will just be ~/(1!'A), where A is the area of the zone . 

For a zone with direction ally dependent reflection be­
havior, such as brushed steel, we must maintain the to­
tal and unsent power as some kind of directional table 
[20, 46, 42]. A simple way to do this is a spherical coor­
dinate array of bins, with the total power going through 
each bin. The unsent and total power of the diffuse case 
must be generalized to a new black box, the angular dis­
tribution function (adf) . This function maintains what­
ever information is necessary to receive power, and later 
send power as a set of rays (Figure 3). Other possible ta­
bles include hemicubes [26] and spherical harmonics [10]. 

The receiving method of a direction ally dependent adf 
can be implemented by using the ray-material interac­
tion module of Section 2.4. Simply reflect the incoming 
ray using the ray-material interaction module as a black 
box, and add the attenuated reflected poweI' to whichever 
angular bin( s) the reflected ray( s) land in . The sending 
stage can be implemented using the warping methods of 
Section 2.2.2, or by independently sending a pattern of 
N rays from each angular bin. Because the adf actually 
stores spectral values, it can only be converted to a prob­
ability density by converting the entries to scalars. We 
use luminance to do this. 

It would be very wasteful of storage to store an explicit 
directional table for diffuse surfaces, though that would 
work. We therefore implement a lambertian adf by stor­
ing only the total and accumulated power . The black box 
interface still looks the same to the zonal module. To 
accomplish this in an extendible way, we add an access 
function to the ray-material interaction class which tells 
whether the reflection behavior is direction ally depen-

124 

Figure 4: The imperfect floor on the right is modeled 
with zones, while the one on the left uses distributed ray 
tracing. All diffuse surfaces use zones with no directional 
tables. 

dent or independent , and whether the surface is reflective 
or reflective and transmissive. If the material is reflec­
tive and direction ally independent (e.g. lambertian), it 
will use an adf module that stores only total and unsent 
power. If it is reflective and transmissive and direction­
ally independent (e .g. translucent), then these quantities 
will be maintained both above and below the surface. 
If direction ally dependent, the directional tables will be 
maintained either for (0 < e < 1!'/2) or (0 < e < 1!') de­
pending on whether the material is transmissive. If the 
material can provide an estimate of specularity (e.g. the 
phong exponent) , then this can be used to choose the 
resolution of the table. 

Once the adf modules have been initialized in each zonal 
module, their internal representation is invisible. This 
allows the programmer to detach the local lighting mod­
els from the global light transport. Figure 4 shows an 
environment containing both zones with and without di­
rectional tables. 

The zonal-data abstract class accomplishes two impor­
tant functions. First, it removes any reference to surface 
reflection type from the light transport code. This makes 
the code more readable and allows new reflection types 
to be added in a modular fashion. The second impor­
tant function is that it allows variable storage for the 
zonal-data of different reflection types. Thus, adding a 
surface with a large directional table does not force the 
lambertian surfaces to use more memory. 

If the zone is textured, its average reflection properties 
must be found . To avoid aliasing problems, the meth­
ods of Section 2.2 are used to point sample the zone to 
estimate the average properties. 
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Figure 5: Elimination of E-test . 

3.1 Reducing Precision Problems 

One advantage of ray tracing is that the programmer 
does not have to be concerned with maintaining the 'cor­
rect' outward facing surface normals, because we know 
whether a ray is 'inside ' or 'outside' simply by count­
ing surface crossings . For zonal methods, however, we 
need to emit power carrying rays toward the 'outside', 
so we need to maintain an outward facing normal. This 
is unfortunate, but it can be used to our advantage by 
eliminating the infamous E test. A strategy similar to 
the one described in t his section has been developed by 
Schlick [43]. 

When generating a parametrically defined ray (0 + tv) on 
a surface, as is done with reflected rays, power carrying 
rays, and shadow rays, we will always have an intersec­
tion at point 0 at approximately t = O. To avoid compli­
cations that arise when imprecision causes the hit to be 
represented as a slightly positive number, we look for the 
first hit where t > E, where E is a small positive number 
that bounds the possible roundoff error. Amanitides and 
Mitchell[3] showed that problems can arise when there 
are real surfaces closer than t = E and provided strate­
gies to use in these cases . 

We can eliminate the E test by using the surface normal 
information. Each surface can be viewed as an interface 
between two materialsb

• The first material can be viewed 
as the inside material (facing away from the normal), 
and the second as the outside material. As mentioned in 
Section 2.1, each ray stores the material it is currently 
in. This means a dot product of the ray direction with 
the normal of a surface will tell the ray which material 
is in front of the surface from the point of view of the 
ray. If this material is not the same as the material t he 

bOur translucent surface does n ot fit this definition so 
some care must be taken when assuming such a model ' 

Figure 6: A lamp with translucent lampshade. 

ray is traveling through, then the ray cannot hit that 
surface. This idea is illustrated in Figure 5, where a 
ray originates at point PI and propagates into glass (the 
outside material) . When the ray is tested for intersection 
against SI, the dot product between the ray direction and 
NI indicates that the ray is going inside to outside and 
is thus approaching from the water side. Since the air is 
in glass, we know there can be no intersection, so no E 

test is needed. For S2 , the inside material is glass , so the 
intersection point P2 is taken to be valid. 

4 Conclusion 

While experimenting with different ways of combining 
ray tracing and zonal methods, it became clear to us 
that it is desirable to be able to assemble a global illumi­
nation renderer from some basic components . With such 
a system, at a global level, the graphics programmer will 
be able to experiment with different ways of assembling 
the renderer. while at a local level, different implementa­
tions of the same component can be exchanged invisibly. 
In this way, it would be possible to independently test 
different algorithms. 

Figures 6 and 7 show two pictures generated using com­
ponents in our framework. Figure 8 shows a picture 
with a zonal participating medium. The zones in the 
medium have volume angular distribution functions sim­
ilar to the surface functions described in Section 3. The 
basic method follows [41], but uses progressive refinement 
ray tracing to implicitly calculate form factors. 

Two programming strategies have been used to achieve 
our goal. The first was the creation of utility classes 
of points, vectors, colors, rays, orthonormal bases, noise 
generators, texture coordinates, and textures. These util­
ity classes were used as primitive types, much like integers 
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Figure 7: A gallery with several textures. 

and floats in numerical codes, in the creation of the im­
age generation code. The second basic strategy was the 
identification of key components in a global illumination 
system and the creation of abstract classes to support 
these components. 

We identified the key components of a stochastic ray 
tracer to be a sample point generator, a ray-object in­
tersector, and a ray-material interactor . Corresponding 
abstract classes are defined to support these components: 
sample-generator allows different sampling strategies and 
distributions to be plugged into the basic ray tracing 
module, geom-object allows the addition of new object 
types and collection structures, and ray-material inter­
action class allows the definition of new materials with 
distinct light interaction characteristics. 

When identifying the key components for supporting 
zonal calculations, we realize that most of the ray trac­
ing components are reusable. For example, the reflected 
energy ray distribution uses the sample point generator, 
and the surface energy reflection behavior is implemented 
using the ray-material interaction class . The zonal-data 
class hides the mechanics of power accumulation and re­
distribution, and thus allows efficient storage systems to 
be implemented for each surface type. 

One issue that remains unresolved is how to handle sur­
faces with complex material properties. For example, we 
could define a floor surface with alternating tiles made of 
marble and steel. The steel would respond to light as a 
metal, and the marble as a polished surface. It would also 
be desirable to be able to add a layer of dust (probably 
using a procedural texture), that would cover the marble 
and steel in a nonuniform manner, reducing the specular­
ity of both. If the 'material' were to handle all shading in 
this situation, it would need access to steel, marble, and 
dust reflectance behavior, as well as the procedural tex­
ture describing the dust. This could be accomplished in 
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Figure 8: Gallery with participating medium. 

a manner similar to a Renderman shader [51, 23] , where 
the shading routine has access to the internals of reflec­
tion models and textures. Unfortunately, such a shader 
does not hide much information, and can become quite 
unwieldy. It would be very desirable to put the capabili­
ties of a general shader in a class structure that preserves 
modularity and data hiding, but exactly how to create 
such a class structure is still a research topic. 

Our discussion is summarized by the description of a 
global illumination system assembled from the defined 
components. Without altering other components in the 
system, we have implemented different octree traversal 
algorithms and storage strategies. The different imple­
mentations of the component were plugged in and tested 
in a way that is invisible to the rest of the system. In this 
way, some observations were made that contradict com­
mon beliefs. For example, the tree walking algorithm 
is not always the best octree traversal choice, jittering 
may not be the best simple sampling strategy, and mail 
box may not always be a worthwhile effort. During the 
course of the system development, we changed our color 
models and sampling strategies several times. This was 
accomplished with only local code alterations. 

We believe we have identified a useful set components for 
the construction of global illumination system. Note that 
there is no 'correct' set of components for any software 
system. As new algorithms are invented, the component 
design should be refined to support the implementation 
of the new algorithms. 
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