
117

A Ray Tracing Framework for Global Illumination Systems

Peter Shirley •
Department of Computer Science

Indiana University
Bloomington, IN 47405, USA

Kelvin Sung t
William Brown t

Deptartment of Computer Science
University of Illinois

Urbana, IL 61801, USA

A_bstract

The fundamental software components useful for a zonal
ray tracing system are described. The interface protocols
and some implementational observations are outlined for
each of the key components. Components for sampling,
ray-object intersection, and zonal (radiosity) calculations
are emphasized. Some results from a global illumination
program assembled from the components are discussed.

eR Categories and Subject Descriptors: I.3.0
[Computer Graphics]: General; I.3.6 [Computer Graph­
ics]: Methodology and Techniques.

Additional Key Words and Phrases: Ray tracing,
radiosity, object-oriented design, software components,
zonal method, visual realism.

1 Introduction

In recent years many researchers have investigated ray
tracing solutions to the global illumination problem [54,
13 , 12,29,53,52,1,47,25]. Other authors have applied
object-oriented design to ray tracing programs [32, 24].
In this paper, we discuss the major components1 of an
object oriented ray tracing system for global illumination.

There are several existing systems that enable program­
mers to construct user interfaces from basic components
(e .g menus, scrollbars, windows). In a similar fashion,
graphics programmers should be able to compose a global

·E-mail: shirleyCcs.indiana.edu
t E-mail: ksungCcs. uiuc.edu
INow at Mentor Graphics. E-mail: brownCcs.uiuc.edu
1 Components are defined by their behavior and their inter­

face protocols. This is the same as the blllck box fromework
described by Johnson and Foote [28].

illumination renderer from basic components. Such com­
ponents are specified only by their interface protocols,
so different implementations of the same component can
be invisibly exchanged in a particular system, which al­
lows isolated testing of particular component implemen­
tations. This, of course, is simply an instance of abstract
data typing.

The design strategy outlined above is not novel. We are
simply applying this strategy to the global illumination
problem, and thus identifying the key components of such
a system. In this paper, we focus on the functionality and
interface protocols of these components . We also dis­
cuss some implementation strategies for particular com­
ponents.

The fundamental components of a distributed ray tracing
system are described in Section 2. This extends the basic
framework presented by Kirk and Arvo [32]. In Section 3
we describe the new components that are needed for zonal
calculations, and discuss how the ray tracing components
can be reused. Some results using our components and
some open issues are discussed in Section 4.

The terminology we use in this paper is borrowed from
C++, however the ideas should be easily translated to
most object-oriented languages. The word class will be
used for particular components and their associated im­
plementation. As discussed in [55], an abstract class
specifies the behavior of an object (i.e. a component
interface) without defining how the behavior should be
implemented and a .mbcla.u is a specialization of an ab­
stract class because it defines the implementation of the
behavior.

Graphics Interface '91

2 Ray Tracing Components

In this section, we describe the basic components of our
ray tracing framework. In Section 2.1 we present sev­
eral simple classes that are useful in graphics programs.
The components which manage sample distributions on
l,he pixel are discussed in Section 2.2. The ray-object
intersection component is described in Section 2.3. The
ray-material interaction component, our variation of a
shader [51, 23], is outlined in Section 2.4.

2.1 Graphics Utility Classes

Some utility classes are obviously needed: points, vectors,
4 by 4 transformation matrices, and colors. Operations
involving these classes are defined using operator over­
loading mechanisms. Only operations that have mathe­
matical meaning are allowed, as suggested by Goldman
[19]. The allowed expressions include addition and sub­
traction on vectors, addition and subtraction between a
point and a vector, subtraction between points, and oper­
ations between a scalar and a vector. Denying operations
such as the addition of two points makes mistakes in ex­
pressions easier to catch. Unfortunately, it also makes it
difficult to take the centroid of a set of points. However,
it is always possible to create a special purpose function
to perform such a task.

Colors have the operators of addition, multiplication, di­
vision, and subtraction with themselves, and multipli­
cation and division with scalars . Initially, a RGB color
model was used . This was later replaced by a very gen­
eral spectral model, where each color was approximated
by a piecewise linear approximation with arbitrary node
locations. When two colors were combined by an opera­
tion, a new color with possibly more nodes was generated.
This meant that unbounded lists had to be used to store
the node locations and amplitudes. Though this gen­
eral color representation was well suited for complicated
spectral distributions, such as the emission spectrum of
a fluorescent light, and was spatially efficient for simple
spectra, the time needed to manage the color variables
was too large to justify the switch from RGB (typically,
the run time more than doubled) . Next, we switched to
twenty evenly spaced nodes to represent color spectra.
Because this had a high storage cost (especially for im­
ages using zonal calculations), the four unevenly spaced
node locations suggested by Meyer was used [34]. There
was no qualitative loss in image quality observed going
from the twenty to four samples, but this may say more
about the arbitrary nature of most of the input spectral
curves than about the quality of the spectral approxima­
tion. We suspect that filtering the input spectra before
point sampling them will avoid most problems associated
with using only a few sample locations.

118

x

)
Figure 1: Use one corner of a board to find a solid noise
seed point for an index into the tree .

Another basic utility class is the ray class, represented by
a point of origin, and a vector representing direction. The
ray class has no allowed operations, but does have the
basic 'method' (member function) that finds the point a
certain distance along the ray. We have found that it is
helpful to associate two other characteristics with a ray.
The first is a material id which stores the material the ray
is in (e.g. 'this ray is now traveling through glass'). The
second characteristic is the attenuation of the ray. This
makes the bookkeeping associated with adaptive ray tree
pruning [22] straightforward.

A utility class that has been surprisingly useful is an or­
thonormal basis of three vectors. Though any two of
these vectors uniquely defines the basis, all three are ex­
plicitly stored, trading space for execution time. These
bases are used in viewing calculations, and to assign a
local coordinate system to a surface.

Another utility class is the (u, v) pair. This class is use­
ful for pixel sampling and texture mapping. The texture
class itself adds another useful utility. In this implemen­
tation, the texture abstract class takes both a point in
3D, and a (u,v) pair . Surface textures and solid tex­
tures [38] are both subclasses of the texture class. A
solid texture will use the point for texture generation,
and the surface texture will use the (u, v) coordinate for
color lookup. This 'send all information, needed or not'
strategy can be inefficient, but it is a simple way to guar­
antee that the needed information is passed to a texture
module.

A very useful utility class is a solid noise generator. We
have implemented the generator given in Perlin's 1989
paper [39], and found it to be mechanical to implement.
While it has been demonstrated that solid noise is useful
in generating uniform textures such as marble, we have
found that these techniques are too simple for semistruc­
tured patterns such as board floors , brick walls, and car­
peted floors. Each element of these patterns (e .g. an
individual brick) can be modeled using various transfor­
mations on solid noise. To accomplish this, one adds one

Graphics Interface '91

119

or more randomly or semi-randomly varying parameters
to make the elements vary among themselves.

As an example, a single board has a random grain pat­
tern associated with a plane passing through a tree. The
woodgrain of a tree is modeled in a manner similar to
Perlin's marble: the basic structure of the tree is light
and dark concentric rings , where the area (not distance)
between rings is roughly constant . The radius of a given
ring will decrease slightly as it moves up the tree (it is vi­
sually important that the rings are not perfect cylinders).
Noise is used to add some irregularity to the geometry
of the rings. The particular location of a board in a tree
is what gives it its unique character. Since the tree is of
finite volume there are a finite set of specific boards that
come form a tree, and each can be given a specific integer
id.

We create our board texture by putting down an algorith­
mic (predefined) board pattern, and associating a specific
board id to each board. This is easily accomplished by
using the solid noise at a particular corner of the board
as a seed to generate the board location in the tree (Fig­
ure 1). This guarantees that all points on a board are
mapped to the same id in the tree . This procedure gives
some irregularity to what types of boards (fine-grained
versus loose-grained) are adjacent in the pattern. To en­
sure that there is no visible correlation between the ids
of adjacent boards, we scale the corner points by some
large factor before calling the solid noise function.

A similar approach can be used to generate bricks . Solid
noise evaluated at one corner of a brick will give a seed
to control some global parameter for that brick. If more
than one parameter is needed, the other corners (or mid­
points, etc.) can be also used for solid noise seed points.
All of the textures in Figures 7 and 6 used this type of
procedural texture.

To generate the colors of wood or brick, we attempt to use
physical spectral curves. Unfortunately this data can be
hard to come by, and directly specifying spectral curves
is not intuitive. In these cases we generate curves by
'mixing' standard artist's pigments, the curves for which
can be found in [9]. When we have existing RGB data, we
use Glassner's conversion method [18]. It has been our
experience that using smooth curves for this conversion
is highly preferable to using impulses.

2.2 Sample Point Generation

A basic module in any ray tracing code selects sam­
ple points on the pixel (in some systems the samples
are chosen more globally on the screen). In a stochas­
tic ray tracing system, sample points must be chosen
from a larger multidimensional space (e.g. screen-lens­
reflection-shadow-time space). Cook recommends choos-

ing sample point module one or two dimensions at a
time and then combining these choices for full multidi­
mensional sample distributions. For example, we might
choose screen locations uniformly on the pixel area, and
lens points uniformly on the lens disk. These points
could then be paired randomly or deterministic ally to
form sample points in four-dimensional screen-lens space.
Cook calls his specific version of this method uncorrelated
jittering. There has been much discussion on how to get
a 'good' set of sample points on a square two-dimensional
region [13, 35].

Many spaces we need to sample (e.g lens area, reflec­
tion ray direction) are not square. One way to generate
sample points on a non-square region is a special purpose
algorithm, such as the one used by Cook for reflected rays
[12]. The other is to generate points on the square and
then apply a warping function so that their distribution
is changed. An example of this method is the transforma­
tion used by Ward et 801. to generate a cosine distribution
of sample points on a hemisphere [53]. The first abstrac­
tion is to make the sampling distribution come from an
abstract class. This lets the user flexibly choose and add
sampling methods and filter functions in a natural way.

In this section we discuss two basic modules useful for
sample point generation. The first generates sample
points on the unit square, and the second module acts
as a filter to create specific sample point distributions by
'warping' uniform distributions .

2.2.1 Uniform Sample Point Generation

The sample-generator module is passed a non-negative
integer, n, and generates n (u, v) sample points that are
equidistributed on the unit square (0 :5 u :5 1,0 :5 v :5
1). The basic implementations of this module are com­
monly regular sampling, jittering, and poisson disk sam­
pling. All of these strategies have problems. Regular
sampling can cause extreme aliasing. Jittering requires
n to be a perfect square for optimum performance, or
requires some factoring system otherwise (n = 17 would
imply a 1 by 17 sampling partition). Poisson disk has
non-deterministic running time, and choosing the disk
radius is not straightforward. Mitchell addressed the first
problem with an approximation to poisson disk sampling
based on error diffusion [35].

We have several strategies, and most often use n-roob
!ampling. This scheme, to our knowledge, was first used
in the OPTIK system [56], and first reported in the
Monte Carlo literature by Kalos [30]. N-rooks is a varia­
tion of Cook's uncorrelated jittering. We generate the u
coordinates of the n points by jittering in one dimension,
and then generate n v coordinates in the same way. We
then randomly link the u and v coordinates to form n
(u, v) pairs. This forms n sample points in a way that

Graphics Interface '91

is unbiased in relation to the probability of selecting any
particular point. Another way to look at the sample gen­
eration is to draw an n by n chessboard, and randomly
place n rooks on the board subject to the constraint that
the rooks cannot capture each other in one move. This
results in a pattern where every row and column has ex­
actly one rook. We now select one (11., v) pair from each
square where a rook sits.

The n-rooks strategy is really a simplification of uncor­
related jittering (rather than a generalization), because
none of the dimensions are really linked. N-rooks has the
advantages that it can generate a set of n samples for
any n, that it takes a deterministic amount of time, and
that there are no parameters that need to be set other
than n. It is not surprising that n-rooks performs well
for pixels containing horizontal or vertical edges, because
it fully jitters each dimension. To our surprise, it has so
far almost always been more accurate than other sam­
pling methods on the images we have tested. These test
results, and some analysis on why this might be true can
be found in [45, 48J.

2.2.2 Sample Distribution Transformations

Suppose we want to apply weighted area averaging to a
pixel rather than simple area averaging [14J. We could
simply apply weights to each sample point based on its
(11., v) coordinate. If we sample each pixel independently
it is better to apply importance sampling by placing the
sample points in a way that is distributed according to
the weighting function [12J. In this section, we describe a
module that takes a set of n uniformly distributed points,
and warps them in such a way that they are distributed
according to the desired weighting function.

As a simple example, suppose we want the trivial 'box'
weighting function, which simply samples the pixel area
uniformly (w(x,y) = 1 inside the pixel). The warping
module would take n sample points generated by a mod­
ule described in the last section, and apply the mapping
x = 11. - 0.5, Y = v - 0.5. This assumes we are using
a coordinate system where the pixel center is the origin
and the pixel width is 1.

In practice we will want non-uniform weighting functions.
For example, suppose we have the width 2 weighting
function:

w(x,y) = (1 -lxl)(I-lyl) (1)

If we just want to generate independent random points
with density w, we apply standard techniques to trans­
form canonical2 random numbers into these points [33J.
Since this particular w is separable, we can generate x
according to w(x) = (1 -lxI), and y the same way. We

2 A canonical random number e is unifonnly distributed
between 0 and 1.

120

Figure 2: A transformation for non uniform filter sam­
pling.

define the distribution function, F, associated with w:

F(x) = j" (1 -lx'l)dx' = .!. + x - .!.xlxl (2)
-1 2 2

To get our desired independent (x, y) distributed accord­
ing to w, we simply take canonical (6,6) and apply
x = F-1(6), and y = F-1(6), where F-1 is the inverse
function of F.

This idea can be extended by taking our set of sample
points and transforming them as if they were canoni­
cal. This will preserve some of the good qualities of the
original sampling distribution, but will have our desired
distribution properties. Applying this idea to the filter
in Equation 1, we can take our n uniform sample points
and apply the transformation:

{
-I + v'2ti"

x = 1 _ J'--2(""-I---1I.-=-)
if 11. < 0.5

if 11. 2: 0.5

followed by a similar transformation involving y and v.
This transformation on 16 jitter cells is shown in Figure 2.
Note that this will transform nonuniformly within each
cell, so the sample point selection must take place before
the transformation.

The uniform sampling transformation can also apply to
non-separable density functions, and to functions defined
on non-Cartesian manifolds. This requires dealing with
the joint distribution function and non-constant metrics,
but otherwise the same techniques apply. Details can be
found in [44, 45J.

We have found several other transformations to be use­
ful. For example, to choose points uniformly from a
disk of radius R, apply the transformation 8 = 211'11.,
T = R.,fV. To choose points in a cosine distribution on
a hemisphere (p(8, t/J) = (1/11') cos 8), apply the trans­
formation 8 = arccos(.J1=U), t/J = 211'v . A general­
ization is to choose directions according to a 'phong'
distribution (p(8,t/J) = «n+l)/(211'))cos"8), byap­
plying the transformation 8 = arccos«1 _ 11.)1/(,,+1)),

Graphics Interface '91

121

rP = 21["v. To choose random points on a triangle de­
fined by vertices po, Pl, and P2, apply the transformation:
a = 1 - v'1=U, b = (1 - a)v, and the random point p
will is: p = po + a(Pl - po) + b(p2 - po).

2.3 Ray-Object Intersection

From a functional point of view, the ray-object intersec­
tion component simply finds the first object, if any, hit
by a ray3. With this simple definition, this component
can be implemented as a black box framework [28). Our
goal here is to present the design of a framework to facili­
late the independent development of different algorithms
for this component. We use the Faster Ray Intersection
Techniques as described by [8] as a base to discuss our
design and show that our design unifies the approaches.
This section concludes with some implementation obser­
vations.

2.3.1 Class Hierarchy

Heckbert observed that geometrical objects should be
viewed as basic components with common interface pro­
tocols, so that a ray tracing system can be designed in­
dependently from the geometrical primitive types (e.g.
spheres, polygons) [24] . Like Kirk and Arvo [32], we
have implemented geometrical primitives (e.g. sphere,
polygon) and collection structures (e.g. octree, bounding
volume) as subclasses of the same geom-object abstract
class. In this way, they can have the same interface pro­
to cols and behaviors. This allows a particular collection
structure (e.g. octree) to contain, as members, other col­
lection structures (e.g. bounding volume, regular grids).
For example, both geometrical primitives and collection
structures respond to the Hit(ray) message by returning
the geom-object hit by the input ray. Since both geomet­
rical primitives and collection structures are subclasses
of geom-object, the result of Hit message could be either.
In this way, it is possible to have nested octrees or have
regular grid nested inside an octree structure. Intelligent
use of this generality can reduce the system execution
time. Unfortunately, just how to attain intelligent use is
not obvious [32).

This general grouping of spheres, polygons, octrees, etc.
emphasizes an important point: classes with common ac­
cess (member) functions should be subclasses of the same
abstract class, even if their underlying representations are
very different . Classes with different access rules, even if
their underlying representations are identical, should not
be grouped together, as seen with points and vectors in
the previous section.

3If we want to do constructive solid geometry, we might
want the intersection routine to find the list of all intersection
points[40j.

2.3.2 Functional Modules

It is well known that linear exhaustive testing of prim­
itives with rays for potential intersection is inadequate.
The geometric model should be processed into some in­
ternal representation (e.g. collection structures like oc­
tree) for efficient candidate primitive look up during in­
tersection testings. Since current ray tracers and zonal
renderers only model geometrical optics [29], the pro­
cessed internal representation could be viewed as an ef­
ficient primitive/geometric characteristic association list
storage and look up mechanism.

From the design level, the ray-object intersection com­
ponent consists of three functional modules: Builder,
Structurer, and Traverser. For each primitive, the builder
module asks for certain geometric characteristic from the
primitive, and sends requests to the structurer module
to associate the characteristic with the primitive. The
traverser module extracts the relevant geometric char­
acteristic from an input ray and requests the structurer
module to look up the associated primitives stored. It is
a primitive's responsibility to calculate for possible inter­
sections. Under this design, the ray-object intersection
component becomes the coordinator that assists and thus
speeds up the process of searching for potential intersect­
ing primitives.

The acceleration techniques for faster intersection calcu­
lations as described in [8] are unified under this design :

Bounding Slabs [31]. The Builder module asks for the
bounding slab distances from the primitive. In this case,
the bounding slab is the 'geometric characteristic'. The
Structurer module associates the primitive with the corre­
sponding slab and slab distances . The construction of the
bounding slab hierarchy is also the responsibility of the
structurer module. The Traverser module takes a ray ge­
ometry and pierces the bounding slab hierarchy to locate
potential intersecting primitives. Notice that a bounding
slab is also a primitive in the sense that it must respond
to the Hit protocol message by returning the primitives
(including children slabs) bounded by the current slab.

Spatial Subdivision [17, 15] . The Builder module asks
for the extent from a primitive and determines which
spatial cell should be associated with the primitive. The
actual implementation of spatial cell and the associa­
tion between the primitive is performed by the Structurer
module. The Structurer module stores the association of
primitives and spatial cell units in such a way that later
retrieval of primitives can be done efficiently (when given
a ray). The Traverser module takes a ray geometry and
traverses the spatial structure to locate the potential in­
tersection primitives. Again, a spatial cell unit must be
able to respond to the Hit protocol message by returning
primitives (including children spatial cells in the case of
adaptive subdivision algorithms) contained in the current

Graphics Interface '91

122

spatial cell.

New algorithms could be formulated by identifying the
geometric characteristic that the approach is taking ad­
vantage of. For example, the ray coherence theorem [36]
uses a direction and an acute angle as the geometric char­
acteristic. In this case, the builder module finds out the
list of candidate primitives that are visible from a di­
rection/angle pair of a primitive. When tracing a sec­
ondary ray, the traverser module uses the ray direction
and reflecting angle to request the structurer module to
extract the candidate primitives associated with the cor­
responding direction/angle pair for potential intersection
calculations.

The reason to separate this component into three mod­
ules is such that the implementation of each module can
be isolated and replaced without affecting the others. For
example, for an octree spatial subdivision implementa­
tion, the builder can build the octree structure statically
before ray tracing starts, or dynamically during ray trac­
ing. The structurer module is the underlying implemen­
tation of an octree, this could be built around a hash
table, or a hierarchy of pointers. The traverser module
knows how to traverse an octree, but does not need to
know the detailed implementation of the octree struc­
ture. Some of the examples of octree traversers are: tree
walking [16], Glassner's algorithm [17], and DDA octree
traverser [50].

2.3.3 hnplementation Notes

Following the design approach described in this section,
it is possible to replace a module in this component with
the rest of the system remaining unchanged. As a result,
we are able to isolate and observe the effect of different
algorithms.

Octree Traversal. It is believed that the original oc­
tree traversal algorithm [17] can be improved by real­
izing tree location coherence [16]. In his original octree
approach [17], Glassner proposed always beginning the
search for next octant from the root of an octree. It
has been pointed out by various researchers [27, 16] that
theoretically, starting the next octant search from the
parent of current octant should be faster (this approach
has been called tree walking [16]) . We note that the only
difference between the two algorithms is in the process of
getting the next octant: tree walking recognizes the tree
location coherence and starts searching from the parent
of the current octant, while Glassner's algorithm always
starts searching from the root of the octree. A fact that
generally has been overlooked is that it takes extra time
for the tree walking algorithm to ascend the octree [7].
When traversing between two octants of different first
level parents, the two algorithms take the same amount
of time to descend the octree, but tree walking needs ex-

tra time to ascend the octree. The recursion the extra
time needed to ascend the octree usually causes the im­
plementation of the tree walking algorithm to result in a
slower system [50].

Mail box. The mail box concept was proposed inde­
pendently by [5, 4]. The idea is to avoid multiple ray­
object intersection calculation between the same object
and the same ray in different spatial cell units . The un­
derlying assumption is that the primitive objects usu­
ally stretch across many spatial cell units, thus the time
saved in avoiding multiple intersection calculations off­
sets the overhead involved in maintaining the extra in­
formation. We note that when the size of the objects in a
scene is small in comparison to the size of the spatial cell
units, the probability of objects spanning multiple spa­
tial cell boundaries also becomes small. The overhead
involved in performing the pre-intersection checking and
post-intersection information recording eventually offsets
the time saved in avoiding the small number of multiple
intersection calculations. In some cases , the mailbox im­
plementation actually results in a slower system [50], and
its utility may be highly dependent on the general spatial
character of the geometric primitives used.

2.4 Ray-Material Interaction

Several researchers have noted that reflection behavior
should be encapsulated as one unit of a rendering sys­
tem [32, 51, 23] . We treat light-material interaction as a
component, where the reflection behavior is determined
strictly from a set of material parameters. Traditionally
this might be accomplished with parameters including k8,
kt, and kd [21]. One problem with such an approach is
that physically implausible parameter combinations can
be chosen by the user (e.g. kd = ks = 0, kt = 1). Implau­
sible combinations may be useful for many applications,
but if realism is desired, we think it is better to limit the
user's choices.

We have used the idea that materials can be classed as
families, each grouped by the parameters that affect their
behavior. This way the user only needs to choose the
relevant parameters for a particular material. Once the
material is chosen it is treated as a black box component
that responds to a limited protocol (much like geomet­
rical objects for ray-object intersection). The first way
in which a material can be queried is , given an incoming
ray r, a point p on the surface, and a surface normal ii,
asking what rays ri are reflected/transmitted by the ma­
terial, and what is the attenuation ki for each ray'. This
will allow us to handle building the ray propagation code.
For other lighting calculations, such as the direct light­
ing component, we need to ask a material, 'what is your
radiance, L(V out), that comes from a source of radiance
L(Vin) that subtends a solid angle w?' . We also need to

Graphics Interface '91

123

ask a material if it is a luminaire (source of light), and if
so, how much light it emits in a particular direction.

The materials that we have implemented are:

conductor: Parameters n (refractive index), le (extinc­
tion coefficient), e (phong-style exponent). Exam­
ple: aluminum.

dielectric: Parameters n (refractive index), a (filter
coefficient), e (phong-style exponent) . Example:
glass.

lambertian: Parameter led (diffuse coefficient). Exam­
ple: matte paint.

polished: Parameters led (diffuse coefficient of sub­
strate), n (refractive index of polish), e (phong-style
exponent). Example: gloss paint.

translucent: Parameters Ie~ (diffuse coefficient of first
side), Ie~ (diffuse coefficient of first side) , let (trans­
mission coefficient). Example: lampshade.

luminaire: Parameters led (diffuse coefficient), e
(phong-style exponent) . Example: light bulb.

These basic materials can be extended, but they have
proven to be fairly good approximations to common real
world materials. Conductors are sometimes a little diffi­
cult because the parameters n and le are not intuitively
controllable . We have found most of the data we use for
conductors in [37]. The behavior of both conductors and
dielectrics is determined using the Fresnel Equations, the
full form of which can be found in [49, 45] . The polished
surface is an approximation to a diffuse substrate with a
thin dielectric covering. This means that for a given di­
rection we first calculate the specular reflectivity Ie.(8),
and then the remaining light is reflected diffusely, giving
a diffuse reflect ance of (1 - le. (8)) led. This allows glare
effects to be approximated accurately. The phong-style
exponent e is used to allow some spread in the reflected
component of conductors, dielectrics, and polished mate­
rials. For smooth surfaces e is set to a large number.

The translucent surface reflects light diffusely from either
side, and also allows some light to be diffusely transmit­
ted. The luminaire acts as a diffuse reflector, and also
emits power in a phong-style distribution. Large expo­
nents are used if spot lights are desired.

The ray reflection/transmission behavior can be summa­
rized as:

conductor: Generate one reflected ray with attenuation
determined by Fresnel Equations. Perturb ray ran­
domly if e #- 00.

dielectric: Generat e one reflected ray and one trans­
mitted ray with attenuations determined by Fresnel
Equations. Perturb both rays randomly if e #- 00 .

lambertian/luminaire: Generate one reflected ray
randomly with a cosine distribution.

polished: Generate one reflected ray from the polish
with attenuation determined by Fresnel Equations.
Perturb ray randomly if e #- 00. Generate one re­
flected ray from the diffuse substrate randomly with
a cosine distribution .

translucent: Generate two rays randomly, one re­
flected, one transmitted, each with a random cosine
distribution.

It is useful to be able to turn off reflections from a particu­
lar material. We allow this to be done when the material
is initialized. A conventional Whitted-style ray tracer
would turn off reflections for the lambertian, translu­
cent, and luminaire surfaces, and would turn off reflec­
tions from the substrate (but not the polish) of the pol­
ished surfaces. To maintain some form of dependent
sampling, such as uncorrelated jittering, the reflection
protocol should also accept a canonical (tt, v) pair (Sec­
tion 2.2), to be used as a basis for any probabilistic re­
flection that might occur .

3 Zonal Calculations

Several recent zonal· systems are based on progressive re­
finement techniques [11, 2]. The theoretical basis for such
systems is straightforward to extract. The progressive
refinement technique can be viewed as power transport
simulation, which implies fairly direct non-diffuse zonal
solutions [6, 47, 20, 46, 42]. These solutions are easy
to construct if we view the zone as a black box which
collects power carrying rays, and later emits a group of
power carrying rays that represent reflected power accu­
mulated since the previous emission step.

This abstraction underlying zonal calculations can be
stated: zones should receive, accumulate, and send
power, and the mechanics of how this happens should
be hidden. This is accomplished by defining a zonal-data
module. In addition, the module should, after the zonal
calculations are completed, be able to provide the radi­
ance of the patch when viewed from a certain direction.

For a lambertian zone, the zonal-data module is easy
to implement because there is no dependency on the in­
coming direction of intensity. We need to store the to­
tal power, cf>, and the unsent accumulated power, cf>".
Each new incoming ray carrying power cf>i will imply
cf> = cf> + ledcf>i and cf>" = cf>" + ledcf>i. When it is time
for the zone to emit, it will send N rays each carrying
power cf>,,/ N. These rays will be sent in a cosine distribu­
tion. Just as was done with pixel sampling in Section 2.2,

·In a zonal system lighting information is stored at a finite
set of zones. Radiosity programs use zonal methods.

Graphics Interface '91

RECEIVE

Figure 3: The two crucial methods of an adf (angular
distribution function): receive power, and send power
according to some set of sample points.

we can derive N (u, v) pairs and then transform these to
the appropriate (e, 4» pairs. The radiance of the zone
will just be ~/(1!'A), where A is the area of the zone .

For a zone with direction ally dependent reflection be­
havior, such as brushed steel, we must maintain the to­
tal and unsent power as some kind of directional table
[20, 46, 42]. A simple way to do this is a spherical coor­
dinate array of bins, with the total power going through
each bin. The unsent and total power of the diffuse case
must be generalized to a new black box, the angular dis­
tribution function (adf) . This function maintains what­
ever information is necessary to receive power, and later
send power as a set of rays (Figure 3). Other possible ta­
bles include hemicubes [26] and spherical harmonics [10].

The receiving method of a direction ally dependent adf
can be implemented by using the ray-material interac­
tion module of Section 2.4. Simply reflect the incoming
ray using the ray-material interaction module as a black
box, and add the attenuated reflected poweI' to whichever
angular bin(s) the reflected ray(s) land in . The sending
stage can be implemented using the warping methods of
Section 2.2.2, or by independently sending a pattern of
N rays from each angular bin. Because the adf actually
stores spectral values, it can only be converted to a prob­
ability density by converting the entries to scalars. We
use luminance to do this.

It would be very wasteful of storage to store an explicit
directional table for diffuse surfaces, though that would
work. We therefore implement a lambertian adf by stor­
ing only the total and accumulated power . The black box
interface still looks the same to the zonal module. To
accomplish this in an extendible way, we add an access
function to the ray-material interaction class which tells
whether the reflection behavior is direction ally depen-

124

Figure 4: The imperfect floor on the right is modeled
with zones, while the one on the left uses distributed ray
tracing. All diffuse surfaces use zones with no directional
tables.

dent or independent , and whether the surface is reflective
or reflective and transmissive. If the material is reflec­
tive and direction ally independent (e.g. lambertian), it
will use an adf module that stores only total and unsent
power. If it is reflective and transmissive and direction­
ally independent (e .g. translucent), then these quantities
will be maintained both above and below the surface.
If direction ally dependent, the directional tables will be
maintained either for (0 < e < 1!'/2) or (0 < e < 1!') de­
pending on whether the material is transmissive. If the
material can provide an estimate of specularity (e.g. the
phong exponent) , then this can be used to choose the
resolution of the table.

Once the adf modules have been initialized in each zonal
module, their internal representation is invisible. This
allows the programmer to detach the local lighting mod­
els from the global light transport. Figure 4 shows an
environment containing both zones with and without di­
rectional tables.

The zonal-data abstract class accomplishes two impor­
tant functions. First, it removes any reference to surface
reflection type from the light transport code. This makes
the code more readable and allows new reflection types
to be added in a modular fashion. The second impor­
tant function is that it allows variable storage for the
zonal-data of different reflection types. Thus, adding a
surface with a large directional table does not force the
lambertian surfaces to use more memory.

If the zone is textured, its average reflection properties
must be found . To avoid aliasing problems, the meth­
ods of Section 2.2 are used to point sample the zone to
estimate the average properties.

Graphics Interface '91

125

S2

Air

Inside Water
SI

Outside Glass

Inside Glass
S2

Outside Air

Figure 5: Elimination of E-test .

3.1 Reducing Precision Problems

One advantage of ray tracing is that the programmer
does not have to be concerned with maintaining the 'cor­
rect' outward facing surface normals, because we know
whether a ray is 'inside ' or 'outside' simply by count­
ing surface crossings . For zonal methods, however, we
need to emit power carrying rays toward the 'outside',
so we need to maintain an outward facing normal. This
is unfortunate, but it can be used to our advantage by
eliminating the infamous E test. A strategy similar to
the one described in t his section has been developed by
Schlick [43].

When generating a parametrically defined ray (0 + tv) on
a surface, as is done with reflected rays, power carrying
rays, and shadow rays, we will always have an intersec­
tion at point 0 at approximately t = O. To avoid compli­
cations that arise when imprecision causes the hit to be
represented as a slightly positive number, we look for the
first hit where t > E, where E is a small positive number
that bounds the possible roundoff error. Amanitides and
Mitchell[3] showed that problems can arise when there
are real surfaces closer than t = E and provided strate­
gies to use in these cases .

We can eliminate the E test by using the surface normal
information. Each surface can be viewed as an interface
between two materialsb

• The first material can be viewed
as the inside material (facing away from the normal),
and the second as the outside material. As mentioned in
Section 2.1, each ray stores the material it is currently
in. This means a dot product of the ray direction with
the normal of a surface will tell the ray which material
is in front of the surface from the point of view of the
ray. If this material is not the same as the material t he

bOur translucent surface does n ot fit this definition so
some care must be taken when assuming such a model '

Figure 6: A lamp with translucent lampshade.

ray is traveling through, then the ray cannot hit that
surface. This idea is illustrated in Figure 5, where a
ray originates at point PI and propagates into glass (the
outside material) . When the ray is tested for intersection
against SI, the dot product between the ray direction and
NI indicates that the ray is going inside to outside and
is thus approaching from the water side. Since the air is
in glass, we know there can be no intersection, so no E

test is needed. For S2 , the inside material is glass , so the
intersection point P2 is taken to be valid.

4 Conclusion

While experimenting with different ways of combining
ray tracing and zonal methods, it became clear to us
that it is desirable to be able to assemble a global illumi­
nation renderer from some basic components . With such
a system, at a global level, the graphics programmer will
be able to experiment with different ways of assembling
the renderer. while at a local level, different implementa­
tions of the same component can be exchanged invisibly.
In this way, it would be possible to independently test
different algorithms.

Figures 6 and 7 show two pictures generated using com­
ponents in our framework. Figure 8 shows a picture
with a zonal participating medium. The zones in the
medium have volume angular distribution functions sim­
ilar to the surface functions described in Section 3. The
basic method follows [41], but uses progressive refinement
ray tracing to implicitly calculate form factors.

Two programming strategies have been used to achieve
our goal. The first was the creation of utility classes
of points, vectors, colors, rays, orthonormal bases, noise
generators, texture coordinates, and textures. These util­
ity classes were used as primitive types, much like integers

Graphics Interface '91

Figure 7: A gallery with several textures.

and floats in numerical codes, in the creation of the im­
age generation code. The second basic strategy was the
identification of key components in a global illumination
system and the creation of abstract classes to support
these components.

We identified the key components of a stochastic ray
tracer to be a sample point generator, a ray-object in­
tersector, and a ray-material interactor . Corresponding
abstract classes are defined to support these components:
sample-generator allows different sampling strategies and
distributions to be plugged into the basic ray tracing
module, geom-object allows the addition of new object
types and collection structures, and ray-material inter­
action class allows the definition of new materials with
distinct light interaction characteristics.

When identifying the key components for supporting
zonal calculations, we realize that most of the ray trac­
ing components are reusable. For example, the reflected
energy ray distribution uses the sample point generator,
and the surface energy reflection behavior is implemented
using the ray-material interaction class . The zonal-data
class hides the mechanics of power accumulation and re­
distribution, and thus allows efficient storage systems to
be implemented for each surface type.

One issue that remains unresolved is how to handle sur­
faces with complex material properties. For example, we
could define a floor surface with alternating tiles made of
marble and steel. The steel would respond to light as a
metal, and the marble as a polished surface. It would also
be desirable to be able to add a layer of dust (probably
using a procedural texture), that would cover the marble
and steel in a nonuniform manner, reducing the specular­
ity of both. If the 'material' were to handle all shading in
this situation, it would need access to steel, marble, and
dust reflectance behavior, as well as the procedural tex­
ture describing the dust. This could be accomplished in

126

Figure 8: Gallery with participating medium.

a manner similar to a Renderman shader [51, 23] , where
the shading routine has access to the internals of reflec­
tion models and textures. Unfortunately, such a shader
does not hide much information, and can become quite
unwieldy. It would be very desirable to put the capabili­
ties of a general shader in a class structure that preserves
modularity and data hiding, but exactly how to create
such a class structure is still a research topic.

Our discussion is summarized by the description of a
global illumination system assembled from the defined
components. Without altering other components in the
system, we have implemented different octree traversal
algorithms and storage strategies. The different imple­
mentations of the component were plugged in and tested
in a way that is invisible to the rest of the system. In this
way, some observations were made that contradict com­
mon beliefs. For example, the tree walking algorithm
is not always the best octree traversal choice, jittering
may not be the best simple sampling strategy, and mail
box may not always be a worthwhile effort. During the
course of the system development, we changed our color
models and sampling strategies several times. This was
accomplished with only local code alterations.

We believe we have identified a useful set components for
the construction of global illumination system. Note that
there is no 'correct' set of components for any software
system. As new algorithms are invented, the component
design should be refined to support the implementation
of the new algorithms.

5 Acknowledgments

Thanks to Greg Rogers for general help with object­
oriented design, Claude Puech for discussion about the
ray-object intersection, John Airey, Holly Rushmeier,

Graphics Interface '91

127

John Wallace, and Greg Ward for numerous radiosity dis­
cussions, Jim Arvo for providing insight and information
about his ray tracing work, Andrew Woo, for help with
traversal and sampling issues, Don Mitchell for some ex­
pert guidance in sampling theory, Ralph Johnson for mo­
tivating a design based on something besides pure hack­
ing, Eric Ost and Jean Buckley for improvements on the
drafts of this paper, and special thanks to William Kub­
itz, the advisor for this project.

References

[1) John M. Airey and Ming Ouh-young. Two adaptive
techniques let progressive radiosity outperform the
traditional radiosity algorithm. Technical Report
TR89-20, University of North Carolina at Chapel
Hill, August 1989.

(2) John M. Airey, John H. Rohlf, and Frederick P.
Brooks. Towards image realism with interactive up­
date rates in complex virtual building environments .
Computer Graphics, 24(1):41-50, 1990. ACM Work­
shop on Interactive Graphics Proceedings.

(3) John Amanatides and Don P. Mitchell. Antialiasing
of interlaced video animation. Computer Graphics,
24(3):77-86, August 1990. ACM Siggraph '90 Con­
ference Proceedings.

(4) J ohn Amanatides and Andrew Woo. A fast voxel
traversal algorithm for ray tracing. In Eurographics
'87,1987.

(5) Bruno Arnaldi, Thierry Priol, and Kadi Bouatouch.
A new space subdivision method for ray tracing csg
m odelled scenes. Visual Computer, 3:98-107, 1987.

(6) James Arvo. Backward ray tracing. Developments in
Ray Tracing, pages 259-263, 1985. ACM Siggraph
'85 Course Notes.

(7) J ames Arvo . Linear-time voxel walking for oc­
trees. Ray Tracing News, 1(2), February 1988. e­
mail Edition, available under anonymous ftp from
weedeater.math.yale.edu.

(8) James Arvo and David Kirk. A survey of ray trac­
ing acceleration techniques. In Andrew S. Glassner,
editor, An Introduction to Ray Tracing. Academic
Press, San Diego, CA, 1989.

(9) Norman F. Barnes. Color characteristics of artists'
pigments. Journal of the Optical Society of America,
May 1939.

(10) Brian Cabral, Nelson Max, and Rebecca Spring­
meyer. Bidirectional reflectance functions from sur­
face bump maps. Computer Graphics, 21(4):273-
282, July 1987. ACM Siggraph '87 Conference Pro­
ceedings .

(11) Michael F . Cohen, Shenchang Eric Chen, John R.
Wallace, and Donald P. Greenberg . A progressive

refinement approach to fast radiosity image genera­
tion. Computer Graphics, 22(4):75-84, August 1988.
ACM Siggraph '88 Conference Proceedings.

(12) Robert L. Cook. Stochastic sampling in computer
graphics. ACM Transactions on Graphics, 5(1):51-
72, January 1986.

(13) Robert L. Cook, Thomas Porter, and Loren Car­
penter. Distributed ray tracing. Computer Graph­
ics, 18(4):165-174, July 1984. ACM Siggraph '84
Conference Proceedings.

(14) James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughes. Computer Graphics: Princi­
ples and Practice. Addison-Wesley, Reading, MA,
second edition, 1990.

(15) Akira Fujimoto, Takayu Tanaka, and Kansei Iwata.
Arts: Accelerated ray-tracing system. IEEE Com­
puter Graphics and Applications, pages 16-26, April
1986.

(16) Andrew Glassner. Implementation notes for ray
tracers. Advanced Topics in Ray Tracing, 1990.
ACM Siggraph '90 Course 24 Notes.

(17) Andrew S. Glassner. Space subdivision for fast ray
tracing. IEEE Computer Graphics and Applications,
4(10):15-22, 1984.

(18) Andrew S. Glassner. How to derive a spectrum from
an rgb triplet . IEEE Computer Graphics and Appli­
cations, 9(7):95-99, 1989.

(19) Ronald N. Goldman. lllicit expressions in vector
algebra. ACM Transactions on Graphics, 4(3):223-
243 , July 1985.

(20) David Edward Hall. An analysis and modification of
shao's radiosity method for computer graphics im­
age synthesis . Master's thesis, Department of Me­
chanical Engineering, Georgia Institute of Technol­
ogy, March 1990.

(21) Roy Hall. mumination and Calor in Computer Gen­
erated Imagery. Springer-Verlag, New York, N.Y.,
1988.

(22) Roy Hall and Donald P. Greenberg. A test bed for
realistic image synthesis . IEEE Computer Graphics
and Applications, 3(8):10-20, 1983.

(23) Pat Hanrahan and Jim Lawson. A language for
shading and lighting calculations. Computer Graph­
ics, 24(3):289-298, August 1990. ACM Siggraph '90
Conference Proceedings.

(24) Paul S. Heckbert . Writing a ray tracer. In Andrew S.
Glassner, editor, An Introduction to Ray Tracing.
Academic Press, San Diego, CA, 1989.

(25) Paul S. Heckbert. Adaptive radiosity textures
for bidirectional ray tracing. Computer Graphics,
24(3):145-154, August 1990. ACM Siggraph '90
Conference Proceedings.

Graphics Interface '91

128

[26] David S. Immel, Michael F. Cohen, and Donald P.
Greenberg. A radiosity method for non-diffuse envi­
ronments. Computer GraphicJ, 20(4):133-142, Au­
gust 1986. ACM Siggraph '86 Conference Proceed­
ings.

[27] Frederik W. Jansen. Data structures for ray tracing.
In L. R. A. Kessener, F . J. Peters, and M. L. P. van
Lierop, editors, Data SturctureJ for RaJter GraphicJ,
pages 57-373. Springer-Verlag, Netherlands, 1986.

[28] Ralph E. Johnson and Brian Foote . Designing
reusable classes. Journal of Object Oriented Pro­
gramming, pages 22-35, June 1988.

[29] James T. Kajiya. The rendering equation. Com­
puter Graphics, 20(4):143-150, August 1986. ACM
Siggraph '86 Conference Proceedings.

[30] Malvin H. Kalos and Paula A. Whitlock. Monte
Carlo MethodJ . John Wiley and Sons, New York,
N.Y.,1986.

[31] Timothy L. Kay and James T. Kajiya. Ray trac­
ing complex scenes. Computer Graphics, 20(4):269-
278, August 1986. ACM Siggraph '86 Conference
Proceedings.

[32] David Kirk and James Arvo. The ray tracing kernel.
In Proceedings of Ausgraph, pages 75-82, July 1988.

[33] Donald Knuth . The Art of Computer Programming,
Volume 3. Addison-Wesley, New York, N.Y., 1981.

[34] Gary W. Meyer, Holly E . Rushmeyer , Michael F.
Cohen, Donald P. Greenberg, and Kenneth E. Tor­
rance. An experimental evaluation of computer
graphics imagery. A CM Transactions on Graphics,
5(1):30-50, January 1986.

[35] Don P. Mitchell. Generating antialiased images
at low sampling densities . Computer Graphics,
21(4):65-72, July 1987. ACM Siggraph '87 Confer­
ence Proceedings.

[36] Masataka Ohta and Mamoru Maekawa. Ray coher­
ence theorem and constant time ray tracing algo­
rithm. In Toshiyasu Kunii, editor, Computer Graph­
ics 1987, pages 303-314. Springer-Verlag, Tokyo,
Japan, 1987.

[37] Edward D. Palik. Handbook of Optical ConstantJ of
Solids. Academic Press, New York, N.Y., 1985.

[38] Ken Perlin. An image synthesizer. Computer Graph­
ics, 19(3):287-296, July 1985. ACM Siggraph '85
Conference Proceedings.

[39] Ken Perlin and Eric M . Hoffert. Hypertexture. Com­
puter Graphics, 23(3):253- 262, July 1989. ACM Sig­
graph '89 Conference Proceedings.

[40] S. D. Roth . Ray casting for modeling solids. Com­
puter Graphics and Image Processing, 18(2):109-
144, February 1982.

[41] Holly E. Rushmeier. Realistic Image Synthesis for
SceneJ with Radiatively Participating Media. PhD
thesis, Cornell University, May 1988.

[42] Bertrand Le Saec and Christophe Schlick. A pro­
gressive ray-tracing-based radiosity with general re­
flectance functions. In ProceedingJ of the Eu­
rographics Workshop on Photosimulation, Realism
and Physics in Computer Graphics, pages 103-116,
June 1990.

[43] Christophe Schlick. The acne problem. Ray
Tracing News, 4(1), March 1991. e-mail
Edition, available under anonymous ftp from
weedeater.math.yale.edu.

[44] Y. A . Screider. The Monte Carlo Method. Pergamon
Press, New York, N.Y., 1966.

[45] Peter Shirley. Physically Based Lighting Calcula­
tionJ for Computer Graphics. PhD thesis, University
of Illinois at Urbana-Champaign, November 1990.

[46] Peter Shirley. Physically based lighting calcula­
tions for computer graphics: A modern perspec­
tive. In Proceedings of the Eurographics Workshop
on PhotoJimulation, Realism and Physics in Com­
puter Graphics, pages 67-81, June 1990.

[47] Peter Shirley. A ray tracing algorithm for global
illumination. GraphicJ Interface '90, May 1990.

[48] Peter Shirley. Discrepancy as a quality measure
for sampling distributions. In Eurographics '91,
September 1991.

[49] Robert Siegel and John R . Howell. Thermal Radia­
tion Heat Transfer. McGraw-Hill , New York, N .Y .,
1981.

[50] Kelvin Sung. A dda octree traversal algorithm for
ray tracing. In Eurographics '91, September 1991.

[51] Steve Ups till. The Renderman Companion.
Addison-Wesley, Reading, MA, 1990.

[52] John R. Wallace, Kells A. Elmquist, and Eric A.
Haines. A ray tracing algorithm for progressive ra­
diosity. Computer Graphics, 23(3):335- 344, July
1989. ACM Siggraph '89 Conference Proceedings.

[53] Gregory J. Ward, Francis M. Rubinstein, and
Robert D. Clear. A ray tracing solution for dif­
fuse interreflection. Computer Graphics, 22(4) :85-
92, August 1988. ACM Siggraph '88 Conference
Proceedings .

[54] Turner Whitted. An improved illumination model
for shaded display. Communications of the ACM,
23(6):343-349, June 1980.

[55] Rebecca J . Wirfs-Brock and Ralph E . Johnson.
Surveying current research in object-oriented de­
sign. Communications of the ACM, 33(9):104-124,
September 1990.

[56] Andrew Woo. The world of optik. Technical re­
port, Department of Computer Science,University
of Toronto, February 1989.

Graphics Interface '91

