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Abstract 

Creation by Refinement (CBR) is a neural network 'creativity' 
paradigm which can create novel examples of a learned class 
of patterns. In theory, CBR solves the allalysis-resynthesis 
problem: CBR can generate synthetic forms which mimic ar­
bitrary prototypes. In practice, this universality is tempered by 
the current absence of known bounds on the network training 
time and size required to learn particular problems. Neverthe­
less there is some consensus that neural networks may provide 
natural (and thus relatively efficient) representations of phe­
nomena such as texture which are characterized by a 'fuzzy' 
structure. We consider the potential application of CBR to the 
problem of generating irregular shapes and textures , and show 
some preliminary experiments in this direction . 

Resume 

La Creation par Raffinement (CBR) est un paradigme con­
nexionniste du pouvoir createur capable de produire des 
exemples nouveaux et originaux d'une classe de dessins. 
Theoretiquement, CBR resoud le probleme de l'analyse et 
de la synthese. En actualite, cette universalite est Tt!douit 
par l'absence des limites connues sur le temps et le dimen­
sion necessau'e pour qu'un mode le connexionniste apprenne 
des problemes particuliers . Toutefois, il y'a de la concor­
dance qu'un modele connexionniste pourrait produire des 
representations naturelles et ainsi efficaces des phenomenes, 
comme les textures caracterises par des structures "vagues". 
Nous considerons is;i l' application potentiel de la CBR au 
probleme d'engendrer des textures et des formes irregulieres et 
nous presentons quelques experiences preliminaires dans cette 
direction . 

Keywords: Pattern, Shape, Texture, Neural Network, Con­
nectionism. 

Introduction 

Connectionist or neural network approaches have several pro­
posed advantages over standard algorithmic approaches, in­
cluding the promise of computation without prograrruning and 
the ability to represent "fuzzy" structure. These advantages 

are potentially relevant to applications including visual simu­
lation and computer arts which require the generation of novel 
patterns having a desired structure. 

We will consider the potential application of a recently in­
troduced neural network pattern creation paradigm to image 
synthesis problems. This paradigm, termed Creation by Re­
finement (CBR), has the capability of creating novel samples 
from a class of patterns that is specified by example rather than 
by rule. Such a capability, if realizable, would have practical 
value for simulating phenomena for which the formulation of 
an algorithmic description is difficult or inconvenient, and for 
which general techniques such as probabilistic modeling are 
inadequate. Difficult modeling or rendering problems might be 
solved by gathering photographs or measurements of sample 
objects, rather than by developing specific algorithms. 

Description and Generation of Irregular Forms 

Non-connectionist approaches have not provided a complete 
solution to the problem of describing and generating irregular 
forms. In order to characterize the potential of CBR for this 
purpose, we will first briefl y describe several other general 
approaches. 

In a model-based approach, a surface form is considered as 
the result of an underlying model , which is implemented as 
an algorithm. If!l correct model can be identified and imple­
mented, this approach will obviously generate good results. It 
requires the identification and implementation of a model for 
each desired class of pattern . 

In a more general structural approach, a rule-based system 
such as a picture grammar having no particular claim to being 
a correct model is fit to the desired class of patterns (e.g. [1]). 

In common probabilistic approaches, a class of patterns is 
represented by their joint nth-order probability distributions, 
and new forms can be created by sampling from this distribu­
tion. The full probability distribution function is an impractical 
amount of information however. Only restricted subsets of the 
probabilistic model have been employed in practice, for exam­
ple, spectral synthesis methods and fractals which use only the 
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Fig. 2. An example of a function which could not be syn­
thesized from a spectral or second-order moment description. 
(This figure was not synthesized by CBR.) 

second-order moments of the full joint probability distribution. 

The second-order moment (equivalently, power spectrum and 
autocorrelation) descriptions have been the basis for most tex­
turing algorithms in computer graphics [2,3,4,5]. While it 
has been argued that the the second-order moments describe 
a considerable range of natural textures, it is also well known 
that these statistics do not capture the full range of percepti­
ble structure [5]. For example, the second-order moments are 
invariant with respect to reflections of both the domain axes 
and the dependent variable, and thus asymmetry with respect 
to either the independent or dependent variables cannot be de­
scribed. The height profile of a field of pebbles could not be 
synthesized by a second-order moment approach (Fig. 2). 

Interesting irregular forms may contain considerable structure 
despite their irregularity. Capturing structure by purely proba­
bilistic modeling is inefficient, and capturing additional struc­
ture by adding higher-order statistics gives (explosively) di­
minishing returns. To illustrate these remarks, consider the 
statement tree branches are narrower than tree trunks. The 
description of the widths of branches and trunks via a probabil­
ity distribution requires representing the enti.re space of "width 
events" in which the branches are larger than the trunks, sim­
ply to assert that the probabilities of points in this space are 
(near) zero. In contrast, the information in this statement could 
be represented much more compactly as a ru le. On the other 
hand, a description by rule would not naturally describe the 
distribution of trunk and branch width variations. 

Neural Networks 

A wide variety of different models are presently grouped un­
der the "neural net" label. While some of these models are 
biologically inspired, many models might be better labeled 
as adaptive or distributed pattern recognition schemes. The 
computational properties of these schemes are of interest in­
dependent of their biological relevance. 

The perceptron family of neural nets performs supervised clas­
sification of patterns. That is, a perceptron-like net is trained to 
associate input patterns with desired corresponding output pat­
terns (classifications). The training occurs by repeatedly pre­
senting the associated pairs of patterns to the network. These 
nets can also generalize (correctly classify previously unseen 
patterns) in some cases. 
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Perceptron-like nets consist of notional neurons arranged in 
one or more layers. Each neuron computes an inner product 
of an input pattern with its weight vector ("synapses"). The 
training process changes these weights. The inner product is 
then passed through a nonlinearity (such as a threshold in the 
case of the classic perceptron model [6]). The neuron is there­
fore computing where the input pattern lies with respect to the 
hyperplane represented by its weights; this can be considered 
as computing one "feature". 

A major development in the theory of perceptron-like networks 
was the identification of an algorithm to train a network con­
sisting of more than one layer of neurons, with the output 
of each layer serving as the input pattern for the next layer. 
This back propagation algorithm is described in [7] and other 
sources. It is essentially a extensive application of the chain 
rule, where the partial derivatives of the error between an ob­
tained output pattern and the desired pattern are taken with 
respect to all the weights in the network. At each presentation 
of a pattern pair, the weights are moved a short distance in 
the error minimizing direction, performing a gradient descent 
search in the weight space. 

The back propagation algorithm inspired the development of 
a variety of other multi-layer neural networks. Some of the 
characteristics of back propagation and similar networks will 
be summarized in the following paragraphs . 

It is known that suitably constructed multi-layer networks us­
ing a nonlinear ac tivation rule can represent arbitrary map­
pings (functions) [8]. Such networks can thus in theory rep­
resent arbitrary pattern recognition tasks. 

It has also been demonstrated that supervised gradient descent 
learning (SGOL) nets such as back propagation can deduce var­
ious smooth maps given a sufficient number of sample points 
in the domain and range of the map. Much current experi­
mentation and thinking addresses the question of whether this 
learning capability is general, robust, and interesting. 

SGOL nets may find local rather than global minima. Neural 
net folklore asserts that local minima may not be as much of a 
problem as in other gradient descent optimization techniques 
for reasons relating to the very high dimensionality of the 
search space. 

At present there are few known bonnds on the number of train­
ing patterns [9] and neurons, and the amount of computation 
required for SGOL nets to learn particular problems. 111is fact, 
combined with the computational expense of current SGOL 
algorithms (which is sometimes measured in days on con­
ventional :::: 1 MR..OPs computers) means that the promise of 
computation without programming is somewhat hollow. While 
networks to solve apparently arbitrary recognition problems 
exist in theory, there is no guarantee that the required net for 
a particnlar problem can be found in less time than it would 
take to derive an algorithm for the same problem. 

Neurons within a given layer may compute in parallel. Neural 
nets sometimes form distributed representations, in which par­
ticular neurons can be removed without significantly changing 
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CBR training phase 

CBR creation phase 

Fig. !. A simplified schematic of Creation by Refinement us­
ing a gradient descent learning procedure such as Back Prop­
agation. 

the overall network response (fault tolerance). 

There are a number of experiments and considerable enthusi­
asm to the effect that neural networks including SGDL nets are 
effective for certain perception-like problems that are charac­
terized by the combination of structure and irregularity. It has 
been suggested that algorithms such as back propagation are in 
fact capable of discovering required high-order statistical con­
straints without wasting computation on high-order statistics 
which are not characteristic. 

SGDL nets require a differentiable nonlinearity. A sigmoid 
(S-shaped) nonlinearity is commonly used. Depending on 
the magnitude of the argument to this nonlinearity, it may 
serve as a nearly linear transfer function (small arguments), or 
as a nearly threshold nonlinearity (large arguments). With 
threshold-like nonlinearities, multi-layer nets can compute 
Boolean functions . Thus, individual neurons can compute 
"fuzzy" or algoritllmic decisions as needed. This character­
istic supports the previous comment about the suitability of 
neural networks for perception-like problems. 

Creation by Refinement 

The gradient descent version of Creation by Refinement con­
sists of a training phase, in which a standard (e.g. SGDL) 

network learns to identify patterns of a desired class, followed 
by a creation phase, in which a random 'creation' is refined 
by a gradient descent search complementary to the one used 
in training (Fig. 1). 

More specifically, the network is to learn a critique function 
(mapping) F : i -- 0 where i E [0 , l)m , 0 E [0,1)" and typ­
ically m ~ n. For a texture synthesis application, i might 
be an array of color values, and 0 might be simply a corre­
sponding critique bit indicating whether i is in fact a suitable 
example of a desired class of texture. The training proceeds 
as follows: 
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- A number of training patterns (ip, op) which sample 
the desired function are obtained. 

- The network parameters (neuron weights) are randomly 
initialized, producing an unknown function :to 

- A point ip is selected and presented to the network, 
and the' resulting output :t( ip) = op is obtained. 

- The difference Ep between op and the corresponding 
desired output (critique) F( ip) = op is used as an 
error signal to adjust the network parameters Wk in the 
direction -8Ep/8wk. 

The last two steps are repeated until a minimum of E is found, 
at which point :t has hopefully converged to the desired cri­
tique function F 

Following successful training of this "critic" network, the 
(pseudo)inverse of the learned critique function is probabilis­
tically explored to generate new patterns. Specifically, 

- A critique 0 corresponding to a desired pattern is se­
lected. 

- A random input vector (creation) c is selected. 

c is passed through the net to obtain a critique op 
F( c). 

- The difference Ec between the critique of the random 
creation and the desired critique 0 is used as an error 
signal to adjust the creation c until a minimum error is 
obtained. If this error is large, than a local minimum 
was found and the creation phase should be restarted 
from a different random point. 

The resulting creation c is then a member of the desired class 
of patterns, in the sense that F(c) = 0, that is, c satisfies the 
desired critique. CBR is described in more detail in [13,18]. 

CBR is termed a 'paradigm' since it does not specify a specific 
critic algorithm, but rather specifies a way of making use of 
any suitable critic net. In this respect it is similar to paradigms 
for employing SGDL nets for function optimization [10] and 
data compression. CBR is applicable using any supervised 
gradient descent learning network because knowledge of the 
error gradient with respect to the weights entails being able 
to calculate this gradient with respect to the inputs: inputs 
may be considered as weights on 'virtual inputs' having a 
unit value. In the back propagation algorithm [7], the error 
gradient with respect to the inputs is available following the 
back propagation pass. Using the notation in [7], this is: 

n 

where 8 is the back-propagated error component, Cm is a com­
ponent of the creation input, and tbe summation is over units 
receiving input from Cm. 

More generally, CBR as described above may be employed 
with any feedforward pattern association network having a dif­
ferentiable nonlinearity at the neuron. A CBR-like procedure 
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for competitive learning nets (which need not have differen­
tiable nonlinearities) has also been introduced [11], and CBR-

like adaptations of certain non-connectionist pattern recogni­
tion techniques are currently being considered. 

Provisos 

In order for there to be more than one creation, the critique 
function learned in training must be many-to-one. In fact the 
preimage of a particular critique is potentially quite large. In 
the standard neuron architecture, the space of equivalent inputs 
accepted by a particular network unit satisfies L: WiCi = k for 
a given constant k. This space is a hyperplane of dimension 
n - 1 for a unit with n inputs. Similarly holding constant 
the outputs of all other units with these same inputs reduces 
the equivalent input space to an intersection of hyperplanes or 
affine set of typically much lower dimension, but the arbitrarily 
fixed outputs represent only one point in a hyperplane of inputs 
accepted by a subsequent network layer. 

The preimage of a particular critique must also be limited to 
acceptable creations. This requires that the initial training set 
adequately sample the input space; it must include nonsensical 
as well as useful examples. For example, if a network is 
trained on a Boolean relation, what will the net output if an 
analog-valued input is presented? The preimage of a Boolean 
output value may not be restricted to 'legal' Boolean inputs. 
If CBR is invoked on such a network, non-Boolean creations 
such as 0.5,0.5 can result. 

Analog input values can be disassociated from Boolean output 
values by including additional relations such as 0. 5, 0.5 -+ 0.5 
in the training set. Since in general we do not know how to 
construct a training set which adequately samples the creation 
space, the CBR procedure is amended to include the possibility 
of adding any undesirable creations to the training set and 
retraining . This is termed restricting the domain . 

Experiments 

Training SGDL nets is quite difficult. If a particular network 
has not yet succeeded in learning a given problem, it may be 
that the network is too small (or too large) for the particular 
problem, or the training set may be inadequate, or it may be 
that more time is required. This uncertainty means that con­
siderable patience is required, particularly since the training 
may require hours or days. The creation phase of CBR is usu­
ally quite rapid in comparison to the training phase because 
networks are chosen to have many more weights than inputs 
for most problems. 

Neural net experimentation requires a flexible software sys­
tem. We developed built-in vector operations for several Lisp 
systems. This provided nearly the efficiency of a compiled 
language (since most of the computation in neural nets can 
be vectorized) as well as the convenience of a high-level and 
interactive programming environment. For example, this ap­
proach allowed experiment scripts to contain procedures for 
generating new training patterns 'on the fly'. 

Fig. 3. "Doodles" generated by reinforcement CBR. 

Doodle Generation 

Fig. 3 shows "Doodles" generated using a variation of CBR. 

In this variation, a minimal training set is defined initially. 
This training set need not sample many areas of the desired 
function. The training phase is then repeatedly interrupted and 
the creation phase is invoked. The resulting random creations 
are critiqued and added to the training set. In this way, the 
training set is built incrementally during the training. 

This procedure is termed reinforcement CBR since it seem­
ingly converts a SGDL algorithm into a reinforcement learning 
algoritlun (e.g. [12]; reinforcement CBR is described more 
fully in [l3)). In reinforcement CBR the net effectively has a 
critique of its current internal representation, and so it can be 
guided away from forming undesired representations such as 
memorization of the training patterns. This has been found to 
accelerate learning in some experiments. 

As in many other neural network demonstrations, some of 
the structure evident in Fig. 3 is due to the selection of an 
appropriate representation space for the learning problem. In 
Fig . 3, the network input units represent the curvature" of 
the doodle parameterized by the curve length s. The curve is 
then constructed by 

B J "ds 

x J cosBds, y = J sinBds 

The output or critique represented whether the doodle was con­
sidered attractive. The network's learning task, then, was to 
learn the correlation in curvature which characterizes desirable 
doodles. We make this an easy learning task by providing a 
vague critique that doodles which are either too straight or too 
jumbled are undesirable, and everything else is acceptable. As 
such, the learning task is simply to generate a small filter over 
the random creation values, e.g., to do a weighted average of 
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Fig. 4. A synthetic texture created by CBR. 

several neighboring values . Doodle generation is a good ini­
tial experiment and demonstration of CBR. Fig. 3 used a back 
propagation network with 50 inputs, 1 output, and two hidden 
layers containing 150 and 50 neurons. 

Texture Generation 

We have found that SGOL nets train reliably and fairly quickly 
on simple problems whose solution is known. For example, 
back propagation quickly learns to be a linear filter when the 
training data are generated by an existing (algorithmic) filter. 
One reason why training may be more successful when the 
solution is known is that in this case training pairs can be syn­
thesized as needed ; training cannot fail for reason of too few 
training pairs. While we have implemented texture synthesis 
by training the critic net to filter random inputs (mainly to 
confirm that various net algorithms were functioning), results 
will not be presented since there is little practical value to a 
neural net which mimics existing algorithms. 

Fig. 4 is one of the few results we have obtained which does 
not appear to mimic an existing filter (although this pattern 
might be obtainable with a reaction-diffusion model). In this 
experiment, the training patterns contained a single randomly 
placed circle on a 642 field. Counterexamples were generated 
by the reinforcement CBR procedure. The input was prepro­
cessed by a feature detection layer (see the following section) 
which performed a con'elation (inner product) of the circle pro­
totype including some surrounding field with the input field at 
each location in a 162 subsampled window. The network's 
learning task was then to learn a Boolean OR-like function. 
The cascade correlation learning algorithm [14] was used. In­
put values were coded as -1 ,1 rather than the usual 0, 1. 

Future Directions 

Many researchers are developing alternative learning algo­
rithms that address the practical limitations of back propaga­
tion. We experimented with one alternative algorithm, cascade 
co rrelation [14). This algorithm incrementally adds neurons 
as needed to solve a particular problem, and thus it elimi­
nates the need to guess the required network size. The results 
obtained so far with this algorithm have been mixed. 
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Although SGOL nets can in theory perform both feature dis­
covery and pattern classification, it has been proposed that they 
only perform well on the latter task [15,16]. It has also been 
observed that many difficult learning problems can be trans­
formed into simple learning problems by appropriate predeter­
mined transformations of the problem space. There are sev­
eral new and more promising learning algorithms which per­
form feature extraction or simplifying transforms on the prob­
lem space before classification, or which (sometimes equiv­
alently) adopt faster converging basis functions (back prop­
agation can be viewed as approximation by sigmoid basis 
functions). We hope to identify or develop a hybrid feature­
detection/classification network suitable for shape description. 

Evaluation 

It is evident that the capabilities of CBR depend largely on 
the capabilities of the underlying critic network. The practi­
cal value of CBR (and many other neural net approaches) is 
remarkably difficult to evaluate at present. 

On the positive side, as mentioned above, suitable multi-layer 
SGOL networks can represent arbitrary recognition functions. 
Thus, we can in concept consider fantastic applications of CBR, 
such learning to recognize great paintings, and then producing 
new masterpieces . (Of course, this may be an impossible 
learning task if in fact great paintings are designated by factors 
other than their visual characteristics). 

Pragmatically, the scaling properties of many neural net al­
gorithms are poorly understood, and in general there are no 
known bounds on the computation required for particular tasks. 

Very few theoretical results are available for nonlinear neural 
nets, and the field is driven largely by experimentation. Un­
fortunately there is little consensus or basis for evaluating the 
results of most neural net experiments. 

In practice, the results obtained with CBR to date are unim­
pressive. In defense of this work, however, we remind the 
reader of an important rendering technique which was intro­
duced with fairly unimpressive images [17] . Also, some mod­
els (e.g. Turing machines) have conceptual value despite their 
limited practicality. 

We feel that CBR has some conceptual value as a holistic 
paradigm for pattern creation . CBR appears to be more suitable 
for computer arts applications such as the machine composi­
tion of music than other current approaches [13 ,18]. It also 
has some general resemblance to artistic creativity: students 
of art and music composition are often first taught to become 
critics, i.e., to recognize the features of good art. When stu­
dents are experiencing difficulty in composing their first works, 
some teachers will urge the students to 'put down anything, 
see what it suggests, and refine it' . 
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