
8 

Algorithms for B-patches 

Hans-Peter Seidel· 
Computer Graphics Laboratory 

University of Waterloo 
Waterloo, Ontario, Canada N2L 3Gl 

Abstract 

B-patches are the analogue to B-spline segments for 
triangular surfaces and are the main building block 
in the new multivariate B-spline surfaces recently 
developed in [8). This paper discusses algorithms 
for B-patches and presents algorithms for computing 
the polar form, for evaluation, for differentiation, for 
computing continuous joints, and for knot insertion . 

Keywords: Bezier patch , blossom, de Boor Al
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Introduction 

Tensor product B-spline surfaces provide an excellent 
tool for modeling free form surfaces over rectangu
lar domains. However, as is well known, the design 
of more complicated real world objects often also re
quires the additional capability of modeling with sur
faces over triangular grids. Standard examples for 
this situation are the so called polygonal hole prob
lem and the construction of smooth blends. Unfortu
nately, most of these surfaces cannot be modeled by 
tensor product patches without singularities. 

One way to deal with this situation is the introduc
tion of triangular Bezier patches. These surfaces have 
been widely studied in the past [12, 30,16,17,14,11)' 
and are well understood by now. However , although 
triangular Bezier patches allow for the modeling of 
surfaces over arbitrary triangular regions, they in 
turn lack certain other features that make interac
tive surface design with tensor product B-splines so 
attractive and easy. Therefore , not surprisingly, there 

' This work has been partly supported b y the Natural Sci
ences and Engineering Research Council of Canada through 
Strategic Operating Grant STR0040527 

has been ongoing research on the construction of 
more flexible surface representations for many years 
[22, 23). 

Recently, a new B-spline like surface representa
tion has been developed in [8). This representation 
is based on a redevelopment of multivariate B-splines 
using B-patches. A test implementation of these sur
faces is currently under way at the University of Wa
terloo. The central building blocks in the new surface 
representation are B-patches as developed in [33, 34) . 
B-patches share many properties with B-spline seg
ments: They are characterized by their control points 
and by a 3-parameter family of knots . If the knots in 
each family coincide, we obtain the Bezier representa
tion of a bivariate polynomial over a triangle. There
fore B-patches subsume Bezier patches in much the 
same way B-spline segments subsume Bezier curves. 
B-patches have a de Boor-like evaluation algorithm, 
and, as in the case of B-spline curves, the control 
points of a B-patch can be expressed by simply in
serting a sequence of knots into the corresponding 
polar form. B-patches can be joined smoothly, and 
they have an algorithm for knot insertion that is com
pletely similar to the insertion algorithm for curves. 
Therefore, B-patches may be considered as the ana
logue to B-spline segments for surfaces. 

This paper focuses on computational aspects of B
patches and presents algorithms for computing the 
polar form, for evaluation , for differentiation, for 
computing continuous joints between two adjacent 
patches, and for knot insertion. The paper is or
ganized as follows: Section 2 gives a brief introduc
tion to the theory of polar forms for surfaces that is 
necessary for the construction of B-patches. Section 
3 defines B-patches by means of their de Boor-like 
evaluation algorithm and discusses some of their ba
sic features. Section 4 focuses on algorithmic aspects 
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and presents algorithms for evaluation, differentia
tion, computation of continuous joints, and knot in
sertion. Section 5 contains concluding remarks and 
points out directions for future research. 

Polynomials and polar forms 

This section gives a brief introduction to the theory 
of polar forms for surfaces. In particular we establish 
the principle that for every polynomial F of degree n 
there exists a unique symmetric n-affine map f, the 
polar form of F, satisfying f(u, ... , u) = F(u), and 
we show how the derivatives of F can be expressed in 
terms of f . Additional material on polar forms can 
be found in [12, 13, 26, 27, 28, 32, 33) . 

Recall that a map f : IR 2 
-+ IR3 is called affine if 

it preserves affine combinations, that is, if f satisfies 
m m 

(1) 

for all points u 1 , •• . , urn E IR2 and real numbers 
Ob . • . , Om E IR with 2::;:'=1 OIJ. = 1. A map f is affine 
iff f can be written as composition of a linear map 
A E L(IR 2, IR3) and a translation b E IR3, i.e. 

f(u) = Au+b. (2) 

Therefore the directional derivative of an affine map 
f w.r.t . a vector ~ = t - s can be written as 

Dd(u) = f(t) - f(s) . (3) 

In particular, the derivative of f is independent of u . 
A map f : (IR2)n -+ IR3 is called n-affine (or just 

multi affine) if it is affine in each argument. There
fore f is n-affine iff for any v = 1, ... , n and arbitrary 
points a 1 , .•. ,an E IR2 each map 

fa.l, ... ,av, ... ,a.~ : IR2 -+ IR3 : 

f( 1 11- 1 11 +1 n) 
Ufo-> a , ... ,a ,u,a , ... ,a 

is affine. Finally, a map f : (IR2)n -+ IR3 is called 
symmetric if f keeps its value under any permutation 
of its arguments. 

With this notation we are now able to state the fol
lowing one-to-one correspondence between polynomi
als of degree n and symmetric n-affine maps [13, 26) : 

Theorem 2.1 For every polynomial F : IR2 -+ IR3 
of degree n there ezists a unique symmetric n -affine 
map f : (IR2)n -+ IR3 satisfying 
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In order to join a network of surface patches in a 
smooth fashion it is necessary to derive precise con
ditions on the continuity between adjacent patches. 
Using the equivalence between polynomials and polar 
forms given by the previous theorem, these conditions 
can be stated as follows (26): 

Proposition 2.2 Two polynomials F , G : IR2 -+ IR3 
of degree n match CL continuously at s E IR2 ifJ 

f(~,~I, .~., u9) = g(~,~I, .~., u9) (5) 
n-9 9 n-9 9 

holds for every sequence u 1 , ... , u 9 E IR2, i. e. if the 
polar forms f and 9 agree on all arguments that con
tain s at least (n - q) -times . .-. 

B-patches 

This section gives the definition of B-patches and dis
cusses some of their features that make them attrac
tive for interactive surface design. We use standard 
multiindex notation i' = (i, j, le) throughout. 

First, we have to establish the analogue to the knot 
vector: 

Definition 3.3 A sequence 

J( ( 0 n-l 0 n-l to tn - 1) = r , . .. , r ,s, ... , s , , ... , 

of parameters in the plane IR2 is called a knot net ifJ 
(ri, si, t k ) are affinely independent for 0 ~ I~ ~ n -1. 
In this situation, the parameters are also called knots. 
.-. 

With this notation we are now able to define a B
patch over a knot net J( by means of the following 
algorithm: 

Definition 3.4 Let the knot net 

J( ( 0 n-l 0 n-l to tn-1) = r , ... , r ,s , . .. ,s , "." 

in IR2 be given, and let pr( u), CTr( u), and rr( u) be the 
barycentric coordinates of u E IR2 w. r. t. 6( ri, si, tk), 
i .e. 

i . k 
U = pr(u)r + CTr(U)s-' + rr(u)t . 

f(8= F(u) . (4) and 

n pr(u) + CTr(U) + rr(u) = 1. 

In this situation f is called the polar form or blossom The algorithm 
of F and F is the diagonal of f . .-. 

(6) 

Graphics Interface '91 



and 

pr( u )pt;i. (u) 

+ur( u)Pi;J. (u) 

+rr( u )Pi;i3 (u) 

(7) 

for 1 :S 1 :S n, is called de Boor algorithm for poly
nomials over triangles. The resulting surface F( u) = 
P{~, .. . ,O) (u) is a B-patch over K with control points 

Pr E JR.3 •• 
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It is shown in [33) that every polynomial 
surface F of degree n can be represented as 
a B-patch over an arbitrary knot net K 
( 0 n-l 0 n-l to tn - l )' th r , . .. , r , s , ... , s , , ... , In e pa-
rameter domain 1R? More specifically, the control 
points Pr in this representation are obtained by eval
uating the corresponding polar form f on sequences 
of consecutive knots in K, i.e. 

P f( 0 i-I 0 _;-1 to tk-l) r= r , ... ,r ,s , ... ,S" , , ... , • (8) 

A special situation in Definition 5.2 arises if the 
control points in the de Boor algorithm are given by 

if 1/ = i 
otherwise. 

(9) 

The resulting real-valued functions NF(u) are called 
normalized B-weights. Using the normalized B
weights, every polynomial surface of degree n can 
then be represented in the form 

F(u) = L NF(u)Pr , (10) 
1i1=n 

as a weighted average of its B-patch control points. 
f( so, SI, S2) The following example may be helpful to clarify 

Knot Net K 

Figure 1: The de Boor algorithm for the evaluation 
of a cubic B-patch over the given knot net 1( . 

these concepts: 

Example 3.5 Consider three affinely independent 
points r, s, t E JR.

2
• Setting ri = r, si = s, t k = t 

we obtain the familiar de Casteljau algorithm for the 
evaluation of a triangular Bizier surface 

F(u) = L Br(u)Pr ( 11) 
1i1=n 

over the reference triangle 6(r, s, t) . The control 
points 

Pr = f(r, ... , r, s, ... , s, t, ... , t) 
'-v-' '-v-' ~ 

i k 

(12) 

are the B izier points, and the polynomials Br (u) are 
the Bernstein polynomials w.r.t. 6(r, s, t). In par
ticular, B-patches subsume triangular Bizier patches 
in much the same way as B-splines subsume Bizier 
curves .• 

We conclude this section with a brief discussion on 
how the shape of a B-patch is related to the shape of 
its control net [33): 
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Proposition 3.6 Con~ider aB-patch 

F(u) = L NF(u)Pr, Pr E JR3 
1i1=n 

of degree n over 

y (0 n-1 ° n-1 to tn-1) 
~= r , .. otr ,8, . .. ,S , "." . 

The ~hape of F i~ related to the ~hape of it~ control 
net (Pdli1=n in the following way: 

1. Suppo~e that for I~ < n - 1 each trian
gle 6( ri, si, tie) contain~ the domain triangle 
6(rO, so, to). Then for u E 6(rO, so, to) the 
function value F( u) i~ contained in the convez 
hull of the control point~ Pr. 

2 . If n knot~ r O = ... = r n - 1 =: r coincide, then 
F( r) = Pn,o,o is a control point and the ~urface F 
i~ tangent to the control net at thi~ point, i. e. the 
tangent plane at F (r) i~ ~panned by the point~ 
Pn,o,o, Pn - 1,I,O and Pn- 1,O,1 ' The analogou~ a~
~ertion hold~ for the knot~ so, . . . , sn-l and for 
the knots to, .. . , tn - 1, respectively. 

3. The relationship between F and its control net i~ 
affinely invariant: If if> : JR3 --+ JR3 is an affine 
map, the control points of the image surface if>oF 
are given as images if> ( Pr) of the control point~ 
Pr, i . e. the diagram 

commute~ . 

Proof: (1) Under the given assumptions the 
barycentric coordinates pr(u), O'r(u) , and Tr(U) of a 
point u E 6(rO, so, to) w.r.t. 6(ri, si, tie) are all pos
itive, and the point Pr (u) lies in the closed convex 

hull of P;;;,(u), p;;i,(u), and p;;i,(u). Induction 
over I shows that pi( u) is contained in the convex 
hull of the control points Pr, and the assertion fol
lows from F(u) = P{~,O,O)(u). 

(2) It follows from Algorithm 4.9 below that the 
directional derivative of F at r w.r.t. ~ = sO - r is 
given as 

nf( r, ... , r,~) 

n(J(r, ... , r, sO) - f(r, .. . , r» 

n(P(n-1,1,O) - p(n,O,o», 
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so that the tangent plane at F( r) is spanned by 
p(n,O,O), P(n-l,I,O), and P(n-l,O,I)' 

(3) Let f be the polar form of F, and let if> : lR? --+ 

lR.3 be an affine map. Then if> 0 f is the polar form of 
the image surface if> 0 F, and the control points Pi of 
if> 0 F are given as 

p.: 
t 

.J.. f( ° i-I ° i - I to tie - 1) ,+,0 r , . . o,r ,s , . .. ,s , to." 

if>(Pr). 

This completes the proof of Proposition 3.6 . ... 

Algorithms for B-patches 

In this section we present some of the basic algo
rithms for modeling with B-patches. In particular, 
we present algorithms for evaluation, differentiation, 
computation of continuous joints, and knot insertion. 
These algorithms form the basis of the B-patch mod
ule within the interactive surface modeler TRIMO 
[36], and are also partly used in the implementation 
of the new multivariate B-spline surfaces developed 
in [8] that is currently under way at the University of 
Waterloo . 

We start with an algorithm for computing the polar 
form f of aB-patch F out of the given control points. 
This algorithm is central for all other algorithms that 
follow . 

Algorithm 4.7 (Polar Form) Let aB-patch F 
over a knot net 

Y (0 n - IOn - 1 to tn - 1 ) IV= r , . . Otr ,8, 0 .. ,S , ,0", 

with control points Pr E JR3 be given. Let 
pr(u"),O'r(u"), and Tr(U") be the barycentric coordi
nate~ of u" E JR2 w.r .t. 6(ri, si, tie), i.e. 

and 

Pr(u") + O'r(u") + Tr(U") = 1. 

Define 

(13) 

and 

p~(Ul, .. . ,U') = 
( ')'-1(1 1-1) Pr u Pr+i, u , ... , U 

( ')'-1(1 1-1) +O'r u Pr+i, u , . . . , U (14) 

( ')'-1(1 1-1) +Tr u Pr+i
3 

u , . .. , u 
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for 1 ::; I ::; n. Then the polar form f of F i$ given Algorithm 4.10 (Monomial Form) Con$ider a 
by B-patch 

f(u l
, ... , un) = p~,O,o)(ul, ... , un). 

In particular, the maps P~ u l , ... , ut) do not depend 
on the ordering of the arguments u 1 , . .. , u'. '" 

A full proof of Algorithm 4.7 is given in [33] . The 
proof is based on the fact that the de Boor algorithm 
of the previous section has been carefully constructed 
in such a way that the maps p~( u l, ... , u') that ap
pear in Algorithm 4.7 are symmetric throughout. 

Note that the de Boor algorithm of the previous 
section is actually a special case of Algorithm 4.7: 

Algorithm 4.8 (Evaluation) 
If the parameters u l = '" = un = u in Algorithm 
4.7 all coincide, then Algorithm 4.7 reduce$ to the de 
Boor algorithm of Definition 3.4. Therefore in thi$ 
situation 

p(O,O,O)(u, ... , u) = P{~,O,O)(u) = F(u) 

is a point on the surface. '" 

Algorithm 4.7 may also be used for differentiation: 

Algorithm 4.9 (Differentiation) Let the direc
tion vector$ ~l' . .. , ~g in JR2 be given. Th en the q-th 
directional derivative 

of F at u can be computed as 

(g) ( ) n! n ( ) De" .. . ,e. F u = (n_q)!p(O,O,O) u, ... ,U,~lo···,~g 

with Po 0 o( u, . . . , u, 6, ... , ~q) given by Algorithm 4·7. 
Note, h~wever, that the coordinate$ Pi( ~v ), O"i( ~v ), 

ri(~v) in the e2:pres$ion 

add up to 0 instead of 1, since ~v is a vector, and not 
a point in JR2. '" 

A proof of Algorithm 4.9 follows e.g from [26, 8 .4] 
or from [33, 2.4] . A direct proof is given in [35] . 

Algorithm 4.9 can be used to convert from B-patch 
to monomial form: 

F(u) = L NF(u)Pi 

1i1=n 

over the knot net 

/( ( 0 n-l 0 n-l to tn-l) = r , ... ,r ,s , .. . ,s " ... , . 

The coefficient$ aj,k of the monomial representation 

F(u) = L (15) 

can be computed as 

aj k = ( ' ~k)pn(O 0 0)(0, .. ,0,0", .. ,0", oY' .. , Oy) (16) 
, tJ "~~~ 

j k 

with ° = (0, 0), ~" = (1, 0), ~y = (0,1) E JR2, and 
p(O,O,O)(o, ... , 0, 0", . .. ,0", Oy, ... , Oy) given by Algo

rithm 4.9. Again, the coefficient$ Pi( ~,,(y)), 0";( ~,,(y)), 
ri(~"(y)) in the e2:pre$sion 

add up to 0 instead of 1, since (,,(y) is a vector, and 

not a point in JR2. 

Proof: We briefly sketch a proofthat Algorithm 4.10 
is correct: Taylor expansion of F at ° = (0,0) E ]R? 
gives 

~ ai+k F(o) uj uk 

F(u) = Lt . '~k~ , 
j +k ~n iY.,a; J . . 

and Algorithm 4.9 yields 

F(u) 
, j k 

~ n. n ( ) u l u 2 
Lt --:r p(O,O,O) 0, ... , Oy --:-;--k' 

t. J . . 
1i1 =n 

From this the assertion follows . '" 

Algorithm 4.9 also allows us to join two B-patches 
F and G along a line L with arbitrary continuity. The 
theorem is a generalization of the analogous construc
tion for Bezier patches, due to Farin [16]. 

Algorithm 4.11 (Continuous Joint) Consider 
the B-patch 

F(u) = L NF(u)Pi 

1i1 =n 
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;;1 
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/ n-l 
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Figure 2: Continuous joint of two B-patches F and 
G along a line L according to Algorithm 4.11 

over 

J( ( 0 n-l 0 n-l to tn- 1) = r , . .. ,r ,S , ... ,s , , . . " 

and the B-patch 

G(u) = 2: NF(u)Pr 
1i1=n 

over 

J(- (-0 -n-l -0 -n - l t;o t-n- 1) = r , ... ,T ,8, . . . ,s "'. " , 

where the knob sO, . . . , sn-l, to, . .. ,tn- 1 all lie on a 
line L (c/. Fig . 2). Then F and G are CL continuous 
along L iff for 0 ::; i ::; q the B-patch control points 
P~ of G satisfy 

;, i (;;0 . . ... ;;i-l) rr = p(O,j,le) ~' O::;i::;q, 

where the points P~,j,le(t, . . .... ' ;;i-l) are generated 

i 
from the control points Pi of F by means of Algo-
rithm 4.7. 

Proof: Again we briefly sketch the proof. Suppose 
that F and G are in fact CL continuous along L. Ac
cording to Proposition 2.2 this implies 

f( -0 -i-I) ( -0 -i-I) u . .. , u, r , . . . , r = 9 u . .. , u, r , .. . , r 
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for 0 ::; i ::; q and arbitrary u E L, and the polynomi
als 

F () f( -0 -i - 1 ) 
L U = U •• • , u, r , . . . , r 

and 
G () ( -0 -i - 1) L u = 9 u .. . , u, r , ... , r 

of degree n - i defined on L agree. Hence their polar 
forms fL and gL agree, too, and we get 

f( ° -i-I to tie - 1 -0 -i -1) S , •• 0' S'" , , •• 0' ,r , .. . ,r = 

( 
0 _i - l to tle-1 -0 -i-I) 9 s , ... ,5' " ... , ,r , ... ,r 

for I~ = n. Therefore 

( ° _ i-I to tie - 1 -0 -i - 1) 9 s , .. . ,S" " ... , ,r , ... ,r 

f( 0 - i-I to tie -1 -0 -i - 1) S , •. • , S"'" , , • •• , ,r , . .. , r 
i (-0 -i-I) PO,j,1e r , ... , r 

and the assertion follows . 
Conversely, suppose that Pr = pL le (;;0, . .. , ;;i - I) 

for 0 ::; i ::; q. Then the (n - i)-pola; forms 

f ( In - i) f( 1 n - i -0 -i - 1) L U , .. . , U := u, ... , U ,r, ... , r 

and 

( In-i) (1 n-i -0 -i-I) gL U , ... , U := 9 U , ... , U ,r, ... , r 

defined on L have the same poles Pj~1e 
i (-0 -i-I) 1;1 - d th l' 'd Po j le r , . . . , r , tj - n, an are erelore 1 en-

ti~a:l. A similar argument as above then completes 

the proof. '" 

Note that in the case of n-fold knots r O 

rn- I = r, sO = ... = sn-I = s, and to = ... 
tn - I = t, the above algorithm specializes to Farin's 
construction for joining two Bezier patches using the 
de Casteljau algorithm. 

We conclude this section with an algorithm for ex
changing the knots in the knot net J( of aB-patch. 
The algorithm is similar to the insertion algorithm 
for B-splines [3, 32]: 

Algorithm 4.12 (Knot Insertion) Consider a B 
patch 

F(u) = 2: NF(u)Pr (17) 
li'I =n 

of degree n over 

J( ( 0 n-I 0 n-l to tn - 1 ) = r , . . . ,r ,s , ... ,s , "." (18) 

and suppose that the knot net 

J( 0 ( 0 1 1+1 n-2 r , .. . ,r,r,r , ... ,r , 
o n-I to tn - I ) s , . .. , s " . .. , (19) 
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iil obtained from J( by inilerting a new knot r between 
rl and rl+! for ilome -1 :::; I :::; n - 2, and dropping 
rn -1. Then F hail a unique repreilentation 

F(u) = L NF(u)P! (20) 
1i1=n 

ail B-patch of degree n over J(*, and the new control 
pointil Pr are glven as 

if 0 :::; i :::; I + 1, and 

Pi = Pi - 1(r)Pi + O"j(r)Pi-el+t, 

+Tk(r)Pi - ei +i , 

(21) 

(22) 

ifl+2:::; i:::; n. Here Pi _ 1(r),O"j(r) and Tk(r) denote 
the barycentric coordinateil of 

. 1 . k 
r = Pi_1(r)r t

- + O"j(r)sJ + Tdr)t 

Multiple application of Algorithm 4.12 allows to 
subdivide a B-patch into several pieces. The refined 
control net converges to the surface and can be used 
as a piecewise linear approximation to the surface. 
The subdivision process can be carried out adap
tively, and the level of subdivision that is necessary 
to approximate the surface within a given tolerance f 

can be precomputed from estimates on the second 
derivatives, based on Algorithm 4.9. By precom
puting the necessary level of subdivision, the time
consuming flatness testing at every level of the algo
rithm can be completely avoided. 

Conclusion 

We have presented a new representation for bivari
ate polynomials, the B-patch , and discussed some of 
its main properties of interest in the construction of 
smooth surfaces in CAGD. It has been shown that B
patches subsume triangular Bczier patches and that 
many important properties of B-splines carry over to 
B-patches almost word by word. B-patches are the 
main building block in the new multivariate B-spline 
surfaces recently developed in [8]. These new spline 
surfaces allow to construct automatically smooth sur
faces over arbitrary triangulations of the parameter 
plane. A test-implementation for these new B-spline 
surfaces that partly uses some of the algorithms given 
in this paper is currently under way at the University 
of Waterloo . 
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