
152

Sculpting with the "Ball and Mouse" Metaphor

Andre LeBlanc
Computer Graphics La, Swiss Federal Institute of Technology

Lausanne, Switzerland

Prem Kalra
MIRALab, CUI, University of Geneva

Switzerland

Nadia Magnenat Thalmann
MIRALab, CUI, University of Geneva

Switzerland
and HEC Montreal, Canada

Daniel Thalmann
Computer Graphics La, Swiss Federal Institute of Technology

Lausanne, Switzerland

Abstract

In this paper, we present a user interaction methodology based
on a six degree of freedom interactive input device called the
Spaceball™. This methodology is geared for computer
graphics applications that require items to be positioned or
displaced in three-dimensional space in a purely visual and
esthetic fashion . When the Space ball device is used in
conjunction with a common 2-D mouse - the Spaceball
device held in one hand and the mouse in other - overall
visual depth perception on traditional 2-D displays can be
considerably enhanced by exploiting a technique called
motion parallax, thereby promoting full three-dimensional
user interaction. This paper focusses on the application of this
methodology to sculpting highly irregular polygon mesh
surfaces, such as character faces or any other surfaces of
arbitrary shape. The Spaceball device is used to move the
object being sculpted while the mouse carries out the picking
and deformation work, all of which is projected onto the
screen in real time. As case studies, three common operations
in polygon mesh sculpting are described in detail (vertex
creation, primitive selection and local surface deformations).

Resume

Cet article pn!sente une methode d'interaction basee sur un
peripherique d'entree ayant six degres de liberte, connu sous le
nom de Spaceball. La methode permet de positionner ou de
deplacer les elements graphiques tri-dimcnsionnels de fa~on
hautement interactive et visuelle, et s'avere particulierment
interessante dans les applications ou le caractere esthetique est
le factcur dominant et la precision numerique est peu
importante. La SpacebaU est employee conjointement avec la
souris 2-D traditionnelle afin d'accentuer la perception d'objets
3-D et faciliter l'interaction avec ces objets. Dans une main, on
manipule les objets avec la Spaceball et simultanement, on

travaille les objets avec l'autre main 11 I'aide de la souris. Cette
technique exploite le concept de parallaxe du mouvement qui
permet une bien meilleure perception de I'espace 3-D.
L'artic1e se concentre sur I'application de cette methodologie
pour la sculpture de surfaces irregulieres formees de
polygones, comme des visages par exemple. Trois operations
communes sont decrites: la creation de sommets, la selection
de primitives et les deformations locales de surfaces.

KeywordS: User interaction, Spaceball input device, motion
parallax, sculpting.

1. INTROD UCTION

Visual feedback, in a typical computer graphics application
that requires items to be positioned or moved in 3-D space,
usually consists of a few orthogonal and perspective
projection views of the same object in a multiple window
format. This layout may be welcomed in a CAD system
where, in particular, an engineer might want to create fairly
smooth and regular shapes and then acquire some quantitative
information about his design. But in 3-D applications where
highly irregular shapes are created and altered in a purely
visual and esthetic fashion, like in sculpting or keyframe
positioning, this window layout creates a virtually unsolvable
puzzle for the brain and makes it very difficult (if not
impossible) for the user of such interfaces to fully understand
his work and to decide where further alterations should be
made.

Until recently, the greates t obstacles in the elaboration of
intuitive human -machine interaction methods for 3-D
graphical applications came from basically insufficient
computing power, slow frame rates and the lack of adequate
multi-dimensional input devices. Highly interactive
applications that require uninterrupted interaction in 3-D

Graphics Interface '91

space rely on fast display rates in order to assure that the user
may view the result of his actions without any perceived time
delays. To keep up with these fast refresh rates when making
changes to the state of the environment, good computing
power is also an important asset. Completing this list of
hardware requirements is the need for multi-dimensional input
devices that can relate user information to the computer in an
intuitive fashion. Indeed, advances in all these areas have
provided us with a wide set of tools for building interaction
methods that are more intuitive for 3-D applications.

This paper discusses work involving a user interaction
methodology that is based on a six degree of freedom (DOF)
interactive input device called the Spaceball™. This input
device is designed to use a person's spatial intuitions to move
and orient objects in space with greater dexterity. When
object movements can be produced with this device and
displayed in real-time, depth perception on traditional 2-D
displays may be considerably enhanced by exploiting a
psychological phenomena called motion parallax
(Cahen,Forrest). With this added mobility and depth
perception, we show how visualy specifying 3-D locations and
displacing them in space with the help of a single projection
window can be made a simpler task.

In this paper, we are particularly interested in studying how
this methodology may be applied to sculpting highly irregular
surfaces, for instance the face of a cartoon character or the
body of some fictitious animal. As case studies, three polygon
mesh sculpting operations using this methodology are
described in detail - vertex creation, geometric primitive
selection and real-time local surface deformations.
Transformation matrices corresponding to these operations are
also described in detail.

2. THE BALL AND MOUSE METAPHOR

2.1. Object Motion Dexterity

In essence, motion parallax consists of the human brain's
ability to render a three-dimensional mental picture of an
object simply from the way it moves in relation to the eye.
Rotations offer the best results because key positions located
on the surface move in a larger variety of directions.
Furthermore, in a perspective projection, depth perception is
further accentuated by the speed in which features flow in the
field of view - points located closer to the eyes move faster
than the ones situated in back. In a 3-D application, if motion
parallax is to be used effectively, this implies the need for
uninterrupted display of object movements and thus the
requirement for hardware capable of very high frame rates.

To acquire this depth perception and mobility in a 3-D
application, we make use of a 6 DOF interactive input device
called the Spaceball (Figure 1). This is essentially a "force"
sensitive device that relates the forces and torques applied to
the ball mounted on top of the device. These force and torque

153

vectors are sent to the computer in real time where they are
interpreted and may be composited into homogeneous
transformation matrices that can be applied to objects.
Buttons mounted on a small panel facing the user control the
sensitivity of the Spaceball and may be adjusted according to
the scale or distance of the object currently being manipulated.
Other buttons are used to filter the incoming forces to restrict
or stop translations or rotations of the object.

Since our main usage for the Spaceball is to manipulate
objects in space (as opposed to animating the eyepoint), we
adhere to the "Scene in hand" metaphor as described in (Ware
and Osbome). This means that we consider the viewpoint of
the camera to be static and let the user move and rotate the
object in eye coordinates with the Spaceball (see section 3).

Unlike the Polhemus 3Space™ digitizer (another 6 DOF input
device), the Spaceball does not relate absolute position and
orientation information in 3·D space. Instead, all incoming
data from the Spaceball represent a relative change in position
and orientation; this makes the Spaceball a good 6 DOF
"steering" mechanism. In our experience, steering an object in
space does not pose any problems for the average user. It
usually takes on the order of 10 to 20 minutes to get
comfortable with the device and there is little difficulty
manipulating the object thereafter. Additionally, the user's arm
is at rest at all times while moving the object, which is a clear
advantage over the Polhemus where the stylUS has to be held
in midair.

Coming back to the discussion on motion parallax, it is
important to note that the illusion of three-dimensionality
caused by this phenomena is immediately lost once the object
stops moving. Therefore, intermittently using the Spaceball
device for purposes other than object movements would
abruptly paralyze the user's freedom of movement and lose his
3-D visual perception capabilities. If motion parallax is to be
used to its fullest in a 3-D application as the primary means of
object examination, the Spaceball device should, in principle,
be used exclusively for the purpose of moving objects.

2.2. The Ball and Mouse Metaphor

Since the operator of the Spaceball device needs only one
hand to move and examine objects on the screen, his other
hand is free to use another input device. This is the essence of
the user interaction methodology that we refer to in this paper
as the Ball & Mouse metaphor.

The metaphor closely resembles the kind of visual interface
that a real-life's microtechnician would encounter when
working with a very fine and delicate object:

1. A magnifying screen is needed in order to see the very
small details .

2. One hand is used to hold the object in place or to move it
around in order to examine it from other viewpoints.

3. The other hand is used to operate various tools to work on
the object.

Graphics Interface '91

154

Figure 1. Spaceball device

Figure 2. Sequence of images showing how a penguin caracature may be
created from a sphere

Graphics Interface '91

In the case of the microtechnician's interface, the magnifying
screen through which he examines small objects resembles, in
a purely metaphoric sense, to the common CRT display screen
through which virtual objects are visualised in computer
graphics. By itself however, the 2-D CRT display screen can
neither restitute binocular vision nor motion parallax caused
by head movements of its user. If a feasible solution to these
problems could be found, by using stereo imaging material
and by tracking the position and orientation of the head in
space, a true 3-D screen (or in this case, a type of hologram
box) could then be closely emulated.

Although binocular vision would considerably enhance visual
depth perception, we note that it is not an absolute necessity
(Forrest) if good motion parallax is present - we could very
easily imagine a microtechnician working with one eye.
Additionally, the lack of motion parallax caused by head
movements can be compensated by added object motion
dexterity.

2.3. Mouse Device

For the choice of the user input device used by the second
hand, we have experimented with a standard 2-D mouse. This
device has the advantages of being widely available on all
graphic workstations and is particularly useful in windowed
applications for selecting widgets . Additionally, like in the
case with the Spaceball device, the user's arm is at rest at all
times.

In section 4 on applications to polygon mesh sculpting, all
sculpting operations are given using a standard 2-D mouse.
Experimentation with devices of higher degree of freedom,
like a 3-D mouse or Polhemus 3Space, remains an open
research topic.

3. COORDINATE TRANSFORMATION NOTATION

Here we define the coordinate system notation that we will use
in the following sections to describe various homogeneous
matrix transformations. We define:

M Modeling matrix that transforms object coordinates
into a second modeling coordinate system, called
Node coordinates, where Spaceball transformation
matrices are applied.

N Node matrix, on which Spaceball transformations are
applied, that transforms the second modeling
coordinates into eye (or viewing) coordinates.

PV Standard Viewing and Projection matrices that
transform eye coordinates into normalized
coordinates in such a way that -1 ~ x,Y,Z ~l.

Transforming vectors Pi = lx, y, z]T from model coordinates to
normalized coordinates is done by mUltiplying PVNM Pi-

155

4. APPLICATIONS TO POLYGON MESH SCULPTING

For the purposes of this paper, we think of sculpting as the
purely visual process by which a polygon mesh surface is
created - for example by positioning vertices in three
dimensional space and linking them into a mesh - and then
altered by locally displacing vertices in space in a controled
manner (local deformations) . Rough-hewed shapes may be
generated by an external software application and loaded into
the sculpting software as the starting point of a sculpting
session.

Creating or adding a vertex in 3-D space requires the user to
indicate its position in relation to an existing object. Then, a
good geometric primitive selection mechanism is needed in
order to select the vertices to be polygonized or moved, or to
select existing polygons or edges to which various other
operations like splitting (All an et al.) would be applied. This
requires the ability to move the object around and "point"
towards the wanted primitives. And finally, altering the shape
of the surface necessitates the knowledge of the 3-D direction
in which selected vertices are to be moved. In this section, we
show how these sculpting operations are implemented using
the Ball & Mouse metaphor.

4.1. Vertex Creation

Typically, the SCUlpting process may be initiated in two ways;
by loading and altering an existing rough-hewed shape or by
simply starting one from scratch. For example, our experience
shows that a designer will use a sphere (Figure 2) as a starting
point for the head of a person or use cylinders for limbs or
torsos. He will then add or remove polygons according to the
detail or slope of the surface and apply local deformations to
alter its shape. Starting from scratch - by placing vertices in
3-D space and polygonizing - offers an alternative but is
usually more tedious and time consuming. Combining the two
makes it possible to link disjointed surfaces together, close
holes on surfaces and make small add-ons . Here, we describe
a method for creating a single vertex in 3-D space.

The idea comes from the fact that a 3-D point can easily be
located by finding the closest point of any two non-parallel
lines.

This is done in three quick steps:

1. The user aims with the mouse cursor to specify where, in
relation to an existing reference on the screen, the new
point should be located . The software generates a
reference line corresponding to this direction.

2. He turns the object with the Spaceball in such a way that
he senses a comfortable parallax.

3. He aims a second time, from this new viewpoint, in the
direction where the point should be located.

Graphics Interface '91

The new vertex will be located at the convergence point of the
two lines entered by pointing.

Suppose for example that the user wishes to close a hole in a
surface by creating a middle vertex (Figure 3), he simply aims
in the direction of the center of the hole, rotates the object
slightly with the Spaceball, and aims again in the direction of
the center.

In step (2) above, maximum parallax will be obtained by
turning the object at a 90° angle relative to the first line. This
will permit the user to enter his new vertex with greater
precision. However, good precision can be obtained by
turning the object at a much inferior angle and repeating the
pointing procedure (third step) relatively quickly. We suspect
that this is due to the human brain's ability to obtain depth
information by motion parallax. In any case, if the vertex is
not properly positioned in space, it may easily be moved
afterwards (section 4.3).

4.2. Item Selection

For selecting parts of the object, the mouse can be used in
conjunction with the Spaceball to quickly mark out the wanted
primitives in and around the object. In our implementation,
this amounts to pressing the mouse button and sweeping the
mouse cursor on the screen while moving the object with the
Spaceball. All primitives (vertices, edges and/or polygons)
that have passed underneath the area of the cursor will then be
candidates for selection. Mass picking may be done by
moving the object away from the eye (assuming a perspective
projection) and careful, minute picking may be done by
bringing the object closer.

4.3. Local Surface Deformations

After vertices have been created and positioned in space, the
sculptor calls on tools to move them about, individually or in
groups, in three-dimensional space. These tools make it
possible to produce local elevations or depressions on the
surface and to even out unwanted bumps once the work is
nearing completion.
In this section, we show how local surface deformations are
applied using the Ball & Mouse methodology. The idea is that
while the Spaceball device is used to move the object and
examine the progression of the deformation from different
angles, mouse movements on the screen are used to produce
vertex movements in 3-D space from the current viewpoint.

Much in the same manner as (Allan et al.), we wish to displace
vertices in a controlled fashion according to some decay
function that is radially symmetric about a vertex. When this
vertex, called the apex vertex, is moved in 3-D space, other
vertices follow in the same direction with amplitudes that vary
as a function of their initial distance to this vertex. Many
different deformation functions are possible to use depending
upon the final shape desired for the selected region of vertices.
Some of the functions, for example, are bell, cusp, single, box,
sine, alps and wave.

156

This methodology is intended to be a metaphor analogous to
pinching, lifting and moving a piece of a stretchable fabric
material. Pushing the apex vertex inwards renders the effect
of pressing a mould into clay. In the Ball & Mouse user
interface methodology, this translates into "pinching" the apex
vertex with the mouse and moving this vertex in 3-D space
(Figure 4).
We defme a local deformation function j(r) as follows:

j(r)=1 forr=O.
o ~j(r) ~ 1 for allO < r ~ 1.

where r is a scalar value from 0 to 1 inclusively. In three
dimensional model coordinates, r is calculated as follows:

Let
P = (pj = (X,y,z)) ,

Pa E P,

then

the set of selected vertices Pj,
the vertex where the apex of the
deformation will occur,

rmax = max(fp - pal),
rj = /pj. pd I rmax,

is the distance from Pa to Pj E P
divided by the distance r max to the
farthest vertex of p.

Therefore, j(, j} is a radially symmetric function about the axis
passing through Pa. If Pa is the apex of the deformation, we
define the transformed set of vertices as follows:

Let
t = {tj = (x,y,z)},

ta E t,
A = ta - Pa'

then
tj = Pj + f('j) * A,

the set of transformed vertices P,
the transformed apex vertex Pa'
the vector of the current deformation,

for all j E (1 .. n].

This means that moving vertex Pa in a direction A will cause
all other selected vertices pj to follow in the same direction A
scaled as a functionj(rj) . If A is a null vector, no deformation
will take place - this can be used to undo a deformation. As
la is moved arbitrarily in three-dimensional space, A increases
and accentuates the deformation in that particular direction
(Figure 4).

As a side note, since the values of fer) do not change during
the interactive deformation process, they may be computed
and stored beforehand. This optimization is welcomed on
smaller systems in order to maintain interactivity when
transforming a large number of vertices.

In essence, applying a local surface deformation comes down
to choosing the apex vertex amongst the selected group,
computing distances and values of the function in relation to
this vertex and then moving it in three-dimensional space.

Graphics Interface '91

157

Figure 3. Locating a point in 3-D

Figure 4. Example of local deformation functions. The top row shows a cusp, middle row a box type
deformation and bottom row a sine wave

Graphics Interface '91

Calculating the Defonnatlon Amplitude Vector

To be consistent with the pinching metaphor, the apex vertex
should move at the same speed on the screen as the mouse
cursor. This should be the case independently of its depth
position in relation to the viewpoint. Therefore, for every
mouse movements on the screen, the following equation
should be maintained at all times:

where
ta'
,1

P V N M ta' = ,1 P V N M ta

is the new value of ta'
is the transformation matrix resulting from a mouse
movement on the screen.

The homogeneous transformation matrix ~ produces a
translation that correspond to a 2-D mouse movement (on an
XY plane) in the normalized coordinates of the display:

o 2dXIDXJ o 2dyIDY
1 0
o 1

where
dx and dy are mouse movement in pixels,
DX and DY are the viewport dimensions in pixels.

Notice that no z translation occur in display device coordinates
as a result of the mouse movement. Finally, solving for ta '
gives

In general, a user will apply deformations in two conceptual
steps:

1. Starting with the selection of the apex vertex and a first
mouse motion to induce an initial alteration,

2. Followed by rapid rotations of the object to see the result
of this first alteration and apply smaller corrections from
other viewpoints before terminating.

With this methodology, not only can the user see his object
from every angle but he can also apply and correct
deformations from every angle in real time. Furthermore
(again assuming a perspective projection), deformations of
largely different magnitudes can be made with the same mouse
motion by varying the surface's distance from the viewpoint.
Larger deformations can be induced by moving the object
farther away while minor, more detailed corrections can be
made by zooming in on a focussed part of the object.

158

5. CENTER OF OBJECT ROTATION

As pointed out at the beginning of this paper, our Ball &
Mouse methodology adheres to the "Scene in hand" metaphor
(Ware & Osbome). This means that the forces and torques
applied on the Spaceball induce respectively a translation and
rotation movement of the object and keep the viewpoint static.

Rotating an object requires the knowledge of a reference
frame that defines the center about which the object may
pivot. If this center of rotation is misplaced and located far
from the area where work is needed, the user has to
compensate rotations with translation forces on the ball in
order to keep the work area from flying out the field of view.
The more he focusses on areas that are distant from the center
of rotation, the more he has to fight back with translations.
Therefore, when this situation arises, a feature must be present
in the software to relocate the center of rotation and to bring it
close to the work area.

To implement this, we use a Ball & Mouse method analogous
to moving the apex vertex in the last section. The center of
rotation, displayed with the object on the screen, is translated
in space with mouse movements while the Spaceball is used to
move the object and see when the correct position of the
center of rotation has been attained. In order that the reference
frame follows mouse movements on the screen, the following
equation must be kept:

where

PVN' M' = PVNM

N'
M'

is the new node matrix,
the new modeling matrix.

Solving [or M' gives

M' = N' -l V-l p -l P V N M
M' =N'- l NM

Therefore, M' is calculated such that the node translations
produced by mouse movements do not induce any movement
of the object on the screen - only the Spaceball will produce
object movements . The new center of rotation N' is calculated
as follows:

where

[Ntx' NtY' NtzlT

[Ntx' NtY' Ntzl'T

,1

is the old translation vector of matrix
N.
is the new translation vector of matrix
N.
is the same mouse movement matrix
as described in section 4.3.

Graphics Interface '91

6. CONCLUSION

In this paper. we have proposed a methodology for three
dimensional graphics interaction based on the "Ball & Mouse"
metaphor. This methodology has been used for designing and
implementing a 3-D sculpting program (see Fig.5). The
program is already being used by artists for the development
of a short film with human characters.

Most users found, after about 20-30 minutes of practice, that
the use of the system was much more natural than the classical
"mouse and multiple windows" metaphor. In the near future,
we plan to improve our approach using a stereo display.

As our methodology applied to sculpting has proved to save
time and significantly improve the communication between
the artist and the program, we are now extending the approach
to the specification of skeleton animation and facial animation.

Acknowledgements

Sincere thanks go to members of the computer graphics lab at
EPFL for their helpful comments and suggestions on this
paper and for having put this user interaction methodology to
the test in the SurfMan SCUlpting software. This research was
partially sponsored by "Le Fonds National Suisse pour la
Recherche Scientifique" and the Natural Sciences and
Engineering Research Council of Canada.

159

BIBLIOGRAPHY

Allan ffi, Wyvill B & Witten !H, "A Methodology for Direct
Manipulation of Polygon Meshes", New Advances in
Computer Graphics, cm Proceedings, 1989, pp. 451-469.

Bier EA, "Snap-Dragging in three dimensions", Computer
Graphics 24 (2), March 1990, pp. 193-204.

Cahen 0, "L'image en relief, de la photographie
stereoscopique 11 la video 3D", 1990, MASSON.

Forrest AR, "User Interfaces for Three-Dimensional
Geometric Modelling", Proceedings 1986 Workshop on
Interactive 3D Graphics, ACM Press, October 1986, pp. 237-
249.

Ware C & Osborne S, "Exploration and Virtual Camera
Control in Virtual Three Dimensional Environments",
Computer Graphics, 24 (2), pp. 175-183.

Figure 5. The use of the sculptor with the ball and mouse

Graphics Interface '91

