
168 

Complementary Integration of PHIGS and a Geometric Modeling Utility 

Paul A. Elletson and Mukul Saxena 
GE - Corporate Research and Development 

Solid Mechanics Laboratory 
Schenectady, NY 12301 

Abstract 

Graphical display and interaction with geometry constitute the 
base functionality of the user interface for many 
CAD/CAM/CAE applications. This paper presents a 
representation which provides this functionality by integrating a 
topological model described within a geometric mode/ing utility 
with PHIGS. This representation promotes easy and efficient 
implementation of graphical display and interaction with 
geometry by leveraging the underlying functionality of the 
geometric modeling utility. An implementation of this 
representation is described in the context of a non-manifold 
topology based geometric modeling utility. 

Keywords: PHIGS, Geometry Modeling, Non-Manifold 
Topology 

1. Introduction 

Most commercial CAD systems are closed architecture 
systems which only provide the user with high level operators 
and primitives for creating and manipulating a geometric 
model. However, because many CAD/CAM/CAB 
applications require the ability to define and manipulate 
low-level geometric and topological entities, an alternative 
to a closed architecture system is warranted. One can 
visualize a geometric modeling environment with an open 
architecture that provides the low-level functionality 
required by these geometry-based application programs. 
Such an environment consists of (a) data structures that 
serve as the repository for the model geometry and (b) 
operators to manipulate them. An application programmer, 
operating with such a utility, must now interact with 
low-level geometric (e.g., points, curves, and surfaces) and 
topological (e.g., vertices, edges, and faces) entities, which 
serve as the basic building blocks of the system. 

Development of a graphical system in support of such a 
modeling utility presents some interesting challenges as it 
requires a tight integration of the geometric model with the 
graphical structures of the system to ensure a consistency 
between the topological model and its graphical 

representation. This paper focuses on the implementation 
issues of such a topology-based graphical interface and 
describes how the implicit hierarchy of the topological model 
can be exploited in efficiently developing the base 
functionality of the interface. 

The paper is organized as follows. Section 2 presents an 
overview of the enabling technologies, namely the Topology 
And Geometry Utility System (TAG US) that provides the 
modeling environment for the application programs, and the 
Programmer's Hierarchical Interactive Graphics System 
(pHIGS). Section 3 describes the association of model 
geometry with the graphical structures represented in 
PHIGS. Some implementation details are presented in 
Section 4 followed by specific examples of complementary 
interaction between TAGUS entities and PHIGS structures 
in Section 5. Finally, the conclusions are summarized in 
Section 6. 

2. Enabling Technologies 

In order to explain the integration of the graphical structures 
and the topological entities defined in the geometry 
modeling utility, TAGUS, it is essential to understand the 
notions of geometry and topology and the technical aspects 
of the two software systems used to implement the concepts 
described in this paper. The first system, TAG US (Topology 
And Geometric Utility System), is a non-manifold topology 
based modeling utility which serves as a bridge between the 
closed geometric modeling systems and 
geometry-dependent application programs that require 
access to, and manipulation of, the model description. The 
second system if ANSI standard PHIGS (Programmer's 
Hierarchical Interactive Graphics System). Template 
Graphics Software's FIGARO + 2.01 provided the PHIGS 
functionality to implement the concepts presented in this 
paper. 

2.1 Geometry and Topology Data 

A "geometric" model is defined through the mathematical 
definition of geometric entities such as points, curves, and 
surfaces and the relationships between these entities. The 

Graphics Interface '91 



framework used to represent this relational information is 
referred to as topology. Figure 1 shows the hierarchical 
nature of topology and the relationships between the various 
topological and geometric entities. A set of working 
definitions for the various topological entities is given below. 
The definitions which follow are for general non-manifold 
objects and are fully described by Weiler [1]. The term 
non-manifold is used to represent topological situations 
which are not constrained to be two-manifolds. Since all the 
commercial CAD systems are based on two-manifold 
topology, they cannot be used to represent non-manifold 
situations such as domains where more than two faces meet 
at an edge. Additionally, a non-manifold topology based 
environment allows unambiguous representation of 
wire-frames, surface-models, and volume-models 
simultaneously. 

Topology Geometry 

MODEL 

t 
REGION 

t .. -- SHELL -
t 

FACE 
1-

SURFACE I-

t or 
LOOP ~ 

t .. - EDGE or I ... 
1- CURVE 

t 
VERTEX'" 1- POINT -

Figure 1. Non-manifold topology representation 

1. A vertex is a topological representation of a 
point in three-dimensional space. A 
geometric point is associated with a vertex. 

2. An edge is the topological equivalent of a 
curve and consists of a starting and ending 
vertex, which defines the direction of edge 
traversal. 

3. A loop is defined by an ordered, closed, 
connected, non-self-intersecting collection 
of edges. Loops are used to define the 
boundaries of a face. 

4. A/ace is defined by one or more loops, one of 
which defines the outer boundary and 
additional loops to define the interior 
boundaries (e.g., holes). A face has an 
associated geometric surface. 

169 

5. A shell is a set of faces which is an oriented 
boundary for a region. 

6. A region consists of one or more shells and 
represents a volume of space. 

7. A model is a collection of regions. 

The topological entities are hierarchical in nature, with 
higher order entities being comprised oflower order entities. 

2.2 Topology And Geometry Utility System 

TAGUS is a combination of data structures and operators 
designed to meet the requirements of geometry-based 
applications by providing the capability to directly access and 
manipulate geometry, regardless of the source of model 
geometry [2]. Since most geometric modeling systems have 
closed architectures, TAGUS provides a logical bridge 
between such mode ling environments and applications 
which rely on those systems for their geometry definition. 
Figure 2 shows a conceptual view of the TAGUS system, 
along with the way in which it can be utilized in a CAE 
environment. There are three basic components to the 
system: (1) geometry source, (2) TAGUS, and (3) the target 
applications which are built with the TAGUS operators. 

TAG US supports three data structure types: the 
non-manifold topology (NMT) data, the geometric entity 
data, and the attribute data. The topology and geometry data 
were described earlier in this section. The NMT model 
provides a framework for describing the geometry data, 
whereas the attribute data provides for additional 
application-specific information. For example, in a 
graphical rendering system, color might be an attribute of a 
model edge. Attributes may be assigned to any of the 
available topological entities. 

2.3 Programmer's Hierarchical Interactive 
Graphics System (PHIGS) 

PHIGS, an ANSI standard, is a set of operators which 
provides the user with the ability to closely control the 
creation, modification, archiving, deleting, and viewing of 
graphical objects. Furthermore, PHIGS provides the user 
with the ability to directly interact with these graphical 
objects. For example, PHIGS can return the identifier of a 
picked graphical object. Brown, et. al. [3] delivers an 
overview of the functionality provided by PHIGS. 

PHIGS' principal data structure is known as a structure. 
Henceforth, the term structure will always refer to a PHIGS 
structure. Each structure is identified by a unique integer 
value. Every structure consists of a sequential display list of 
structure elements. There are four types of structure 
elements in PHIGS 

• 
• 
• 
• 

Graphical Primitives 

Graphical Attributes 

Structure Invocation Elements 

Application Data 

Graphics Interface '91 



170 

Geometry-Dependent Applications 

TARGET 

APPUCATION8 

• Finite Element Mesh Modeling 
• Adaptive Analysis 
• Shape Optimization 
• Blade Design 
• etc. 

Figure 2. TAGUS system architecture. 

Graphical primitives (e.g. polylines and polymarkers) 
generate graphical output. Graphical attributes (e.g. color 
and pickability specifications) affect the appearance and 
behavior of graphical primitives. Application data storage 
reserves storage in a structure for application-specific 
information. Structure invocation elements hierarchically 
associate one structure with another. The latter elements are 
used to construct hierarchies of structures. Lower-level 
structures may inherit attributes from higher-level 
structures. 

PHIGS supports two kind of structures: retained structures 
and non-retained structures. Non-retained structures are 
not preserved in memory after they are created. Hence, a 
non-retained structure can generate graphical output only at 
the time it is created. Retained structures, on the other hand, 
are retained in memory after they are created. each retained 
structure may generate graphical output many times. 
Furthermore, its contents may be selectively changed 
through the PHIGS' structure editing facility. In the context 
of this paper, the term stfUcture always refers to a retained 
structure. 

3. Association of PHIGS Structures with 
Topological Entities 

In the representation presented by this paper, all 
graphics-based functionality is provided by PHIGS. Hence, 
given the model, a corresponding set of PHIGS structures 
must be created. Important features of this set of structures 
are the number of structures created, the hierarchical 
associations among these structures, and the content of each 
structure. These three features constitute a framework 
which characterizes the design presented in this paper: 

(1) 

(2) 

(3) 

One structure is created for every topological 
entity. Each structure represents a particular 
topological entity. Hence, vertex structures 
represent vertices, edge structures represent edges, 
and so on. No other structures are created. 
The structures are not associated with one 
another, and, therefore, a structure hierarchy is not 
maintained. 
The content of every structure can be classified 
into either two or three of the following categories 
(see Figure 3): 

Graphics Interface '91 



171 

(a): Pointer to Represented Topological Entity. pointer 
~ 

(b): Graphical Representation of Geometry. ~ 
polyline attributes (e.g. color) 

polyline 

(c): Graphical Representation of Identifier ~ 
of Topological Entity. 

text attributes (e.g. font) 

~ text 

Figure 3. The three components of the structures of this representation. 

(a) A pointer to the represented topological 
entity. 

(b) A graphical primitive (e.g. a polyline) which 
represents the geometry associated with this 
topological entity and attributes which 
control the appearance of this graphical 
primitive. 

(c) A graphical primitive (e.g., text) which 
represents the identifier of this topological 
entity and attributes which control the 
appearance of this graphical primitive. This 
graphical primitive is used to label the 
represented topological entity. 

In this representation, all structures contain (a) and (c). 
However, only structures which represent classes of topology 
for which there is associated geometry contain (b). For 
example, an edge structure will contain all three sections, 
because every edge is associated with a curve. Conversely, a 
region structure will contain only (a) and (c), because the 
geometry of a region is defined by its underlying points, 
curves, and surfaces which are only associated with vertices, 
edges, and faces, respectively. 

The lack of hierarchical associations among structures 
greatly eases the effort required to implement this scheme 
for an environment in which the topological representation 
may change. Potentially, a representation could have been 
chosen for which the topological hierarchy was directly 
mapped to an equivalent hierarchy of PHIGS structures. 
However, with such a one-to-one mapping, much of the 
functionality provided by the geometric modeling utility 
system would have been duplicated. 

Hence, if the structures had been associated hierarchically, 
changes made to the topological representation could 
require redirection of the pointers (see Figure 3) contained 

within the structures associated with the affected topology. 
In the present representation, any change made to the 
topological representation requires only creation or deletion 
of associated structures. When new topological entities are 
created/deleted, counterpart structures are created/deleted. 
However, when a topological entity is modified, no 
structures are affected. 

Let us consider the following example of glue-face 
functionality supported in TAGUS as one of the core 
operators for merging topological entities. As the name 
suggests, glue-face allows two topological faces to be merged 
together. Note that this operator is significantly different 
than the "boolean merge" functionality [4] available within 
the commercial modeling systems as explained in Figure 4. 
The boolean merge operation combines two regions and 
removes the interface between the two whereas the glue-face 
operator retains the face as an interface between the two 
regions. The glue-face operator is thus capable of modeling 
non-manifold situations, like the one illustrated in Figure 4 
where all the edges of the interface are non-manifold edges. 
As a side-effect of this operator, the topological framework 
defining the model is considerably modified. To list the 
obvious changes: one of the faces and all its associated 
low-level topological entities (edges and vertices) are 
deleted. For such simple deletions it's easy to preserve the 
consistency between the topological model and the graphical 
structures. This is accomplished by deleting the associated 
structures in PHIGS. However, another manifestation of the 
glue-face operator is that the shells get modified as well. As 
explained earlier, a shell is simply a collection of faces that 
define region boundaries. In our specific example when 
regions are merged their boundaries and thus the associated 
shells also modified. If such an association between shells 
and their constituent faces was maintained in the 
hierarchical representation of PHIGS structures, one must 

Graphics Interface '91 



ensure that the corresponding structures are appropriately 
modified to reflect such changes. However, our integration 
of the topological entities and the structures in PHIGS 
circumvents this problem, as all such associations are directly 
derived from the underlying topological model. Hence, the 
bookkeeping, and thus the programming effort, required to 
maintain such a consistency is reduced considerably. 

Figure 4. Modeling non-manifolds using glue-face opera
tor in TAGUS (a). Boolean merge operation in a conven· 
tional modeling system produces a manifold object (b). 

4. Implementation in TAGUS Environment 

The authors have implemented the representation 
described in the previous section for TAGUS models. The 
resulting implementation, known as the Ctoolkit (FIGARO 
Toolkit), comprises a set of operators written in C which 
maintain this underlying representation while providing an 
applications programmer with tools for interactive viewing, 
constructing, manipulating, and archiving of TAG US 
models. Reference [5] provides a detailed description of the 
Uoolkit. 

This implementation will be described in the context of the 
framework established in Section 3. Description of this 
implementation under characteristics (1) and (2) requires 
little additional explanation. In this implementation, every 
TAGUS topological entity is associated with a PHIGS 
structure. Every structure is completely independent of 
every other structure. No other structures exist. 

On the other hand, description of this implementation 
under characteristic (3) merits longer discussion. Each of the 
three components of characteristic (3) (a, b, and c) will be 
discussed in turn. 

The pointer contained within a structure forms one-half of a 
bidirectional link between that structure and its 
corresponding TAG US entity. This pointer has been 
implemented by storing in the structure an application data 
element which contains the type and id of this topological 
entity. Pointers in the opposite direction are stored within 

172 

the TAGUS representation using the TAG US attribute 
facility. Every TAGUS topological entity points to its 
corresponding structure by storing the integer identifier of 
that structure. Figure 5 illustrates this bidirectional 
association. 

TAGUS 

Geometry 

SURFACE 

CURVE 

POINT 

Topology 

MOfEL 

RElON 

SHfLL 

FACE 

t 
LOOP 

t 
ErE 

VERTEX 

PHIGS 

Graphics 

MODEL STRUCTURE 

REGION STRUCTURE 

SHELL STRUCTURE 

FACE STRUCTURE 

LOOP STRUCTURE 

EDGE STRUCTURE 

VERTEX STRUCTURE 

Figure 5. Association between TAGUS Entities and 
PHIGS Structures 

Only vertex and edge structures contain component (b). In 
TAGUS, vertex, edge, and face entities have counterpart 
geometry (see Figure 5). However, because surface 
rendering can be computation ally expensive, the face 
structures of this implementation contain no graphical 
primitives to represent their counterpart trimmed surfaces. 
Hence, while vertex and edge structures contain all three 
characteristics discussed in the previous section, loop, face, 
shell, region, and model structures contain only components 
(a) and (c). A polymarker represents the geometry of a vertex 
structure, while a polyline represents the geometry of an 
edge structure. 

5. Examples 

The association between TAGUS and PHIGS enables the 
functionality provided by both systems to be used in a 
complementary fashion. This section provides two examples 
of this by describing the Uoolkit's picking and toggling 
functionality. 

5.1 Picking Entities 

The interactive functionality provided by PHIGS can be 
used to provide input to TAGUS operators. Picking is one of 
the forms of interactive input provided by PHIGS. In this 
implementation, PHIGS has been set up to recognize picks 
of only the text elements of the structures. The text element 
of a structure labels its corresponding topological entity. 

Graphics Interface '91 



This label is simply the integer identifier of that entity. If a 
text element is picked, PHIGS returns to the application the 
identifier of the associated structure. Given this identifier, 
PHIGS routines can be used to extract the pointer from the 
picked structure. As explained earlier, this pointer identifies 
the TAGUS entity represented by the picked structure. 
Nothing beyond this identifier is required to perform many 
useful operations using TAGUS operators. For example, a 
picked entity might be deleted by using the TAGUS delete 
operator. This, in turn, requires that the structure 
corresponding to this entity be deleted in order to preserve 
the consistency between TAGUS and the graphical 
representation of the model. Hence, complementing the 
interactive functionality provided by PRIGS with the 
operators provided by TAG US produces a very powerful 
interactive interface to the TAGUS functionality. 

5.2 Selective Display 

The display functionality provided by PHIGS can be used in 
conjunction with the TAG US topological traversal operators 
to selectively display any topological entity in the model. 
That is, entire loops, faces, shells, regions, and the model can 
be drawn in a distinguishing manner. For example, Figure 6 
depicts a cube for which one face has been drawn in bold, 
distinguishing it from the other faces of the cube. This is 
accomplished in the following manner: Given the identifier 
of the face to be marked, TAGUS traversal operators are 
called to obtain the loop underlying this face, and, in turn, all 
the edges underlying this loop. Then, the TAGUS attribute 
operators are called to determine the identifiers of the 
PHIGS structures corresponding to these edges. Finally, the 
polyline attributes of these edge structures are modified to 
draw the edges with a thick width. Hence, complementing 
the display and structure editing functionality provided by 
PHIGS with the traversal and attribute operators provided 
by TAG US produces a means of graphically manifesting the 
topological representation of the model. 

Figure 6. Cube with one marked face. 

6. CONCLUSIONS 

This paper has presented an approach to integrating 
graphical structures with a topological representation 

173 

described in the geometric modeling utility, TAGUS. The 
distinguishing characteristic of this approach is the reduction 
of programming effort required to implement the base 
functionality of the user interface, i.e., graphical display and 
interaction with topological entities. Thus, a graphical 
toolkit can be efficiently developed that exploits the 
functionality available within the modeling utility. In support 
of this view, the implementation of a graphical system for 
TAGUS models is described in the paper. Such a system 
must maintain a graphical representation consistent with 
the underlying topological model. An alternative scheme of 
mapping the topological hierarchy to a hierarchy of 
graphical structures amounts to duplicating much of the 
information that already exists in the topological framework 
of the model. 

In conclusion, the complementary integration of the 
graphical structures and the topological entities results in 
efficient algorithms for implementing the base functionality 
of the user interface. 

Acknowledgements 

The authors would like to thank Peter M. Finnigan of the 
Corporate Research and Development of the General 
Electric Company for his valuable comments and 
suggestions during the development and implementation of 
the concepts described in this paper. The development of the 
graphics toolkit if-toolkit) described in this paper was 
supported by GE Aircraft Engines, Evendale. 

References 

1. Requicha, AAG. and Voelcker, H.B. , "Boolean 
operations in solid mode ling: Boundary evaluation 
and merging algorithms", Proceedingr of IEEE, vol. 
3, pp. 30-44, 1985. 

2. F_Toolkit: FIGARO Toolkit: User's Guide & 
Reference Manual, ver.sion 1.0, General Electric 
Corporate Research & Development Mechanical 
Design Methods Program, October, 1990. 

3. Weiler, K.J., Topological Strnctures for Geometric 
Modeling, PhD Thesis, Rensselaer Polytechnic 
Institute, August 1986. 

4. 

5. 

T AGUS: Topology and Geometry Utility System: 
User's Guide & Reference Manual, Ver.sion 3.0, 
General Electric Corporate Research & 
Development CAE Automation Project, June, 
1990. 

Brown, Maxine D. and Michael Heck, 
Under.standing PHIGS: The Hierarchical Computer 
Graphics Standard, Template Graphics Software 
Division of Megatek Corp., San Diego, CA 1985. 

Graphics Interface '91 


