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Abstract 

Modeling is the creation of graphical objects. It is a 
tedious task for users to perform, and too complex to be 
amenable to full automation. The notion of cooperative 
modeling, where a human and a computer system coop­
erate to perform the modeling task, therefore , has great 
appeal. We provide a comparative description of human­
computer cooperative interaction paradigms for creating 
graphical objects. This work serves three purposes: 1.) 
to present a conceptual framework for organizing known 
paradigms; 2.) to provide a basis for choosing among 
the set of existing paradigms; and 3.) to expose oppor­
tunities for developing new interaction paradigms with 
certain desirable combinations of characteristics. 

Keywords: Graphical user interfaces, modeling , de-
sign automation , human-machine interaction , interac­
tion techniques , critics, constraint-based design, coop­
erative design, automated design of graphical displays . 

1 Introduction 

Modeling-the process of creating graphical objects­
demands the majority of the human effort invested in 
most computer-graphics applications. In contrast to 
rendering , the modeling activity is understood poorly 
and, in general, supported inadequately. The imbalance 
in the relative developments of modeling and render­
ing technologies reflects the historically disproportionate 
emphasis on rendering research at the expense of mod­
eling . This lopsided research focus is changing, however, 
as we begin to satisfy the challenge of photorealism and 
as the topic of visualization emerges with its demand for 
rapidly produced graphical depictions of data. 

We define graphical objects broadly, encompassing, for 
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example, informational graphics (e.g., bar chart.s and 
maps) , the graphical components of user int.erfaces (e.g., 
dialog boxes and windows), and the graphical objects 
produced with geometric CAD systems (e.g., a rchit.ec­
tural floor plans and graphical depictions of physical sys­
tems) . We view the modeling process as a combinat.ion 
of two different activities: 

MODELING = DESIGN + ARTICULATION 

Design is the more creative and inventive aspec t of mod­
eling. It is an exploratory process that produces a con­
ceptual arrangement of the logical elements of an object. 
model, a construct that we refer to as an object concep­
tualizat ion. Articulation is the activity of providing a 
precise graphical description of an object. model, given 
its conceptualization. For example, when lIsing all ar­
chitectural CAD system an architect will be faced with 
a design task when attempting to determine the hest 
collection and organization of rooms in a building; ex­
pressing the precise geometry of that floor plan to the 
computer is an articulation task . Landscape design iden­
tifies the locations and types of the topographic features, 
trees, buildings, and other natural and man-made struc­
tures in the scene. The geometric and opt.ical charac­
teristics of these features are provided when (.he scene is 
graphically articulated. 

Except in a few narrow, well-understood domains, 
completely automatic object modeling is no t. possible. 
In many applications , however , it is possihle to hring 
the power of the computer to bear on the modeling 
task, with the guidance and cooperation of a. human 
collaborator.! 

An emerging set of interaction paradigms facilitating 
human-computer cooperation in modeling has heen re­
ported in the recent literature of the computer-graphics, 
interactive-computing, and artificial-intelligence com­
munities. This paper contributes a comparative descrip-

1 We use the term "user" and "co llaborator" interchangeably 
throughout the paper to refer to the human performing th" Illod­
eling task. 
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tion and classification of these paradigms.2 For the prac­
ticing engineer, this provides a basis for choosing the 
appropriate complement of these paradigms for new ap­
plications. For the researcher, this study provides a use­
ful framework for cooperative modeling and indicates 
unexplored regions of the "organizational space" that 
may contain significant opportunities for developing new 
paradigms. 

2 Paradigm Organization 
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To organize the various paradigms conceptually, we 
consider the extents to which they automate design and 
articulation (Figure 1). The degree of automaticity in 
each dimension that the different paradigms offer varies 
from completely manual to completely automated. This 
is essentially related to the load distribution between the 
user and the computer-towards the manual end of the 
scale, the user is active and the system essentially passive 
with respect to the modeling process; the opposite is 
true towards the fully automated end. Also, in some of 
the paradigms, the degree of automaticity can be varied 
dynamically within a particular modeling task. 

In addition, the paradigms may be distinguished by 
other factors : 

• nature of the application domain: the kinds of 
graphical objects that are being modeled and their 
relation to real-world entities and tasks 

• design variability: the range of design varia­
tion that can be supported and managed by the 
paradigm 

• exploratory nature of the modeling process: 
whether the goal is the creation of a single opti­
mal graphical object or the creation of a suite of 
complementary graphical objects 

• user expertise and goals: the degree of user exper­
tise and the user's purpose in creating the graphical 
object 

While our discussion of the individual paradigms con­
siders these factors, we do not use them as major clas­
sification characteristics because they do not cover in a 
meaningful way the complete range of paradigms that 
we present. 

As Figure 1 shows, we classify existing interaction 
paradigms for graphical-object modeling into six cate-

2 Some previous attempts to characterize cooperative human­
machine interaction have favored a particular paradigm over oth­
ers. For example, Fischer et. al. [Fisc90] describe the critic-based 
approach as an exemplar for cooperative interaction. Instead, we 
have tried to include and classify the full spectrum of interaction 
paradigms : in our organizational space the c ritic-based paradigm 
is only one of several different approaches to human-computer co­
operation in modeling. 

gories, organized with respect to our principal organiza­
tional characteristics. 3 These six categories are: 

1. Fully manual 

2. Constraint-based 

3. Critic-based 

4. Improver-based 

5. Fully automated 

6. CCAD (Cooperative CAD) 

We discuss below the salient nature of each of the 
paradigms and their relative strengths and weaknesses. 
We also present examples of systems based on the 
paradigms. 

3 Interaction Paradigms 

3.1 Fully Manual Modeling 

The interaction paradigm used III most widely avail­
able CAD systems is that of fully manual modeling . 
These systems primarily support low-level geomet.ric 
manipulation , with only a few systems offering higher­
level design operators. In all cases, the user is respon­
sible for all design decisions . This interaction paradigm 
is thus characterized by the following properties: 

• the user has complete control over the modelillg 
process 

• the system IS passive with regard to the modeling 
process 

MacDraw and MacPaint are two early examples of 
fully manual tools for designing 2D graphical object.s. 4 

GEOMOD [Myer82j , AutoCAD [Eyri90j and CADDS5
, 

all three mechanical CAD systems, and SCHEMA 
[Norm86J, a three-dimensional sketching system for ar­
chitects, are examples of fully manual tools for designing 
3D objects . The AVS [Ups089j and apE [Dyer90j sys­
tems support the production of scientific visualizations. 
Pagemaker6 and Framemaker7 are systems for page lay­
out in documents . A number of user-interface t.oolkits 
provide support for the manual design of graphical ob­
jects for use in user interfaces [Myer89j . 

3 Many of the paradigms can be extended to cover ot. her part.s 
of the organizational space; however, in Figure 1 , we show them 
as occupying th a t portion of the space that brings out the ir most 
salient characteristics . 

4 MacDraw and MacPaint are trademarks of Apple Computer 
Corporation. 

5 CADDS is a registered trademark of the Computervision di· 
vision of Prime Computer. 

6Pagemaker is a trademark of Aldus Corporatio n . 
7 Frame make r is a trademark of Frame Technology 

Corporation . 
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• 
articulation automaticity 

•• The automaticity in both design and articulation that are exhib ited in a single design session may range 
widely, he nce the proper coordinates of the CCA D paradigm in th is figure are proble matic, as di scussed in S·;c­
tion 3 .6. 

Figure 1: Conceptual Organization of the Interact. ion Paradigms 

Although all these systems have powerful and effective 
features, they are fully manual in the sense that t he 
system plays only the role of facilitator for all design and 
articulation tasks: these tasks are performed essentially 
by the user. 

While the fully manual interaction paradigm has the 
advantage that the user has complete control over the 
modeling process, the creation of graphical objects can 
be a time-consuming and tedious process. 

3.2 Constraint-based Modeling 

The constraint-based modeling paradigm allows 
somewhat more automaticity than does the fully man­
ual modeling paradigm_ In constraint- based modeling 
systems, most of the modeling is done manually, except 
that the system attempts to satisfy a set of constraints 
as the graphical object evolves. (These constraints can 

be specified by the user, or may be inherent. (.0 the do­
main .) T hus , as the user manipulates a nascent. object , 
the system may make minor adj ustments t.o ensure t. hat 
const raints will remain satisfied. Alt.ernative l~·, t.he sys­
tem may restrict the user 's options at each step in t.he 
modeling process, so that the graphical objects produced 
do not violate constraints. 8 The main charact.eris t. ics of 
this paradigm are: 

• the system offers no modeling advice of any kind 

• the human user makes all modeling decisions, but. 
his or her options are constrained by the system 

8The sys tems cited in the previous subsec tion might. a lso be 
considered to constrai n the modeling process because they pro­
vide a limited reperto ire of graphical-subobject types, or because 
t hey only allow cert ai n operatio ns to be perfo rmed . Our not.ion 
of constraint-based m o deling is more rest.rictive. as wi ll b eco m e 
clear in the subsequent discussion . 
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Although this interaction paradigm may yet prove 
useful for design tasks, it has so far proven useful only 
for articulation tasks, as we have indicated in Figure 1. 

One of the earliest examples of the constrained­
modeling paradigm for articulation is Borning 's 
ThingLab [Born81] . Borning's notion of a constraint 
is very general: in ThingLab, a constraint consists of 
a declarative relation over graphical subobjects com­
posed of lines and polygons; a procedure for measuring 
how well the relation is satisfied; and a set of meth­
ods or procedures for satisfying t.he relation. The user 
specifies constraints; the ThingLab system then articu­
lates a graphical object that satisfies these constraints. 
Constraint satisfaction is achieved by applying the user­
supplied methods associated with each constraint: this 
process is guided by a variety of techniques for constraint 
propagation and constraint relaxation. 

Another example of the constrained-modeling 
paradigm is Nelson's J uno system [N els85]. For this 
discussion the relevant aspect of J uno is its method of 
using geometric constraints to specify locations of two­
dimensional points. The primitive graphical subobjects 
allowed in Juno are lines, arcs , and areas , all of which 
are defined in terms of points . J uno supports four types 
of geometric constraint. The first type of constraint is 
called congruence: two pairs of points, (x, y) and (u, v), 
are constrained to be congruent by requiring the distance 
between x and y to equal the distance between u and v. 
The second constraint type concerns parallelism: two 
pairs of points, (x,y) and (u ,v), are constrained t.o be 
parallel by requiring the direction from x to y t.o parallel 
the direction from u to v. The third and fourt.h t.ypes 
of constraint require pairs of points to be aligned hori­
zontally and vertically, respectively. Juno articulates a 
graphical object that satisfies a given set of constraints 
using a Newton-Raphson method for constraint satisfac­
tion. 

A more recent example of the const.rained-modeling 
paradigm is Sistare's Converge system [Sist91]. Con­
verge differs from ThingLab and Juno in several ways: 
the graphical subobjects and constraints in Converge are 
three-dimensional , the constraints are presented to the 
user as graphical icons that are superimposed on the ge­
ometry, and the constraints are satisfied more efficiently 
through the use of partitioned constraint networks and 
more aggressive numerical techniques. Figure 2 shows a 
graphical object produced by Converge in which various 
constraints are used to control the form of the geom­
etry. The legend explains the meaning of the various 
constraint icons used in the figure . 

The examples discussed above all concern the artic­
ulation task: the user is responsible for deciding which 
graphical subobjects to include and for stating the re­
lations that should hold between them; the system is 
responsible for instantiating a graphical object that com­
prises the user-specified subobjects and that satisfies the 
user-specified relations or constraints. Many articula-
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tion tasks are best thought of as constraint-satisfaction 
tasks, so it is perhaps not surprising that the constraint­
based paradigm has been most successful in this area. 
While it is certainly possible to use the concept. Df con­
strained modeling for design, we know of no system tha t. 
takes this approach . 

Constraint-based modeling systems offer the a.d van­
tage that the final graphical objects are guarant.eed to 
be "valid" in some sense. Sometimes, however, the in­
teractions between subobjects that are subject t.o con­
straints can be difficult for the user to ant.icipa t.e full y, 
and the modeling task can still be rather tediou~ . 

3.3 Critic-based Modeling 

Next along the continuum of increasing aut.omatic­
ity is the paradigm of modeling using critics. C ritics 
are user-invoked agents that respond to user- genera ted 
graphical objects by providing cl·iticisms. The range of 
criticisms offered can be broad, from notifica.tion of lo\\,­
level geometric constraint violat.ions to high-level cr i­
tiques of object conceptualizations. T he main chara.c­
teristics of this paradigm are: 

• the user is still required to perform the entire llI od­
eling task manually 

• critics identify flaws in design and articulation, bu I. 
remedies must. be applied by the human collabora­
tor 

Thus, critics do not autonomously develop graphica.l 
objects, but detect subopt.imal aspect.s of t.he emerging 
objects being created by the human user. They provide 
feedback to the user and enable him or her to develop a 
better object. Lemke [Lemk90a] argues for the necessit.y 
of having critics in any cooperative problem-solving sys­
tem. A detailed discussion and survey of the crit.ic-based 
approach is provided by Fischer et. al. [Fisc90). 

An example of a design system based on crit.iquin g is 
CRACK [Fisc88 , Fisc89]. CRACK 's knowledge-based 
critiquing component encodes design principles about. 
assembling kitchen appliances int.o functional kit.chen 
layout.s. These rules are based on building codes, safe t.y 
standards and functional preferences. The user is ex­
pected to resolve criticisms based on building codes 
and safety standards , except in exceptional cases: t.hose 
based on functional preferences can be viewed as op­
tional suggestions. CRACK can also provide default. ex­
planations (consisting of "canned" text.) for it.s crit.icisms 
if the user so requests. 

As another example, Oxman and Gero [Oxma87] 
present PREDIKT as an expert system that. can be used 
for both "design diagnosis" (critiquing) and "design sy n­
thesis" (automatic articulation) . PRE DIKT carries out. 
both these tasks in the preliminary stages of the design 
of domestic kitchens. In the "diagnosis" mode, the sys­
tem criticizes (e.g., "proportions are in adeq uate" ) and 
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Figure 2: A Graphical Object Produced by the Converge System 

evaluates designs (e.g., "light is sufficient"), based on en­
coded knowledge relating to requirements for kitchens . 
The comments offered by the system as it evaluates a 
design can be viewed as approval of the steps taken so 
far by the human designer. An interesting feature of 
PREDIKT is that the same knowledge-base is used in 
the critiquing and automatic articulation steps. 

Other examples of critic-based systems that help with 
articulation tasks include mechanical and electrical CAD 
systems that can perform structural-integrity tests , in­
terference checks, and layout-feasibility tests . 

The critics described so far have to be explicitly in­
voked by the user. It is thus possible that critics might 
be invoked too late in the modeling process, after a ma­
jor incorrect decision had already been made. An alter­
native is to have active critics [Fisc90] (sometimes called 
daemons). Active critics "watch over" the user 's actions 
and warn the user asynchronously (that is, without wait­
ing for user invocation) when critical information needs 
to be communicated or when flaws are detected . 

FRAMER [Lemk90a, Lemk90b , Fisc90] is an example 
of an active-critic-based system for designing user inter­
faces. FRAMER contains a knowledge base of design 
rules for program frameworks that evaluate the com­
pleteness and syntactic correctness of the user interface 
being designed. The active critics used in FRAMER are 
partitioned into mandatory and opt.ional ones, similar 
to the critics in CRACK. Messages from these critics 
are continuously presented to the user in the form of a 
checklist that the user cannot permanently ignore. Fig­
ure 3 shows an example from FRAMER.9 The checklist 
produced by the critics is shown in the window towards 
the center, titled "Things to take care of." 

Critics are obviously useful for detecting and point­
ing out suboptimal aspects in an emerging graphical ob-

9T his figure is reproduced from [Fisc90) with permissio n . 

ject. The major challenge is to be able to capture design 
knowledge , both for design and articulation , in the form 
of predicates that can be tested. The role of a critic can 
be enhanced if the system is also able to offer rat.ionales 
for its criticisms [Fisc89, Fisc90]. 

3.4 Improver-based Modeling 

An improver is a highly automatic agent. that modifies 
("perturbs" ) a completed graphical object produced by 
t.he user in order to improve it" As indicat.ed in Figure 1, 
however, the improver-based paradigm has been applied 
only to articulation tasks. The essential difference be­
tween the improver-based paradigm and the critic-based 
paradigm is that the latter need only identify shortcom­
ings (and maybe offer abstract suggestions) , whereas the 
former must also attempt to rectify them . The main 
characteristics of improvers are: 

• only a completed graphical object can be improved 

• flaws in the object are identified and remedied au­
tomatically 

• the human collaborator may not be the originat.or 
of all aspects of an improved graphical object 

The essence of the improver-based paradigm is illus­
t.rated in Figures 4 and 5.10 The graphical objec t.- a 
network diagram- in Figure 4 is obviously conceptua.lly 
complete, but the artic ulation of the conceptualiza.t.ioll 
is lacking. Figure 5 shows the result of improving t he 
articulation, a process Pavlidis and Va.n Wyk call "beau­
tification ." 

The improver-based algorithm in [PavI85] has two 
components. The first component infers t.he relat.ions 

10These figures are reproduced from [Pav185) wi t. h permission . 
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F igure 4 : Network Diagram Before Improvement (from 
[PavI85]) 

Figu re 5: Network Diagram After Improvement (from 
[PavI85]) 
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or constraints that should hold between graphical sub­
objects (composed of line segments and polygons) in a 
given image. In other words, the system first tries to 
infer the relevant aspects of an object conceptualiza­
tion from a completed graphical object. (This inference 
step is obviously necessary if only an image is available, 
but for some applications a representation of the ob­
ject conceptualization might be available, rendering the 
inference step moot.) The constraints considered are 
length and slope congruence between line segments, line­
segment collinearity, horizontal and vertical alignment 
of points, and various "negative" constraints to ensure 
that subobjects do not overlap or otherwise interact in 
a deleterious way. Given a set of constraints, the sys­
tem modifies the arrangement of graphical subobjects 
to satisfy the constraints. In this respect, the beautifier 
system of Pavlidis and Van Wyk is reminiscent of the 
constraint-based systems considered earlier. 

Another example of the improver-based paradigm is 
Weitzman's DESIGNER system [Weit86J, an interactive 
tool for creating graphical interfaces to instructional sys­
tems. DESIGNER has three component processes: an 
analysis process that infers aspects of an object concep­
tualization from a graphical object ; a critiquing process 
that identifies elements of the object conceptualization 
that have not been articulated satisfactorily; and a syn­
thesis process that suggests methods for modifying the 
articulation of the conceptualization . Some unique as­
pects of DESIGNER are the primitive graphical subob­
jects it uses (icons with properties of color, size, type, 
and shape), the subobject relations it recognizes and can 
attempt to modify (perceptual organization by similar­
ity, proximity, and repetition), and its ability to accom­
modate different graphical styles . 

The suitability of the improver-based paradigm for 
better articulation is fairly obvious. The need to infer 
indirectly aspects of an object conceptualization from 
a completed graphical object is a problem that future 
improver-based systems may be able to avoid . The ap­
plication of the improver-based paradigm to the design 
task is likely to prove quite hard, because it would ap­
pear to be necessary to know a great deal about the ap­
plication domain , and the purpose of a graphical object 
(user objectives) in order to improve its design . 

3.5 Fully Automated Modeling 

At the far end of the automaticity spectrum lies fully 
automated modeling . In this paradigm, the system is 
completely responsible for design and/or articulation. 
The main characteristics of this approach are: 

• the system is completely responsible for one or both 
aspects of the modeling task 

• the user is passive with respect to one or both as­
pects of the modeling task 

Full modeling automation has been achieved in several 
domains , but only for a small number of well-defined 
applications: 

• Iconic Displays . The VIEW system [Frie82, Frie84] 
generates icon-based displays that depict answers 
to database queries. The displays are tailored to 
the user's task, identity, and nature of the query. 

• Chart Graphics. Mackinlay 's APT system 
[Mack86) automates the design and articulation of 
chart graphics that communicate arbitrary rela­
tional information. Roth and Mattis [Roth90] have 
extended Mackinlay 's approach to allow for greater 
design variation by enriching the characterization 
of the input data; their system is part of a multi­
media explanation generator for a financial-analysis 
application [Roth89]. 

• Three-Dimensional fllustrations . The APEX 
[Fein85) and IBIS [Seli89] systems produce illustra­
tions that depict objects and actions in the physi­
cal world . The illustrations satisfy communicative 
goals generated automatically by a multimedia ex­
planation generator [Fein90) . 

• User-Interface Displays . Several systems have been 
built that are capable of generating automatically 
the graphical objects needed for user-interfa.ce dis­
plays [Aren88, Kim90, Wiec90). 

• Network Diagrams. The ANDD system [Mark90a, 
Mark90b) designs and articulates network diagrams 
to communicate information represented in arbi­
trary attributed graphs. This system will provide 
part of a multimedia explanation capability for a 
collaborative-planning system [Gros90). 

These systems share some common characteristics: 
they all communicate very specific kinds of information 
represented in specialized formats ; their prima.ry design 
task is to map symbolic information onto an expres­
sive and effective graphical depiction; and they target 
applications where human collaboration is unnecessary 
(because of limited design variation) or impossible (be­
cause of the application context). These systems also 
differ significantly in many respects: the graphical con­
ventions and styles that govern the different kinds of 
display vary greatly (e.g., the issue of 3D viewing pa­
rameters only arises in the APEX and IBIS syst.ems , 
and layout-related perceptual organization is of primary 
concern to only the ANDD system) , causing grea.t vari­
ation in the basic algorithmic paradigms Ilsed by the 
different systems. 

The systems mentioned above automate both design 
and articulation tasks completely. The fully automated 
approach has also been applied to just articulation, es­
pecially to those articulation tasks involving complex 
or tediolls layout problems that require combin a.torial 
search: 
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• Floor-Plan Layout. Several researchers in archi­
tectural CAD have proposed schemes for automat­
ing the articulation of conceptualizations of floor 
plans. Earlier approaches, such as those of Mitchell 
[Mitc76], Bloch [Bloc79], Galle [Gal181], Stead­
man [Stea83], and Rinsma [Rins88], were based 
on breaking down the task into two stages: topo­
logical layout and geometric (dimension) assign­
ment. More recently, researchers have focused on 
approaches that use generative rules with restric­
tive applicability predicates similar to those used 
in expert systems. Examples of these can be found 
in Oxman and Gero's PREDIKT [Oxma87] sys­
tem (described in section 3.3) for producing domes­
tic kitchen layouts, and Flemming's LOOS system 
[Flem86, Flem89] for creating floor plans that in­
corporate a wide range of design considerations. 
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• Network-Diagram Layout. No articulation task 
has received more attention than network-diagram 
(or graph) layout. [Eade89] lists more than 180 
references in an extensive annotated bibliography 
devoted to algorithms for this task. Almost all 
network-diagram-layout research has concentrated 
on the issue of readability, as judged in terms of 
aesthetic criteria such as the minimization of edge 
crossings. lJ Different algorithms have been pro­
posed to take advantage of different types of graph 
(tree-like, planar, directed, and undirected) and 
to generate layouts according to various graphi­
cal standards (e.g. , layouts that have straight-line, 
polyline , or orthogonal edges) . 

• Cartographic Layout. Contour drawing [Yoel84, 
Sabi8S, Dobk90], label placement [Yoe172, Hirs82, 
Ahn84, Zora86, Jone89, Roes89) , and line gener­
alization [McMa87p2 are three articulation tasks 
that arise in the design of maps and that have been 
automated fully with varying degrees of success. 

• Page Layout . Feiner describes a fully automated 
approach to page layout in [Fein88) . 

At this point, fully automated modeling is an at­
tractive option only in a limited number of situations, 
namely those where human collaboration is impossible 
(e .g, time critical applications) , where design variation 
is very limited, or where the articulation task involves 
tedious or complex combinatorial search. In most other 
situations, a human collaborator can play a useful and 
active role in the modeling process. Nevertheless, re­
search on fully automated modeling serves a useful pur­
pose outside its narrow domain of direct applicability by 
providing ideas and algorithms that can be incorporated 
into more cooperative modeling paradigms. 

11 For a different approach to network-diagram layout that con­
centrates on p ercept ual organization, see [Mark90bj. 

12Geographic features are rendered in less detail after a reduc­
tion in scale: this simplification process is called generalization . 

3.6 Cooperative Computer-Aided Design 

Cooperative computer-aided design 
(CCAD)13 [Koch90a, Koch90b, Koch90c] is a paradigm 
for combining the strengths of the human user and t.he 
computer by interspersing guiding design operat.ions by 
the system user with partial exploration of design alter­
natives by the computer. While the salient impression of 
a CCAD system is conveyed in Figure 1, the automatic­
ity in both design and articulation that are exhibited 
in a single design session may range widely. As a re­
sult , the proper coordinat.es of the CCAD paradigm in 
Figure 1 are problematic, and this makes CCAD some­
what distinct from the other paradigms reviewed in this 
paper. 

In the CCAD paradigm , the user expresses initial de­
sign decisions in the form of a partial design and a set 
of properties that the final design must have. T he user 
then initiates the generation by the system of alterna­
tive partial developments of the initial design su bject to a 
"language" (grammar) of valid designs. The results are 
then structured in a spatial fr amework through which 
the user moves ( "browses" ) to explore the altern at.ives . 
The user selects the most promising partial design, re­
fines it manually, and then requests furth er aut.omatic 
development . This process continues until a. satisfactory 
design is completed . CCAD also provides mechanisms 
for user control over the automated generation process. 
These mechanisms serve to specify const.rain t.s on de­
signs, restrict. the activation of design rules. and focus 
development on specific parts of designs. 

Thus, in the CC AD paradigm the degree of automa­
tion offered at any step in the design process ca.1t va ry 
from fully manual to fully automated: the tlser call ig­
nore design alt.ernatives produced by t.he system (re­
sulting in fully manual design) , can allow t.he syst.em 
to choose the best alternative (resulting in a higher de­
gree of automaticity) , or can choose from t.he syst.em­
generated designs (in which case the design task is es­
sentially shared). The latter case is the most interest.ing: 
the human collaborator is guiding the design by making 
critical design choices, and the syst.em is performing t.h e 
relatively low-level aspects of the design task. T he main 
characteristics of CCAD are: 

• the design task is shared between user and system 
(both the user and the system are active) to varying 
degrees 

• the syst.em generates one or more design a.\t.erna­
tives at various stages in the design process 

• the system provides a "browsing" capability t.o aid 
the user in choosing between syst.em-generat.ed de­
sign alternatives 

13While CCAD can be used to suppor t both the design and 
articulation tasks (the two tasks are essentially me rged) . its name 
reflects the fact that t his paradigm was developed to support the 
design task primarily. 
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We give examples of the above mechanisms of CCAD 
from FLATS (Figure 6) [Koch90a, Koch90b, Koch90c]­
a prototype CCAD system for the design of small archi­
tectural floor plans. In the figure , the nascent design-a 
floor plan with an entry, an external region and an in­
ternal region-is shown on the manual modeling system 
(the window is in the top left of the figure) . The two 
windows titled "Rewriting Rule Visualization Interface" 
and "Constraints on Derived Attributes" allow the user 
to control how far the system develops the nascent de­
sign. The former window graphically presents to the 
user the rules in the underlying staged (programmed) 
generative grammar and allows the user t.o restrict the 
automated generator to use only certain rules in the cur­
rent design cycle; in the example, the user has restricted 
the generator to use only the highlighted rules to subdi­
vide the external region labeled ext in the nascent design. 
The latter window lists constraints that the user speci­
fied: (1) one to five rooms, (2) at most. one bedroom , one 
kitchen , one dining room, and one living room, and (3) 
at most two bathrooms. The two windows towards the 
right, titled "World View" and "Current Data Surface," 
compose the Browsing System, which allows the user to 
graphically explore the design alternatives. The World 
View shows the entire data surface in miniaturized form , 
along with highlights showing the current data surface. 
Finally, the Current Data Surface shows the design al­
ternatives (numbering 85) that satisfy the user-specified 
criteria. The scroll bars can be used to examine different 
portions of the data su rface. The user can pick any of 
these alternatives, transfer it to the modeling system, 
and repeat the above process. 

Other examples of systems based on the CCAD 
paradigm include Friedell and Schulmann's Landscape 
Generator [Frie90], J akiela's "suggestion-making" inter­
faces [Jaki90], Todd's Mutator system [Hagg91], and the 
IVE design system [Koch91]. The Landscape Genera­
tor uses an underlying generative mechanism to model 
architectural landscapes subject to user-specified con­
straints and features that the final landscapes must in­
corporate. J akiela describes a suggestion-making me­
chanical CAD system that provides a cooperative ap­
proach for mechanical modeling: t.he system can "sug­
gest" improvements at every modeling step (or at the 
end of the modeling process). His system can be viewed 
as a restricted CCAD system, because the system cannot 
autonomously model an object, and because modeling 
proceeds in small steps. The Mutator system is a modi­
fied solid-modeling system in which forms are composed 
of geometric primitives (e .g., spheres, cubes, and cylin­
ders) that can be altered by shape-distorting operations 
(e.g., twisting, stretching, and uniting) . The system can 
generate variations on a given form by applying these 
operations randomly. The user then selects from among 
the randomly generated alternatives the form that is to 
be evolved further . Mutator has been used by artist 
William Latham to create several spectacular anima-

188 

tions. The CCAD component of IVE (Integrated Visu­
alization Environment) is used for the design scientific 
visualizations by the combination of primitive graphical 
"features ," in accordance with a set of design rules. The 
system can automatically present the user with novel vi­
sualizations, which t.he user can then refine t.o suit his 
or her requirements 

The CCAD paradigm is most useful in applications 
with a high degree of design variability that require t.he 
user to explore many design alternatives . 

4 Conclusions 

The foregoing survey of cooperative interaction 
paradigms for modeling graphical object.s shows that 
each has its own very different characteristics, strengths, 
and weaknesses . Typically a paradigm determines a 
style of interaction for both design and art.iculation, and 
the paradigms can be ordered with respect to automat.ic­
ity in these two dimensions. 

Our analysis suggests some new direc tions for future 
work, indicated by the unexplored regions of Figure l. 
Constraint-based modeling and improver-basecl model­
ing might be usefully extended to cover design. Fully au­
tomatic design , with manual articulation, might be use­
ful for some modeling tasks that require complete user 
control of the articulation process. Furthermore, the 
concepts and algorithms developed for fully automat.ed 
modeling might be used to expand the capabilities of all 
the other paradigms in the spirit of CCAD. 
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