
180

Interaction Paradigms for Human-Computer

Cooperation in Graphical-Object Modeling

Sandeep Kochhar, Joe Marks, and Mark Friedell

Harvard University

Abstract

Modeling is the creation of graphical objects. It is a
tedious task for users to perform, and too complex to be
amenable to full automation. The notion of cooperative
modeling, where a human and a computer system coop­
erate to perform the modeling task, therefore , has great
appeal. We provide a comparative description of human­
computer cooperative interaction paradigms for creating
graphical objects. This work serves three purposes: 1.)
to present a conceptual framework for organizing known
paradigms; 2.) to provide a basis for choosing among
the set of existing paradigms; and 3.) to expose oppor­
tunities for developing new interaction paradigms with
certain desirable combinations of characteristics.

Keywords: Graphical user interfaces, modeling , de-
sign automation , human-machine interaction , interac­
tion techniques , critics, constraint-based design, coop­
erative design, automated design of graphical displays .

1 Introduction

Modeling-the process of creating graphical objects­
demands the majority of the human effort invested in
most computer-graphics applications. In contrast to
rendering , the modeling activity is understood poorly
and, in general, supported inadequately. The imbalance
in the relative developments of modeling and render­
ing technologies reflects the historically disproportionate
emphasis on rendering research at the expense of mod­
eling . This lopsided research focus is changing, however,
as we begin to satisfy the challenge of photorealism and
as the topic of visualization emerges with its demand for
rapidly produced graphical depictions of data.

We define graphical objects broadly, encompassing, for

Contact: Sandeep Kochhar, Aiken Computat ion Laboratory,
Harvard University, Cambridge, Massachusetts 021 38 (telephone:
617-495-3998, electronic mail : kochhar@endor .harvard .edu.)

This research was supported by contracts and grants fro m the
Lockheed Corporatio n and U S West Advanced Technologies.

example, informational graphics (e.g., bar chart.s and
maps) , the graphical components of user int.erfaces (e.g.,
dialog boxes and windows), and the graphical objects
produced with geometric CAD systems (e.g., a rchit.ec­
tural floor plans and graphical depictions of physical sys­
tems) . We view the modeling process as a combinat.ion
of two different activities:

MODELING = DESIGN + ARTICULATION

Design is the more creative and inventive aspec t of mod­
eling. It is an exploratory process that produces a con­
ceptual arrangement of the logical elements of an object.
model, a construct that we refer to as an object concep­
tualizat ion. Articulation is the activity of providing a
precise graphical description of an object. model, given
its conceptualization. For example, when lIsing all ar­
chitectural CAD system an architect will be faced with
a design task when attempting to determine the hest
collection and organization of rooms in a building; ex­
pressing the precise geometry of that floor plan to the
computer is an articulation task . Landscape design iden­
tifies the locations and types of the topographic features,
trees, buildings, and other natural and man-made struc­
tures in the scene. The geometric and opt.ical charac­
teristics of these features are provided when (.he scene is
graphically articulated.

Except in a few narrow, well-understood domains,
completely automatic object modeling is no t. possible.
In many applications , however , it is possihle to hring
the power of the computer to bear on the modeling
task, with the guidance and cooperation of a. human
collaborator.!

An emerging set of interaction paradigms facilitating
human-computer cooperation in modeling has heen re­
ported in the recent literature of the computer-graphics,
interactive-computing, and artificial-intelligence com­
munities. This paper contributes a comparative descrip-

1 We use the term "user" and "co llaborator" interchangeably
throughout the paper to refer to the human performing th" Illod­
eling task.

Graphics Interface '91

tion and classification of these paradigms.2 For the prac­
ticing engineer, this provides a basis for choosing the
appropriate complement of these paradigms for new ap­
plications. For the researcher, this study provides a use­
ful framework for cooperative modeling and indicates
unexplored regions of the "organizational space" that
may contain significant opportunities for developing new
paradigms.

2 Paradigm Organization

181

To organize the various paradigms conceptually, we
consider the extents to which they automate design and
articulation (Figure 1). The degree of automaticity in
each dimension that the different paradigms offer varies
from completely manual to completely automated. This
is essentially related to the load distribution between the
user and the computer-towards the manual end of the
scale, the user is active and the system essentially passive
with respect to the modeling process; the opposite is
true towards the fully automated end. Also, in some of
the paradigms, the degree of automaticity can be varied
dynamically within a particular modeling task.

In addition, the paradigms may be distinguished by
other factors :

• nature of the application domain: the kinds of
graphical objects that are being modeled and their
relation to real-world entities and tasks

• design variability: the range of design varia­
tion that can be supported and managed by the
paradigm

• exploratory nature of the modeling process:
whether the goal is the creation of a single opti­
mal graphical object or the creation of a suite of
complementary graphical objects

• user expertise and goals: the degree of user exper­
tise and the user's purpose in creating the graphical
object

While our discussion of the individual paradigms con­
siders these factors, we do not use them as major clas­
sification characteristics because they do not cover in a
meaningful way the complete range of paradigms that
we present.

As Figure 1 shows, we classify existing interaction
paradigms for graphical-object modeling into six cate-

2 Some previous attempts to characterize cooperative human­
machine interaction have favored a particular paradigm over oth­
ers. For example, Fischer et. al. [Fisc90] describe the critic-based
approach as an exemplar for cooperative interaction. Instead, we
have tried to include and classify the full spectrum of interaction
paradigms : in our organizational space the c ritic-based paradigm
is only one of several different approaches to human-computer co­
operation in modeling.

gories, organized with respect to our principal organiza­
tional characteristics. 3 These six categories are:

1. Fully manual

2. Constraint-based

3. Critic-based

4. Improver-based

5. Fully automated

6. CCAD (Cooperative CAD)

We discuss below the salient nature of each of the
paradigms and their relative strengths and weaknesses.
We also present examples of systems based on the
paradigms.

3 Interaction Paradigms

3.1 Fully Manual Modeling

The interaction paradigm used III most widely avail­
able CAD systems is that of fully manual modeling .
These systems primarily support low-level geomet.ric
manipulation , with only a few systems offering higher­
level design operators. In all cases, the user is respon­
sible for all design decisions . This interaction paradigm
is thus characterized by the following properties:

• the user has complete control over the modelillg
process

• the system IS passive with regard to the modeling
process

MacDraw and MacPaint are two early examples of
fully manual tools for designing 2D graphical object.s. 4

GEOMOD [Myer82j , AutoCAD [Eyri90j and CADDS5
,

all three mechanical CAD systems, and SCHEMA
[Norm86J, a three-dimensional sketching system for ar­
chitects, are examples of fully manual tools for designing
3D objects . The AVS [Ups089j and apE [Dyer90j sys­
tems support the production of scientific visualizations.
Pagemaker6 and Framemaker7 are systems for page lay­
out in documents . A number of user-interface t.oolkits
provide support for the manual design of graphical ob­
jects for use in user interfaces [Myer89j .

3 Many of the paradigms can be extended to cover ot. her part.s
of the organizational space; however, in Figure 1 , we show them
as occupying th a t portion of the space that brings out the ir most
salient characteristics .

4 MacDraw and MacPaint are trademarks of Apple Computer
Corporation.

5 CADDS is a registered trademark of the Computervision di·
vision of Prime Computer.

6Pagemaker is a trademark of Aldus Corporatio n .
7 Frame make r is a trademark of Frame Technology

Corporation .

Graphics Interface '91

~
'u
--;
E
o -::J
CD
c:
01 .;;
Cl)

't:I

182

•
articulation automaticity

•• The automaticity in both design and articulation that are exhib ited in a single design session may range
widely, he nce the proper coordinates of the CCA D paradigm in th is figure are proble matic, as di scussed in S·;c­
tion 3 .6.

Figure 1: Conceptual Organization of the Interact. ion Paradigms

Although all these systems have powerful and effective
features, they are fully manual in the sense that t he
system plays only the role of facilitator for all design and
articulation tasks: these tasks are performed essentially
by the user.

While the fully manual interaction paradigm has the
advantage that the user has complete control over the
modeling process, the creation of graphical objects can
be a time-consuming and tedious process.

3.2 Constraint-based Modeling

The constraint-based modeling paradigm allows
somewhat more automaticity than does the fully man­
ual modeling paradigm_ In constraint- based modeling
systems, most of the modeling is done manually, except
that the system attempts to satisfy a set of constraints
as the graphical object evolves. (These constraints can

be specified by the user, or may be inherent. (.0 the do­
main .) T hus , as the user manipulates a nascent. object ,
the system may make minor adj ustments t.o ensure t. hat
const raints will remain satisfied. Alt.ernative l~·, t.he sys­
tem may restrict the user 's options at each step in t.he
modeling process, so that the graphical objects produced
do not violate constraints. 8 The main charact.eris t. ics of
this paradigm are:

• the system offers no modeling advice of any kind

• the human user makes all modeling decisions, but.
his or her options are constrained by the system

8The sys tems cited in the previous subsec tion might. a lso be
considered to constrai n the modeling process because they pro­
vide a limited reperto ire of graphical-subobject types, or because
t hey only allow cert ai n operatio ns to be perfo rmed . Our not.ion
of constraint-based m o deling is more rest.rictive. as wi ll b eco m e
clear in the subsequent discussion .

Graphics Interface '91

Although this interaction paradigm may yet prove
useful for design tasks, it has so far proven useful only
for articulation tasks, as we have indicated in Figure 1.

One of the earliest examples of the constrained­
modeling paradigm for articulation is Borning 's
ThingLab [Born81] . Borning's notion of a constraint
is very general: in ThingLab, a constraint consists of
a declarative relation over graphical subobjects com­
posed of lines and polygons; a procedure for measuring
how well the relation is satisfied; and a set of meth­
ods or procedures for satisfying t.he relation. The user
specifies constraints; the ThingLab system then articu­
lates a graphical object that satisfies these constraints.
Constraint satisfaction is achieved by applying the user­
supplied methods associated with each constraint: this
process is guided by a variety of techniques for constraint
propagation and constraint relaxation.

Another example of the constrained-modeling
paradigm is Nelson's J uno system [N els85]. For this
discussion the relevant aspect of J uno is its method of
using geometric constraints to specify locations of two­
dimensional points. The primitive graphical subobjects
allowed in Juno are lines, arcs , and areas , all of which
are defined in terms of points . J uno supports four types
of geometric constraint. The first type of constraint is
called congruence: two pairs of points, (x, y) and (u, v),
are constrained to be congruent by requiring the distance
between x and y to equal the distance between u and v.
The second constraint type concerns parallelism: two
pairs of points, (x,y) and (u ,v), are constrained t.o be
parallel by requiring the direction from x to y t.o parallel
the direction from u to v. The third and fourt.h t.ypes
of constraint require pairs of points to be aligned hori­
zontally and vertically, respectively. Juno articulates a
graphical object that satisfies a given set of constraints
using a Newton-Raphson method for constraint satisfac­
tion.

A more recent example of the const.rained-modeling
paradigm is Sistare's Converge system [Sist91]. Con­
verge differs from ThingLab and Juno in several ways:
the graphical subobjects and constraints in Converge are
three-dimensional , the constraints are presented to the
user as graphical icons that are superimposed on the ge­
ometry, and the constraints are satisfied more efficiently
through the use of partitioned constraint networks and
more aggressive numerical techniques. Figure 2 shows a
graphical object produced by Converge in which various
constraints are used to control the form of the geom­
etry. The legend explains the meaning of the various
constraint icons used in the figure .

The examples discussed above all concern the artic­
ulation task: the user is responsible for deciding which
graphical subobjects to include and for stating the re­
lations that should hold between them; the system is
responsible for instantiating a graphical object that com­
prises the user-specified subobjects and that satisfies the
user-specified relations or constraints. Many articula-

183

tion tasks are best thought of as constraint-satisfaction
tasks, so it is perhaps not surprising that the constraint­
based paradigm has been most successful in this area.
While it is certainly possible to use the concept. Df con­
strained modeling for design, we know of no system tha t.
takes this approach .

Constraint-based modeling systems offer the a.d van­
tage that the final graphical objects are guarant.eed to
be "valid" in some sense. Sometimes, however, the in­
teractions between subobjects that are subject t.o con­
straints can be difficult for the user to ant.icipa t.e full y,
and the modeling task can still be rather tediou~ .

3.3 Critic-based Modeling

Next along the continuum of increasing aut.omatic­
ity is the paradigm of modeling using critics. C ritics
are user-invoked agents that respond to user- genera ted
graphical objects by providing cl·iticisms. The range of
criticisms offered can be broad, from notifica.tion of lo\\,­
level geometric constraint violat.ions to high-level cr i­
tiques of object conceptualizations. T he main chara.c­
teristics of this paradigm are:

• the user is still required to perform the entire llI od­
eling task manually

• critics identify flaws in design and articulation, bu I.
remedies must. be applied by the human collabora­
tor

Thus, critics do not autonomously develop graphica.l
objects, but detect subopt.imal aspect.s of t.he emerging
objects being created by the human user. They provide
feedback to the user and enable him or her to develop a
better object. Lemke [Lemk90a] argues for the necessit.y
of having critics in any cooperative problem-solving sys­
tem. A detailed discussion and survey of the crit.ic-based
approach is provided by Fischer et. al. [Fisc90).

An example of a design system based on crit.iquin g is
CRACK [Fisc88 , Fisc89]. CRACK 's knowledge-based
critiquing component encodes design principles about.
assembling kitchen appliances int.o functional kit.chen
layout.s. These rules are based on building codes, safe t.y
standards and functional preferences. The user is ex­
pected to resolve criticisms based on building codes
and safety standards , except in exceptional cases: t.hose
based on functional preferences can be viewed as op­
tional suggestions. CRACK can also provide default. ex­
planations (consisting of "canned" text.) for it.s crit.icisms
if the user so requests.

As another example, Oxman and Gero [Oxma87]
present PREDIKT as an expert system that. can be used
for both "design diagnosis" (critiquing) and "design sy n­
thesis" (automatic articulation) . PRE DIKT carries out.
both these tasks in the preliminary stages of the design
of domestic kitchens. In the "diagnosis" mode, the sys­
tem criticizes (e.g., "proportions are in adeq uate") and

Graphics Interface '91

184

o
~

+

point on point

point on line

point on plane
line on line

right angle,
line perpendicular to plane

length equals length

midpoint

Figure 2: A Graphical Object Produced by the Converge System

evaluates designs (e.g., "light is sufficient"), based on en­
coded knowledge relating to requirements for kitchens .
The comments offered by the system as it evaluates a
design can be viewed as approval of the steps taken so
far by the human designer. An interesting feature of
PREDIKT is that the same knowledge-base is used in
the critiquing and automatic articulation steps.

Other examples of critic-based systems that help with
articulation tasks include mechanical and electrical CAD
systems that can perform structural-integrity tests , in­
terference checks, and layout-feasibility tests .

The critics described so far have to be explicitly in­
voked by the user. It is thus possible that critics might
be invoked too late in the modeling process, after a ma­
jor incorrect decision had already been made. An alter­
native is to have active critics [Fisc90] (sometimes called
daemons). Active critics "watch over" the user 's actions
and warn the user asynchronously (that is, without wait­
ing for user invocation) when critical information needs
to be communicated or when flaws are detected .

FRAMER [Lemk90a, Lemk90b , Fisc90] is an example
of an active-critic-based system for designing user inter­
faces. FRAMER contains a knowledge base of design
rules for program frameworks that evaluate the com­
pleteness and syntactic correctness of the user interface
being designed. The active critics used in FRAMER are
partitioned into mandatory and opt.ional ones, similar
to the critics in CRACK. Messages from these critics
are continuously presented to the user in the form of a
checklist that the user cannot permanently ignore. Fig­
ure 3 shows an example from FRAMER.9 The checklist
produced by the critics is shown in the window towards
the center, titled "Things to take care of."

Critics are obviously useful for detecting and point­
ing out suboptimal aspects in an emerging graphical ob-

9T his figure is reproduced from [Fisc90) with permissio n .

ject. The major challenge is to be able to capture design
knowledge , both for design and articulation , in the form
of predicates that can be tested. The role of a critic can
be enhanced if the system is also able to offer rat.ionales
for its criticisms [Fisc89, Fisc90].

3.4 Improver-based Modeling

An improver is a highly automatic agent. that modifies
("perturbs") a completed graphical object produced by
t.he user in order to improve it" As indicat.ed in Figure 1,
however, the improver-based paradigm has been applied
only to articulation tasks. The essential difference be­
tween the improver-based paradigm and the critic-based
paradigm is that the latter need only identify shortcom­
ings (and maybe offer abstract suggestions) , whereas the
former must also attempt to rectify them . The main
characteristics of improvers are:

• only a completed graphical object can be improved

• flaws in the object are identified and remedied au­
tomatically

• the human collaborator may not be the originat.or
of all aspects of an improved graphical object

The essence of the improver-based paradigm is illus­
t.rated in Figures 4 and 5.10 The graphical objec t.- a
network diagram- in Figure 4 is obviously conceptua.lly
complete, but the artic ulation of the conceptualiza.t.ioll
is lacking. Figure 5 shows the result of improving t he
articulation, a process Pavlidis and Va.n Wyk call "beau­
tification ."

The improver-based algorithm in [PavI85] has two
components. The first component infers t.he relat.ions

10These figures are reproduced from [Pav185) wi t. h permission .

Graphics Interface '91

I{] C In1t.hl pr'o,"~ ',. ~k)

o ("011'.... ,,-)

o C i nVOk i ng th i . Dt"oe".'")

o (COl"l~"'d loop 'unct i on)

o (COf'W\ef\d definina ~c,..o)

o (h_. or I r\OUt)

o~
o C C_."d Ubi ••)

o C Co & ... , ... ",,)

.. ·f'· "' ••• " "

...... ,,-......... DA'.

'. 11e-,." ",MM I l

185

",, ___ t .t ..-.

""',. the p."" •••• a1,..d tn y our- ."..or'" ',. WCW"'k, in the YOf"'k .,. •• •
tf'\e 'oll~1"'1 "OU •• CDlW\end •.

P.lette
,,~ • • lAtt.,. O~'.ti("'I

Choo •• ,"-'

Wo", A,...
Ifota. Button

Left

PHddl.

o", .tl'o"
"ovt P-"'C .

R •• 1 •• penc.
Left

" l dd l .

c;et Da 0' t hi. type .
n..ertbc th i s t.ype .

RI"ht
6~H.-~.r.

S~lrt-"lcld l .

"nu 0' .11 po •• 1bl ... ,..atiena .
Edit p.ene ootton • .
Del ... _ .

·Add • ...".,_ .

el'\ove tne tit ,. INfte: to t ... too or the ,,. (,-Ia,") (.. ".,n) (~.)

.R • ...ove t he ove'f"'l. o(DATA end TIlL[.
(R./N i ,«!)

.Fi 1 1 t.he ~ty apact ins1* the pt"Q9r'"
r,. ~k . (R_qvi,",)

D
I r ··
Ft.' , ...
f····"··· ... · .. •• ..

F igure 3: Example of Active Critics m FRAMER (from [Fisc90])

I
)

D

F igure 4 : Network Diagram Before Improvement (from
[PavI85])

Figu re 5: Network Diagram After Improvement (from
[PavI85])

Graphics Interface '91

186

or constraints that should hold between graphical sub­
objects (composed of line segments and polygons) in a
given image. In other words, the system first tries to
infer the relevant aspects of an object conceptualiza­
tion from a completed graphical object. (This inference
step is obviously necessary if only an image is available,
but for some applications a representation of the ob­
ject conceptualization might be available, rendering the
inference step moot.) The constraints considered are
length and slope congruence between line segments, line­
segment collinearity, horizontal and vertical alignment
of points, and various "negative" constraints to ensure
that subobjects do not overlap or otherwise interact in
a deleterious way. Given a set of constraints, the sys­
tem modifies the arrangement of graphical subobjects
to satisfy the constraints. In this respect, the beautifier
system of Pavlidis and Van Wyk is reminiscent of the
constraint-based systems considered earlier.

Another example of the improver-based paradigm is
Weitzman's DESIGNER system [Weit86J, an interactive
tool for creating graphical interfaces to instructional sys­
tems. DESIGNER has three component processes: an
analysis process that infers aspects of an object concep­
tualization from a graphical object ; a critiquing process
that identifies elements of the object conceptualization
that have not been articulated satisfactorily; and a syn­
thesis process that suggests methods for modifying the
articulation of the conceptualization . Some unique as­
pects of DESIGNER are the primitive graphical subob­
jects it uses (icons with properties of color, size, type,
and shape), the subobject relations it recognizes and can
attempt to modify (perceptual organization by similar­
ity, proximity, and repetition), and its ability to accom­
modate different graphical styles .

The suitability of the improver-based paradigm for
better articulation is fairly obvious. The need to infer
indirectly aspects of an object conceptualization from
a completed graphical object is a problem that future
improver-based systems may be able to avoid . The ap­
plication of the improver-based paradigm to the design
task is likely to prove quite hard, because it would ap­
pear to be necessary to know a great deal about the ap­
plication domain , and the purpose of a graphical object
(user objectives) in order to improve its design .

3.5 Fully Automated Modeling

At the far end of the automaticity spectrum lies fully
automated modeling . In this paradigm, the system is
completely responsible for design and/or articulation.
The main characteristics of this approach are:

• the system is completely responsible for one or both
aspects of the modeling task

• the user is passive with respect to one or both as­
pects of the modeling task

Full modeling automation has been achieved in several
domains , but only for a small number of well-defined
applications:

• Iconic Displays . The VIEW system [Frie82, Frie84]
generates icon-based displays that depict answers
to database queries. The displays are tailored to
the user's task, identity, and nature of the query.

• Chart Graphics. Mackinlay 's APT system
[Mack86) automates the design and articulation of
chart graphics that communicate arbitrary rela­
tional information. Roth and Mattis [Roth90] have
extended Mackinlay 's approach to allow for greater
design variation by enriching the characterization
of the input data; their system is part of a multi­
media explanation generator for a financial-analysis
application [Roth89].

• Three-Dimensional fllustrations . The APEX
[Fein85) and IBIS [Seli89] systems produce illustra­
tions that depict objects and actions in the physi­
cal world . The illustrations satisfy communicative
goals generated automatically by a multimedia ex­
planation generator [Fein90) .

• User-Interface Displays . Several systems have been
built that are capable of generating automatically
the graphical objects needed for user-interfa.ce dis­
plays [Aren88, Kim90, Wiec90).

• Network Diagrams. The ANDD system [Mark90a,
Mark90b) designs and articulates network diagrams
to communicate information represented in arbi­
trary attributed graphs. This system will provide
part of a multimedia explanation capability for a
collaborative-planning system [Gros90).

These systems share some common characteristics:
they all communicate very specific kinds of information
represented in specialized formats ; their prima.ry design
task is to map symbolic information onto an expres­
sive and effective graphical depiction; and they target
applications where human collaboration is unnecessary
(because of limited design variation) or impossible (be­
cause of the application context). These systems also
differ significantly in many respects: the graphical con­
ventions and styles that govern the different kinds of
display vary greatly (e.g., the issue of 3D viewing pa­
rameters only arises in the APEX and IBIS syst.ems ,
and layout-related perceptual organization is of primary
concern to only the ANDD system) , causing grea.t vari­
ation in the basic algorithmic paradigms Ilsed by the
different systems.

The systems mentioned above automate both design
and articulation tasks completely. The fully automated
approach has also been applied to just articulation, es­
pecially to those articulation tasks involving complex
or tediolls layout problems that require combin a.torial
search:

Graphics Interface '91

• Floor-Plan Layout. Several researchers in archi­
tectural CAD have proposed schemes for automat­
ing the articulation of conceptualizations of floor
plans. Earlier approaches, such as those of Mitchell
[Mitc76], Bloch [Bloc79], Galle [Gal181], Stead­
man [Stea83], and Rinsma [Rins88], were based
on breaking down the task into two stages: topo­
logical layout and geometric (dimension) assign­
ment. More recently, researchers have focused on
approaches that use generative rules with restric­
tive applicability predicates similar to those used
in expert systems. Examples of these can be found
in Oxman and Gero's PREDIKT [Oxma87] sys­
tem (described in section 3.3) for producing domes­
tic kitchen layouts, and Flemming's LOOS system
[Flem86, Flem89] for creating floor plans that in­
corporate a wide range of design considerations.

187

• Network-Diagram Layout. No articulation task
has received more attention than network-diagram
(or graph) layout. [Eade89] lists more than 180
references in an extensive annotated bibliography
devoted to algorithms for this task. Almost all
network-diagram-layout research has concentrated
on the issue of readability, as judged in terms of
aesthetic criteria such as the minimization of edge
crossings. lJ Different algorithms have been pro­
posed to take advantage of different types of graph
(tree-like, planar, directed, and undirected) and
to generate layouts according to various graphi­
cal standards (e.g. , layouts that have straight-line,
polyline , or orthogonal edges) .

• Cartographic Layout. Contour drawing [Yoel84,
Sabi8S, Dobk90], label placement [Yoe172, Hirs82,
Ahn84, Zora86, Jone89, Roes89) , and line gener­
alization [McMa87p2 are three articulation tasks
that arise in the design of maps and that have been
automated fully with varying degrees of success.

• Page Layout . Feiner describes a fully automated
approach to page layout in [Fein88) .

At this point, fully automated modeling is an at­
tractive option only in a limited number of situations,
namely those where human collaboration is impossible
(e .g, time critical applications) , where design variation
is very limited, or where the articulation task involves
tedious or complex combinatorial search. In most other
situations, a human collaborator can play a useful and
active role in the modeling process. Nevertheless, re­
search on fully automated modeling serves a useful pur­
pose outside its narrow domain of direct applicability by
providing ideas and algorithms that can be incorporated
into more cooperative modeling paradigms.

11 For a different approach to network-diagram layout that con­
centrates on p ercept ual organization, see [Mark90bj.

12Geographic features are rendered in less detail after a reduc­
tion in scale: this simplification process is called generalization .

3.6 Cooperative Computer-Aided Design

Cooperative computer-aided design
(CCAD)13 [Koch90a, Koch90b, Koch90c] is a paradigm
for combining the strengths of the human user and t.he
computer by interspersing guiding design operat.ions by
the system user with partial exploration of design alter­
natives by the computer. While the salient impression of
a CCAD system is conveyed in Figure 1, the automatic­
ity in both design and articulation that are exhibited
in a single design session may range widely. As a re­
sult , the proper coordinat.es of the CCAD paradigm in
Figure 1 are problematic, and this makes CCAD some­
what distinct from the other paradigms reviewed in this
paper.

In the CCAD paradigm , the user expresses initial de­
sign decisions in the form of a partial design and a set
of properties that the final design must have. T he user
then initiates the generation by the system of alterna­
tive partial developments of the initial design su bject to a
"language" (grammar) of valid designs. The results are
then structured in a spatial fr amework through which
the user moves ("browses") to explore the altern at.ives .
The user selects the most promising partial design, re­
fines it manually, and then requests furth er aut.omatic
development . This process continues until a. satisfactory
design is completed . CCAD also provides mechanisms
for user control over the automated generation process.
These mechanisms serve to specify const.rain t.s on de­
signs, restrict. the activation of design rules. and focus
development on specific parts of designs.

Thus, in the CC AD paradigm the degree of automa­
tion offered at any step in the design process ca.1t va ry
from fully manual to fully automated: the tlser call ig­
nore design alt.ernatives produced by t.he system (re­
sulting in fully manual design) , can allow t.he syst.em
to choose the best alternative (resulting in a higher de­
gree of automaticity) , or can choose from t.he syst.em­
generated designs (in which case the design task is es­
sentially shared). The latter case is the most interest.ing:
the human collaborator is guiding the design by making
critical design choices, and the syst.em is performing t.h e
relatively low-level aspects of the design task. T he main
characteristics of CCAD are:

• the design task is shared between user and system
(both the user and the system are active) to varying
degrees

• the syst.em generates one or more design a.\t.erna­
tives at various stages in the design process

• the system provides a "browsing" capability t.o aid
the user in choosing between syst.em-generat.ed de­
sign alternatives

13While CCAD can be used to suppor t both the design and
articulation tasks (the two tasks are essentially me rged) . its name
reflects the fact that t his paradigm was developed to support the
design task primarily.

Graphics Interface '91

We give examples of the above mechanisms of CCAD
from FLATS (Figure 6) [Koch90a, Koch90b, Koch90c]­
a prototype CCAD system for the design of small archi­
tectural floor plans. In the figure , the nascent design-a
floor plan with an entry, an external region and an in­
ternal region-is shown on the manual modeling system
(the window is in the top left of the figure) . The two
windows titled "Rewriting Rule Visualization Interface"
and "Constraints on Derived Attributes" allow the user
to control how far the system develops the nascent de­
sign. The former window graphically presents to the
user the rules in the underlying staged (programmed)
generative grammar and allows the user t.o restrict the
automated generator to use only certain rules in the cur­
rent design cycle; in the example, the user has restricted
the generator to use only the highlighted rules to subdi­
vide the external region labeled ext in the nascent design.
The latter window lists constraints that the user speci­
fied: (1) one to five rooms, (2) at most. one bedroom , one
kitchen , one dining room, and one living room, and (3)
at most two bathrooms. The two windows towards the
right, titled "World View" and "Current Data Surface,"
compose the Browsing System, which allows the user to
graphically explore the design alternatives. The World
View shows the entire data surface in miniaturized form ,
along with highlights showing the current data surface.
Finally, the Current Data Surface shows the design al­
ternatives (numbering 85) that satisfy the user-specified
criteria. The scroll bars can be used to examine different
portions of the data su rface. The user can pick any of
these alternatives, transfer it to the modeling system,
and repeat the above process.

Other examples of systems based on the CCAD
paradigm include Friedell and Schulmann's Landscape
Generator [Frie90], J akiela's "suggestion-making" inter­
faces [Jaki90], Todd's Mutator system [Hagg91], and the
IVE design system [Koch91]. The Landscape Genera­
tor uses an underlying generative mechanism to model
architectural landscapes subject to user-specified con­
straints and features that the final landscapes must in­
corporate. J akiela describes a suggestion-making me­
chanical CAD system that provides a cooperative ap­
proach for mechanical modeling: t.he system can "sug­
gest" improvements at every modeling step (or at the
end of the modeling process). His system can be viewed
as a restricted CCAD system, because the system cannot
autonomously model an object, and because modeling
proceeds in small steps. The Mutator system is a modi­
fied solid-modeling system in which forms are composed
of geometric primitives (e .g., spheres, cubes, and cylin­
ders) that can be altered by shape-distorting operations
(e.g., twisting, stretching, and uniting) . The system can
generate variations on a given form by applying these
operations randomly. The user then selects from among
the randomly generated alternatives the form that is to
be evolved further . Mutator has been used by artist
William Latham to create several spectacular anima-

188

tions. The CCAD component of IVE (Integrated Visu­
alization Environment) is used for the design scientific
visualizations by the combination of primitive graphical
"features ," in accordance with a set of design rules. The
system can automatically present the user with novel vi­
sualizations, which t.he user can then refine t.o suit his
or her requirements

The CCAD paradigm is most useful in applications
with a high degree of design variability that require t.he
user to explore many design alternatives .

4 Conclusions

The foregoing survey of cooperative interaction
paradigms for modeling graphical object.s shows that
each has its own very different characteristics, strengths,
and weaknesses . Typically a paradigm determines a
style of interaction for both design and art.iculation, and
the paradigms can be ordered with respect to automat.ic­
ity in these two dimensions.

Our analysis suggests some new direc tions for future
work, indicated by the unexplored regions of Figure l.
Constraint-based modeling and improver-basecl model­
ing might be usefully extended to cover design. Fully au­
tomatic design , with manual articulation, might be use­
ful for some modeling tasks that require complete user
control of the articulation process. Furthermore, the
concepts and algorithms developed for fully automat.ed
modeling might be used to expand the capabilities of all
the other paradigms in the spirit of CCAD.

Acknowledgments

We would like to thank the members of the Computer
Graphics Group at Harvard for many useful and int.erest­
ing discussions. We are also grat.eful to t.he a.nonymous
reviewers for their useful suggestions, part.iclllarly lVit.h
regard to the organization of Figure 1.

[Ahn84]

[Aren88]

[Bloc79]

[Born81]

References

Ahn, J . and Freeman, H . 1984. "A program
for automatic name placement," Cfl,"/ogml'itica,
21(2&3):101-109, originally published in P" o­
ceedings of the Sixth Int ernational Symposium on
Automated Cartogmphy (A uto- Carlo Si.!'), 0 (.­
tawa/Hull, October 1983.

Arens, Y., Miller, L., Shapiro, S., and Sond­
heimer, N. 1988. "Automatic const.ruct.ion of
user-interface displays," Proceeding., of th, SiJ.:th
Na.tional Conf erence on Artificial !n/.tlli!l f1l.Cf
(AAA! '88), pages 808- 813.

Block, C. 1979. "Catalogue of small rect.angular
plans ," Environment and Planning B, 6 :1.55- 190.

Borning, A. 1981. "The programming lan­
guage aspects of ThingLab , a const.raint-orient.ed
simulation laboratory," A CM Tmnsact ions on
Progmmming Languages a.nd Syst ems, 3(4) :3.53-
387, October.

Graphics Interface '91

>'<j
o'Q.
t:: .,

~
en
0)

""I ..
:..

"'0 >
="

::> _. I:%j
f")
Cl}

I<
I»

~ S

= '" - (D
~ 0
""I
~ >-rj

f") t""'

~ ~ .. Ul
\e
~ S·

c::
00
C1>

FLATS Demonstration

0 11 3 .. ~

1r.-11 ~ oxt •

1 1 v~

11 1->:

11 ..5

label-e><! I Seloet All I I cl ... All I
• Etl->lJ.dL~ eatl->!iT_lIP eJltl->betLup

I ~t

Im!!I!!ll!II --

g····· · H· · · · · ·

.. i:ll;!!llllllll!l:l'!'!!! tllll lll! :!!!ll!I I! !!:;::!:!!! ill!!

D
·· .. · .. ··· · ~········ .. _ .. ····· .. ···· _· .. ···· .. ··
ill!!!:: !i!i!!!! :! !!!!!!!!!! !!!! :!!!!!!!!!! llii:::;jjl!!II

(.in) [filooo-- __ n --] (...) ~[1S~OOO~=-==~

(oin) LIDO (...) W~200====~
(oin) Ll (...) Q~~====~
(oin) LD (...) l~'====~
(om) LD (...) l~l====~
(oin) LD (...) W~l====~
(am) LD (...) L~l====~
(~m) LD (...) L2

'-l@j-~-Eaj-~--fHj-@j- EiIi -ffn - lliD--ffi!i

:[ff] ~ fll LED tIaJ tBJ ff3J ~ E1J 0]
:~~ ~~~~E3J~~~ :BJ ~ ~ E3J F~ -~ -- - I .. ~ ~
:E!5J BJ ~ EEl] Pi ~i ~-=- ~ §] §]
i EO BJ E§] §] R =i=r FF:~ ~ =l tt3J raJ
i LmJ ffjJ §3] LED LED fBJ La] Ba] tt3J fHJ
ifHJ taJ ~ t=IJ t5J @J ~ BJ ~ ~

......
00
\0

[Dobk90] Dobkin, D . P ., Levy, S. V. F ., Thurston, W . P.,
and Wilks, A . R. 1990. "Contour tracing by
piece wise linear approximation," ACM Tran~a c­

tions on Graphics, 9(4) :389-423, October.

[Dyer90] Dyer, D . S. 1990. "A dataflow toolkit for visual­
ization," IEEE Computer Graphics and Applica­
tions, 10(4) :60-69.

[Eade89] Eades, P . and Tamassia, R. 1989. Algorithms
for drawing graphs: An annotated bibliogra­
phy. Brown University Dept. of Computer Sci­
ence Technical Report No . CS-89-09. October,
Revised Version .

[Eyri90] Eyrich, G. and Wallach, P. 1990. Drafting witk
A uto CAD. Mithcell Publishing Inc., Watsonville,
CA.

[Fein85] Feiner, S. 1985. "APEX: An experiment
in the automated creation of pictorial explana­
tions," IEEE Computer Graphics and Applica­
tions, November.

[Fein88] Feiner, S . 1988. "A grid-based approach to au­
tomating display layout ," Proceedings of Grapk­
ics Interface '88, pages 192-197, June 6-10, Ed­
monton, Canada.

[Fein90] Feiner, S . and McKeown, I<. 1990. "Coordinat­
ing text and graphics in explanation generation,"
Proceedings of AAAI '90, pages 442-449, August,
Boston, Massachusetts.

[Fisc88] Fischer, G. and Morch, A. 1988. "CRACK: A cri­
tiquing approach to cooperati ve kitchen d esign ,"
Proceedings of tke A CM Int ernationa l Confer­
ence on Intelligent Tutor ing Systems, pages 176-
185, May.

[Fisc89] Fischer, G., McCall, R., and Morch, A . 1989.
"Design environments for constructive and a rgu­
mentative design," P roceedings of CHI '89, pages
269-275, May.

[Fisc90] Fischer, G ., Lemke, A., Mastaglio, T ., and
Morch, A . 1990. "Using critics to empower
users," Proceedings of C HI '90, pages 337-347,
April.

[Flem86] Flemming, U . 1986. "On the representation and
generation of loosely packed arrangements of rect­
angles," Environment and Planning B : Planning
and D esign, 13:189-205 .

[Flem89] Flemming, U. , Coyne, R. F., Glavin, T ., Hsi , H .,
and Rychener , M. D. 1989. "A generative expert
system for the design of building layouts ," Fi­
nal report, Engineering Design Research Center ,
Carnegie-Mellon University.

[Frie82] Friedell, M., Barnett, J ., and Kramlich, D. 1982 .
"Context-sensitive graphic presentation of infor­
mation," Computer Grapkics, 16(3):181- 188.

[Frie84] Friedell, M. 1984 . "Automatic synthesis of
graphical object descriptions," Computer Grapk­
ics, 18(3) :53-62.

[Frie90] Friedell, M. and Schulmann, J . 1990. "Con­
strained, grammar-directed generation of land­
scapes," Proceedings of Graphics Int el ja ce '90,
pages 244- 251, May 14-18, Halifax , Canada.

190

[Ga1l81] Galle , P . 1981. "An algorithm for t.he exhaustive
generation of building floor plans," Comnwn;ca.­
t ions of the A CM, 24:813-825.

[Gros90] Grosz, B . and Sidner, C. 1990. "P lans for dis­
course ," in P. Coh en, J. Morgan, and M. Pol­
lack (Eds .) , Int entions in Communication. Cam­
bridge: Bradford Books, MIT Press.

[Hagg91] Haggerty, M. 1991. "About the cover: Evo­
lution by aesthetics," IEEE Compul.e)· Gmphics
and Applications, 11(2) :5-9.

[Hirs82] Hirsch, S. A . 1982 . "An algorithm for aut.omatic
name placem ent around point data." Th (, il Int'/"­

ican Cartographer, 9(1) :5-17.

[Jaki90] Jakiela, M. 1990. "Augm enting m echanical de­
sign with suggestion-making interfaces ," W O)'kin g
Notes, AAAI Spring Sympos ium S eries , pages
60-64, March .

[Jone89] Jones , C. 1989. "Cartographic name placement
with prolog," IEEE Co mputer Gm),it;c .• and 041"
plications, 9(5) :36-47, September.

[Kim90] Kim, W . C. and Foley, J. D . 1990. "DO N: User
interface presentation design assistant ." 1990
SIGGRAPH Symposium on Use)' I nterf ace Soft ·
ware and Techno logy (UIST '90), pages 10- 20 ,
Oct.ober 3-5, Snowbird , Utah.

[Koch90a] Kochhar, S. 1990. Coo perative Computo'-Aid ed
Design. PhD dissertation , Harvard University.

[Koch90b] Kochhar, S. 1990. "A protot.ype syst.em for
design automation via the browsing paradigm."
P roceedings of Gmphics Interface ·[lO. pages 1.56-
166, May 14-18, Halifax, Canada.

[](och90c]](ochhar , S. and Friedell , M . 1990. "User con­
trol in cooperative computer-aided design," 1990
SIGGRAPH Symposium on USfl' Int(:!:fa ce Soft­
ware and T echn ology (UIST '90) , October :3-5 ,
Snowbird, Utah .

[Koch91] Kochhar, S ., Friedell, M., and LaPolla, I'l'l. 1991.
"Cooperative, computer-aided design of scientific
visualizations," submitted.

[Lemk90a] Lemke, A. 1990. "Cooperative problem solv­
ing systems must have critics," W o),king No/.e.s,
AAAI Spl'ing Symposium Se)'ies, pages 73- 7.5 ,
March .

[Lemk90b] Lemke, A. and Fischer, G. 1990. "A coopera­
tive problem solving system for user interface de­
sign," P roceedings of the Eighth Na.tional Confer­
ence on A rtifi cial Intelligence (A A Al '90), pages
479-484 , August .

[Mack86] Mackinlay, J. 1986. "Automating the design
of graphical presentations of relational infonna­
tion," ACM Transa ct ions on Graphi cs , 5(2) .

[Mark90a] Marks, J. 1990. "A syntax and semantics for net.­
work diagrams," Proceedings of the IEEE 1 [190
W orkshop on Visual Languag es, pages 104-·110,
October, Skokie, Illinois.

[Mark90b] Marks, J. and Reiter, E. 1990. "Avoiding un­
wanted conversational implicatures in t.ext and
graphics," Proceedings of AAA! "'0, August,
Boston, Massachusetts .

[McMa87] McMaster, R. B. 1987. "Automat.ed line genera l­
ization ," Cartographica, 24(2):74-111, Summer.

Graphics Interface '91

[Mitc76) Mitchell, W ., Steadman, J., and Liggett, R. 1976.
"Synthesis and optimization of small rectangular
floor plans," Environment and Planning B : Plan­
ning and Design, 3(1) :37-70.

[Myer82) Myers, W. 1982. "An industrial perspective on
solid modeling," IEEE Computer Graphics and
Applications, 2(2):86-97.

[Myer89) Myers, B . 1989. "User-interface tools: Introduc­
tion and survey," IEEE Software , pages 15-24,
J:muary.

[Nels85) Nelson, G . 1985. "Juno, a constraint­
based graphics system," Computer Graphics ,
19(3):235-243.

[Norm86) Norman, M. and Dillon, K. 1986. Draft
SCHEMA user's manual. T.R. no. LCGSA-86-
x (draft) , Graduate School of Design, Harvard
University.

191

[Oxma87) Oxman, R. and Gero, J. S. 1987. "Using an ex­
pert system for design diagnosis and design syn­
thesis," Expert Syst ems, 4(1) :4-15 .

[Pavl85) Pavlidis, T . and Van Wyk , C. 1985. "An auto­
matic beautifier for drawings and illustrations,"
Computer Graphics (Proceedings of SIGGRAPH
'85),19(3) , July.

[Rins88) Rinsma, 1. 1988. "Rectangular and orthogonal
floorplans with required room areas and tree adja­
cency," Environment and Planning B : Planning
and Design, 15 :111 - 118.

[Roes89) van Roessel, J . W . 1989. "An algorithmforlocat­
ing candidate labeling boxes within a polygon,"
The American Cartographer, 16(3) :201-209.

[Roth89) Roth , S., Mattis, J ., and Mesnard, X. 1989.
"Graphics and natural language as components
of automatic explanation," in J . Sullivan , and S .
Tyler (Eds.), Architectures f or Intellig ent Inter­
faces : Elements and Prototypes, Reading, MA:
Addison-Wesley.

[Roth90) Roth, S . and Mattis, J. 1990. "Data charac­
terization for intelligent graphics presentation,"
Proceedings of CHI '90, pages 193-200, April.

[Sabi85) Sabin, M . A. 1985. "Contouring - The s tate
of the art," in R.A .Earnshaw (Ed.) , Fundam en ­
tal Algorithms f or Comput er Graphics , pages 99-
108, New York: Springer-Verlag.

[Seli89) Seligmann, D. and Feiner, S. 1989 . "Specify­
ing composite illustrations with communicative
goals," ACM SIGGRAPH Symposium on User
Interfac e Software and Technology (UIST '89) ,
pages 1-9, November 13-15 , Willamsburg , VA.

[Sist91) Sistare, S . 1991. "Graphical interact ion tech­
niques in constraint-based geomet.ric modeling,"
Proceedings of Graphics I n t el jaCf '9 1, June 3-7 ,
Calgary, Canada.

[Stea83) Steadman, J . 1983. Archit ect ll.'ral M or))ho logy.
Pion, London .

[Ups089) Upson, C., Faulhaber, T ., Kamins, D. , Laidlaw ,
D., Schlegel , D., Vroom, J ., Gurwitz , R. , and van
Dam, A. 1989. "The application visualization
system: A computational environment for sci­
entific visualization," IEEE Compute '" Gm),Ai r s
and Applications, 9(4) :30- 42.

[Weit86) Weitzman, L . 1986. Designer: A knowledge­
based graphic design assistant .. ICS R ep ort. 8609 ,
University of California, San Diego. July.

[Wiec90) Wiecha, C ., Bennett , W. , Boies , S., Gould , .J .,
and Greene, S. 1990. "ITS: A tool for rapidly de­
veloping interactive applications," A CM T1'llns­
actions on Infol'mation Systems, 8(3) :204- 236,
July.

[Yoe172) Yoeli, P. 1972 . "The logic of automa t. ed map
lettering," Th e Ca.,·/.ographic J Ol1'1'nal, 9(2) :99-
108, December.

[Yoel84) Yoeli , P . 1984. "Cartographic contouring with
computer and plotter," Th e Amel'iclI.n CII.1'/.ogm.­

he7', 11(2) :139-155 .

[Zora86) Zoraster, S . 1986. "Integer programming ap­
plied to the map label placement problem," (.' /1.,' ­

t ographica, 23(3) :16-27.

Graphics Interface '91

