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Abstract 

Significant improvements in the performance of many 
window systems are possible if tasks are allowed to write 
directly to the di splay instead of having to synchronize with a 
server. Sllch operation depends on the ability of tasks to perform 
atomic transactions with the graphics subsystem, a capability 
that depends on the provision of suitable hardware in the interface 
to the graphics subsystem. This paper describes the design and 
construct ion of an interface that makes atomic transactions 
possible for multiple tasks by extending the sender id mechanism 
into the address space of the host. New methods of strllcturing 
multitasking graphics software that are made possible by the 
interface are described, along with similar hardware features 
that could further improve the performance of graphics programs 
in multitasking environments. 

1. Motivation and Introduction 

The search for higher performance through parallelism in 
computer graphics has usually been concentrated on rendering, 
the time-consuming process by which data strllctures are turned 
into pixels. There the search for parallel algorithms has been 
very successful [IJ . Additionally, there are successful designs 
for hardware that make it possible to take full advantage of the 
parallelism of some algorithms [2]. This parallelism, which 
commonly occurs at very small granularity, is usually conceived 
as being internal to the graphics system itself, well below the 
level at which user programs operate. The purpose of the present 
paper is to discuss hardware support for parallelism at large 
granularity. A typical example occurs in the psychology work­
station [3], which has been the focus of several years develop­
ment in the Computer Graphics Laboratory at the University 
of Waterloo. An issue central to this project is the necessity of 
establishing precise timing for the delivery of an image and the 
user's response to it, making access to the graphics hardware 
with a minimum of overhead an important design goal. In the 
psychology workstation an application program consists of a 

collection of tasks running on one or more processors under 

the Harmony operating system [4]. The number of tasks is 
relatively small, usually in the neighbourhood of twenty. Each 
plays a distinct role, so the granularity is large. When several 
tasks wish to access the graphics hardware, synchronization is 
needed, which can be computationally expensive if the tasks 
perform their graphics operations in small chunks. This paper 
presents one solution that was implemented and discusses how 
hardware might be designed to provide efficient graphics support 
for such a system. Virtually all new high-performance work­
stations, such as those built by SGI, Stardent, and HP/Apollo, 
support multitasking in one form or another. Thus, solutions 
to the problems this paper addresses will be increasingly im­
portant for the next generation of graphics accelerators as per­
formance bottlenecks are identified and cleared by putting ad­

ditional functionality into hardware. 

The relationship of multi task programs to graphics capa­
bilities is not a new problem. Large granularity multitasking is 
useful for matching the multiple threads of user activity with­
multiple threads in the computation to achieve a program that 
more naturally mimicks the user 's conceptual model of a system 
[5,6,7). It is also useful for improving throughput by overlap­
ping update and refresh in the frame buffer [8), eliminating 
performance bottlenecks by allowing flexible scheduling of 
tasks based on real-time constraints imposed by the parameters 
of human real-time performance [3), and separating rendering 
activity from screen management activity in a window system 
[9). In each case, the introduction of multitasking brings with 
it the problem of synchronizing access to the underlying graphics 
hardware which, if not resolved efficiently, will sabotage the 
entire design by creating intolerable execution delays. 

Three popular systems illustrate the range of software 
techniques that are currently used for synchronizing access to 

graphics hardware . The Macintosh, prior to System 7 [10), 
solves the problem by executing all graphics primitives within 
a single thread of control. Thus, non-atomic access to the graphics 
hardware, such as the need to assign a graphics context prior 
to drawing a line that uses it, is left in the hands of the application 
programmer. The X window system [11], on the other hand, 
was designed to allow multiple tasks independent access to the 
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graphics hardware. It solves the synchronization problem by 
having all access to the hardware performed within the thread 
of control of the server. Application tasks send requests to the 
server, which serializes the requests and manipulates the hard­
ware with appropriate preservation of state. NeWS adopts an 
intermediate course [12]. All graphics operations are executed 
within the server, but multiple threads of control are allowed 
inside the server. In fact, a user program can be written so that 
it executes completely within the server. The implementation 
within the server, however, is not pre-emptive so that each 
thread of control is able to manipulate graphics state with confi­
dence that it will not be interrupted. The above solutions all 
exist to allow software to interact gracefully with hardware that 
provides no special suppon for multitasking. Each one has a 
deficiency, however. The Macintosh does not allow pre-emptive 
multitasking; the others do not allow the user program to control 
the time at which graphics operations are executed. Thus, none 
is suitable for real-time multitasking graphics, which is needed 
in the psychology workstation. 

frame 
buffer 

Figure 1. Several tasks accessing a graphics system 
synchronized by a server. 

Such suppon can be provided if the graphics hardware is 
sufficiently primitive, and if allocation of the physical frame 
buffer to tasks is static [13] . Static allocation is imponant, 
because it creates a need for explicit synchronization: A task 
must acquire a grant to write on a set of physical pixels and the 
grant is guaranteed not to be revoked without explicit syn­
chonization. For example, the task might receive a request to 
stop writing, reply with an acknowledgement, then do no writing 
until a new grant with a new set of pixels is given. Allocation 
strategies are imponant in the implementation of window sys­
tems, so they are discussed later in the paper. To see how to 
provide multitask suppon with static allocation, suppose the 
frame buffer resides completely within the address space of 
user processes and contains no internal state. Then an adminis­
trator coordinates access to the frame buffer, responding to 

requests for physical pixels by determining which of the pixels 
are free and replying with suitable grants. 

200 

Having the frame buffer within the address space of the 
user is imponant because it allows the interface to have no 
internal state: a single bus transaction provides read or write 
access atomically. Frame buffers with more complicated inter­
faces, using DMA or address registers, require several bus 
transactions per transfer and consequently have internal state. 
Then every graphics transaction must be explicitly synchronized. 
Similarly frame buffers with internal state that affects graphics 
transactions, such as write masks, require synchronization of 
each transaction. Other aspects of internal state of the frame 
buffer, such as colour look-up tables (LUTs), must be stan­
dardized by the administrator. The initial configuration of the 
psychology workstation used a 'dumb' frame buffer with static 
allocation to provide direct access to the frame buffer for indi­
vidual tasks. This direct access is very imponant because graph­
ics transactions must have timing latencies of the order of 
milliseconds in a system that requires about a millisecond to 
synchronize. Thus, synchronizing every graphics transaction is 
not feasible. 

Unfonunately the graphics performance of the system 
thus configured is severely limited by the frame buffer, by its 
access time and by its inability to do any graphics processing. 
Most enhancements to the hardware performance reduce access 
bandwidth at the cost of introducing internal state into the 
graphics system. Unfonunately, the internal state of such sys­
tems makes synchronization of accesses essential and the loss 
caused by synchronization overhead greatly outweighs all other 
benefits. This problem applies to all methods of synchronizing 
access to the system, even controlling the address space occupied 
by the graphics system using memory mapping hardware [14]. 
The cost of a context switch unavoidably involves changing all 
state referring to the graphics system. A different solution 
presented itself in the form of an almost surplus Ikonas/Adage 
RDS 3000 display system, a design almost a decade old, but 
incorporating several features designed to suppon multiple pro­
cessors, features that are found on almost no modern systems. 
These features contain two flaws , however. They are designed 
for multiprocessing, not for multitasking, and the interface 
treats the host as a single-processor, single-task machine. To 
use the RDS 3000 a new interface had to be designed, since 
IkonaS/Adage provided only interfaces to Digital Equipment 
Unibus and Qbus and the psychology workstations use YME­
bus. In this design the challenge was to create an interface 
capable of making these multitasking features available to Har­
mony tasks. 

The remainder of this paper describes a solution to this 
challenge and the insight it offers into extending hardware 
suppon for large granularity multitasking graphics. The next 
section describes the objectives of the interface design, relating 
the principles of multitasking to the RDS 3000 architecture. 
The third section discusses the design and construction of the 
interface. The paper closes with a discussion of the capabilities 
gained by this new interface and those aspects of rnultitasking 
graphics it is unable to suppon. These lacunae suggest new 
hardware features, likely to be needed by graphics systems 

Graphics Interface '91 



that are expected to suppon more advanced software. 

2. Design Objectives 

The overall objective of the design is to create an interface 
that allows maximum parallelism, thus minimizing queues 
inside servers and the necessity for time-consuming synchroni­
zation. The optimization is discussed in the context of features 
provided by the RDS 3000, which is a raster display system, 
but it can be considered from a general perspective, from which 
principles applicable to graphics systems of any type can be 
deduced. 

A graphics system appears logically as a data structure 
that is accessed by two processes, one being the host system 
which determines the contents of the data structure, the other 
being the video pipeline which uses it to create pixels on a 
display surface. In a vector display system this structure can 
be the display list; in a raster system it can be the image 
memory; in a system with a geometry pipeline it can be the 
data structure that feeds the pipeline. Most graphics systems 
contain a large amount of internal state, which can be divided 
into two pans. The first pan affects only transactions between 
the host and the data structure, an example being the write 
masks [IS] . The other affects the interpretation of data in the 
video pipeline, an example being the colour LUTs. Although a 
task writing to the graphics system needs to know both parts 
of the state to get predictable results, the two pans of the 
internal state have significantly different synchronization re­
quirements. To see why, imagine that a writing task has the 
ability to tag its transactions. If the hardware that interprets the 
host state is able to interpret the tag it can apply its state in a 
way that is specific to the writing task. Thus, different tasks 
can utilize different state without any need for synchronization. 
However, if the tag is not stored in the main data structure it is 
unavailable in the video pipeline and hardware that interprets 
video state cannot apply it in a task specific way. 

This process is easy to understand in the RDS 3000. 
Transactions on the processor bus of the system can be tagged 
by a 3-bit sender id (SID), which selects the write mask used 
for read/write operations into the image memory. No provision 
is made for storing the SID in image memory or for propagating 
it down the video pipeline. (It would be more correct to say 
'almost no' since the programmer can set aside pans of the 
image to be used as SID in the video pipeline. This possibility 
is addressed in the final section.) Tasks accessing the frame 
buffer can use the SID capability to create atomic access, using 
host state specific to the accessing task, state that was set on 
earlier transactions. Contrarily, state in the video pipeline does 
not have this capability. It must be synchronized by a server, 
as is commonly done for the colour LUTs: a task requests the 
use of an entry from the server and can use it only after 
acknowledgement from the server. Note that the considerations 
discussed here apply to whatever point in the chain from host 
to video screen where SrD information is no longer retained, a 
point that can be determined by software if the hardware is 
sufficiently flexible. 
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Thus, in the RDS 3000 the SID provides atomic access 
to the image memory through the write masks. Two tasks 
using different write masks are able to access image memory 
simultaneously because the interface hardware contains multiple 
write masks and uses the SID for deciding which one to use. 
How SIDs are set is thus a critical issue. Two different methods 
are used. The first method, used by the original host interface 
and by the BPS, a high performance graphics processor on the 
processor bus, makes available a special register containing the 
SID, which is setiable by the processor. Every subsequent bus 
transaction from that processor is accompanied by the SID. 
This method allows different processors on the processor bus 
atomic access to the image memory, but it does not allow 
different tasks on a processor atomic access. Thus, it is well­
suited to early versions of the BPS, which were not interruptible, 
but not to later ones, which could be interrupted by other 
processors. Similarly it is well-suited to hosts running operating 
systems, like Unix, that do all access through a single device 
driver, but it is unable to suppon hosts on which multiple 
tasks access the image memory simultaneously. The second 
method, used by the MPC, a MC68000-based computer used 
to control peripherals, maps the address space of the processor 
bus into its local bus through a large set of small windows, 
each with its own SID. Thus, different tasks running on the 
MPC can use different SIDs, allowing them atomic access to 
image memory, a design that is well-suited to an interruptible 
system for controlling interactive devices. Access to window 
registers must, of course, be synchronized by an administrator, 
and synchronization should occur infrequently to minimize 
overhead. Unfonunately, the windows are small , 2K Ikonas 
words corresponding to as little as one line of image memory, 
and there are only 512 of them with the result that frequent 
synchronization is likely to be necessary for many application 
programs. This limitation is a consequence of the smallness of 
the 68000 address space, 16 Mbytes, compared to the 64 Mbyte 
address space of the processor bus. 

In creating a new host interface the use of multiple SIDs 
to create atomic access to the image memory for several tasks 
simultaneously is an essential feature. Ideally, a task should be 
able to access the whole processor address space with its own 
SID. In particular, features such as mapping registers that create 
state in the interface itself must be replicated enough times that 
they are used atomically when an access is made to the processor 
bus. Since the SID can be considered logically as extra address 
specification the host bus must be able to address 64Mbytes 
times the number of SIDs made available. This condition can 
be fulfilled in a straightforward way on a host with a large 
enough address space, especially since the RDS 3000 is designed 
on the expectation that it will be a slave, comunicating to the 
host only via interrupts. 

3. Design Results 

The primary objective of the interface design is to provide 
the host computer with atomic access to as many of the resources 
of the RDS 3000 as possible. The Unibus/Qbus interface re-
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leased by Ikonas/Adage did not have this capability. preventing 
the host from taking full advantage of the multitasking features 
of the Ikonas. This design was sensible since the interface was 
designed for use in time-sharing systems. which require access 
to the graphics system to be synchronized by a driver/handler. 
Complicating the interface design was the inability of the Uni­
bus/Qbus of that era to address more than 256 Kbytes. which 
is very small compared to the 64Mbyte address space of the 
RDS 3000 processor bus. To overcome this limitation. that 
interface accesses the processor bus through a set of registers 
that contain the address on the processor bus. the SID and the 
function code. a set of signals on the processor bus indicating 
the nature of the transaction. read/write. pixeVword. higMow 
resolution and so on. Command and status registers are also 
provided. along with pointers to Unibus data. Both write through 
and DMA input/output are suppoI1ed. To perform one memory 
operation each of the registers is set by a separate Unibus 
cycle. violating the atomicity required for multitasking operation. 
(This problem could have been overcome by allocating a set of 
registers for each SID. For several reasons this approach makes 
little sense. There is limited address space in the more or less 
statically allocated VO page of the Unibus architecture; interface 
hardware would be needed to synchronize simultaneous re­
quests; and the extra facilities offered would lie outside the 
expected programming paradigm.) 

1 11 Ilkonas memory address (25:2) 

\.\ \ SID (28:26) 

~ flag (29) 

Gigabyte quadrant select (31 :30) 

11 

loo (1 :0) 

Figure 2. Interpretation of the 32 bit VME address 
word when used to access the Ikonas graphic system. 

Interface design is simpler with the VMEbus. because its 
4 Gbyte address space easily encompasses the address space 
of the RDS 3000 processor bus. The approach chosen was to 
reserve 30 bits of address space (one quaI1er of the VMEbus 
address space) encoding the function code. SID and address 
within those 30 bits. Twenty-six bits must be allocated to the 
RDS 3000 address because the VMEbus is byte addressed 
while the RDS 3000 is long word addressed. This addressing 
choice forces all VME transactions with the interface to be of 
type LONG and to be longword aligned [16]. The remaining 4 
bits. 26-29. must encode the function code and sender id. 
However, four bits are insufficient to encode these values directly 
owing to the number of different function codes. To solve this 
problem, only the SID is broadcast as pan of the Ikonas address 
and each SID has a function code register located on the interface. 
During a transaction, the interface uses the broadcast SID to 
obtain the right function code from the register and com­
municates it to the RDS 3000. To allow setting of the function 
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codes the remaining bit is used as a flag to indicate that a task 
is accessing the on-board function code register corresponding 
to the given SID. This function code lookup method adds 
overhead to update the function code, but it maintains atomicity 
between SIDs. Furthermore, most accesses set the function 
code once and execute many transactions using that function 
code. 

Xbar swnch 
BPS 
CLUT 

Image 
Memory 

I/O and Rom 

Second Ikonas 

Slatus/control register 

t------t'--- Function code for SI06 

t------t'--- Function code for SIOO 

t-------t-o __ -Ikonas via SI06 

I====~"'- Ikonas via SIOO 

680xO applications 

Figure 3. Address space of the VME bus, showing 
the poI1ions used by the seven Ikonas images, the 
seven function code registers and the status/control 
register. 

Of the eight possible SIDs, one is reserved for the interface 
control register, leaving seven for VMEbus tasks. The interface 
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control register provides functions that are controlled via the 
processor bus, such as BPS operation and RDS 3000 generated 
interrupts. Thus, an address is constructed as follows: Bits 0-1 
are zero (because all transactions are aligned and of type LONG), 
bits 2-25 contain the address to be put on the processor bus of 
the RDS 3000, bits 26-28 contain the SID, bit 29 is the flag 
indicating memory or register access and bits 30-31 indicate 
which gigabyte (of four) the RDS 3000 occupies. Of the four 
gigabytes in the VMEbus address space, only 1 and 2 are 
available since user code and data reside in gigabyte 0 and 
system code resides in gigabyte 3. Therefore, a maximum of 
two independent RDS 3000 system ss can reside within the 
VMEbus address space. 

Two implementation methods are possible. Each produces 
a subsystem consisting of two cards; one,the host interface 
card, residing in the VME chassis and accepting VMEbus 
cycles, and the other, the graphics interface card, residing in 
the RDS 3000 chassis and generating RDS 3000 bus cycles. 
The two cards communicate by a protocol that controls the 
movement of data across the physical connection between the 
two cards. The flfSt option is to design and build a new graphics 
interface card along with the host interface card. This option 
allows simultaneous transmission of all address, data and control 
signals, ensuring the best possible performance at the cost of 
high design effon. The second option is to build only the host 
interface card, connecting to the existing graphics interface card 
and emulating the card-to-card protocol used by the Unibus 
interface subsystem. This method takes advantage of existing 
hardware and eliminates the need for RDS 3000 prototype 
cards, but provides slower operation because all signals must 
be multiplexed over a 16 bit interface bus. Preliminary calcula­
tions indicated that the speed of this option is adequate, so it 
was chosen. The correctness of this decision was born out by 
subsequent performance measurements, reponed below. 

The existing Unibus interface provides a write through 
protocol : the host writes to a set of registers describing the 
function it wishes to execute, then writes the data through a 
pair of 16 bit registers. The VMEbus interface emulates this 
functionality by accepting a VMEbus cycle. Then, while holding 
the VMEbus, it sequences all signals over the interface bus at 
the maximum rate. When the graphics interface acknowledges 
the completion of the operation, the VMEbus cycle is terminated. 
All information required to perform a complete RDS 3000 
memory operation is contained directly or indirectly in the 
signals presented by a single VMEbus cycle. Atomicity of 
RDS 3000 bus operation is thus preserved. 

In addition to supponing read/write cycles, the interface 
provides a control/status register that allows the host to control 
other features of the RDS 3000. Interrupts, both processor and 
video, are transferred directly from the processor bus to the 
VMEbus. They are auto-vectored and are cleared when the 
controVstatus register, which indicates the source of the interrupt, 
is read. This register also allows the host to control execution 
of the Ikonas bit slice processor and to reject memory updates 
that occur outside the video blanking interval. It also has a bit 
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which, when set, resets the internal state of the interface. 

The VMEbus interface is designed as a 16 state algorithmic 
state machine (ASM) which handles both the VMEbus protocol 
of the VMEbus and the interface protocol. The ASM is imple­
mented with three PALs (programmable array logic) to increase 
flexibility and to reduce the number of parts. Currently, the 
ASM is clocked at a 4 Mhz using a PAL logic family with a 
propagation delay of 15ns. At this speed the interface is capable 
of a maximum transfer rate of 14.4 Mbits per second, close to 
the maximum speed of the VMEbus in the psychology work­
station, which has no cards capable of block mode transfers. 
Without any redesign the interface could be clocked as fast as 
16 MHz, which would accomodate the full bandwidth of the 
VMEbus with block mode transfers. Faster parts, wider PALs 
and shorter cables should permit a miximum clock rate of 
about 25 MHz, with a 80 Mbit per second transfer rate that 
would essentially saturate the RDS 3000 bus on read accesses. 
Thus, the choice of a multip1exed interface design does not 
limit interface performance. 

4_ Discussion 

The 4 Gbyte address space of the full VMEbus is large 
enough to make it possible to construct an interface that allows 
atomic transactions with the image memory using the SID 
mechanism The interface is fast enough to use the full bandwidth 
of the VMEbus, so that it is saturated only by block transfers 
or by several processors accessing it simultaneously. Block 
transfers cannot be sustained by a single processor, because it 
must stop to calculate new data. Thus, the full interface bandwidth 
can be used only when several processors are using the graphics 
system simultaneously. Without the SID mechanism such usage 
would be impossible and the response time of graphics opera­
tions would be limited not by hardware but by the software 
overhead of tasks synchronizing with one another or with a 
server. The remainder of this section discusses a variety of 
possibilities opened up by this hardware development. It begins 
by discussing new software capabilities that are possible using 
this interface, then describes features that cannot be supponed, 
concentrating particularly in the area of high performance win­
dow systems. It concludes by mentioning a variety of new 
hardware features needed if graphics systems are to have the 
flexibility to suppon this software. 

The present interface was designed specifically to suppon 
direct frame buffer access· by tasks that use static areas of the 
display surface. The software interface involves an administrator 
during initialization. A task that intends to write to the frame 
buffer requests an area from the administrator. The bounds of 
the area, which may be affected by other areas, are replied to 
the task, along with a unique SID. The task then uses this SID 
when writing to the frame buffer and is guaranteed that its 
write cycles are atomic. This scheme is used in the context of 
video state, consisting of colour LUTs, cross bar switch, window 
and viewpon registers, and the like, that is initialized to standard 
values by the administrator and left untouched by the application 
tasks. Of these resources one is potentially shareable, the colour 
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LUTs. Entries in the tables can be shared among tasks, with 
the administrator handling the allocation. Many different strate­
gies are possible, similar to the set offered by X [17]. Experience 
shows, however, that animated programs find colour table 
allocation to be a major problem in X [18]. Another possibility 
exists given the particular hardware of the RDS 3000, which 
has four 256 entry colour LUTs and a cross-bar switch in the 
video data path. Suppose three bits of image memory are 
reserved for storage of the SID of whatever taSk wrote a particular 
pixel. These three bits, propagated down the video pipeline, are 
routed by the cross-bar switch so that two are used to select 
among the four LUTs and the third is used as the highest order 
bit indexing into the selected table. Effectively the LUTs then 
become eight 128 entry tables, each independently dedicated to 
a SID, so that they may be accessed directly by the task that 
owns the appropriate SID. A similar feature recently appeared 
in hardware specifically designed to support X [19], allowing 

each of sixteen windows to have its own LUT. 

8 SI01 --0 
9SI0 2 ----------.... 

~::::~Q] 0 
I 

Figure 4. Several tasks writing to distinct parts of 
the frame buffer, using their SIDs for independent 
access to various bit-planes and pixels. 

The multiple LUT technique, which is made possible by 
the flexibility of the RDS 3000 hardware, points out an area 
where small amounts of additional hardware produce significant 
extensions of functionality . The solution that allows tasks to 

use independent LUTs requires a fixed setting of the cross-bar 
switch. The bits dedicated to SIDs are necessarily fixed, but 
the other bits need not be. If they were to be replicated, with 
one set per SID, then each task could set the low bits of the 
cross-bar independently. Then all the graphic techniques made 
possible by LUTs and cross-bars [15] could be practiced inde­
pendently by any task using the graphics system. 

The BPS, which is used when high speed operation of 
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relatively simple tasks like scan conversion is required, shows 
another aspect of SID usage. In normal use high level graphics 
commands are given to the BPS by application programs, then 
carried out by the BPS (the high performance graphics proces­
sor) which accesses the image memory. If the BPS is given 
the SID of the requesting task it is able to write to image 
memory using state set up by the requester, and to interleave 
writing with access by other tasKs without any need for syn­
chronization. This technique requires a synchronous use of the 
BPS by the requesting task, which is the normal usage pattern 
in single task software. 

The above description shows the possibilities for multi task 
operation with static screen allocation, the application for which 
the interface was designed. Dynamic screen allocation is also 
possible. When the window manager receives a request to 

move a window it must synchronize with tasks that own affected 
windows, waiting until they acknowledge the request. Then 
data structures indicating the window position can be updated 
and damage reports sent out so that tasks can redraw their 
windows . Although this procedure involves a round of syn­
chronization not needed in a system like X, the faster redraw, 
which involves no communication or synchronization, is likely 
to give superior performance. 

At this point it is possible to see that current hardware 
limits the performance of the software described above. Eight 
SIDs are certain to be insufficient. To make use of them multiple 
instantiations of the cross-bar switch and LUTs are needed. 
Multiple LUTs are, in fact, already available as a single YLSI 
component from Brooktree. And because the BPS can control 
its SID, multiple BPSs can also improve system throughput, 
although bandwidth limitations on the processor bus may pre­
vent effective utilization of a large number of them. 

There remains the problem of providing independent pan, 
scroll and zoom and independent cursors. The former are im­
portant components of systems designed to offer effective ani­
mation [15]. The latter are certain to be important when coordi­
nated windows are controlled by different tasks, for example, 
in multiple views of three-dimensional scenes. Such a develop­
ment requires significant change in the design of the video 
controller/sequencer, so that it fetches pixel values based on 
independent origin, zoom and cursor registers, indexed by SID. 
When this type of hardware innovation is available tasks can 
write to image memory using window-relative coordinates, 
with the window manager independently controlling origin reg­
isters to change the position of windows on the screen. 

The final bottleneck is communication from the graphics 
system to the host. Current systems make this a very narrow 
path, with a single interrupt line connected to each interrupt 
source in the graphics system. The interface is cumbersome. 
For example, suppose several tasks wish to update their parts 
of the screen during the next vertical retrace. Communication 
times are too slow for one task to catch the retrace interrupt 
and send messages indicating its occurrence to the tasks that 
want to perform updates. Consequently the task that catches 
the interrupt must maintain a queue of work orders, executing 
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them without any context switches when the interrupt occurs. 
Whether or not it obtains a SID along with the work order and 
uses it when accessing the graphics, serious synchronization 
problems exist. Thus, a better system of distributing interrupts 
is needed. The location monitor is the feature equivalent to the 
SID. It allows interrupts to be distributed individually to multiple 
recipients, and is an obvious feature of a more functional inter­
face. Unlike interrupts that involve volatile data, which must 
be delivered to a single recipient since the interrupt acknowl­
edgement must be tied to turning off the interrupt, ones like 
vertical retrace interrupts can be safely delivered to multiple 
recipients and turned off by hardware. The provision in the 
interface of a flexible facility for delivering interrupts to specific 
tasks using location monitors completes the functions needed 
for efficient two way communication between individual tasks 
and the graphics resources they control. 

S. Conclusion 

In a large granularity system the sender id easily generalizes 
into an effective mechanism that supports tight interaction be­
tween individual tasks and the graphics resources they control. 
Future development of hardware and software along this direc­
tion is likely to pay significant dividends in terms of enhanced 
graphics functionality in multi-window systems. In fact, the 
architecture issues discussed in this paper are relevant to any 
graphics system based on the concept of symmetric processing. 
For example, the original design of the Titan workstation by 
Ardent, which was carried over to the Stardent system, uses 
symmetric multiprocessing where the graphics processor is 
merely one of the system processors. This architecture leads 
naturally to coarse-grain parallelism in which the issues dis­
cussed in this paper are relevant. 

Finally, it is interesting to note that the interface construction 
discussed in this paper and the further enhancements discussed 
in this last section are easy to carry out in the RDS 3000, a 
decade old design. Its flexibility, modularity and openness make 
it possible to design and substitute components in a way that 
cannot be done with newer designs offering higher graphics 
performance at the cost of closed hardware. Systems like the 
RDS 3000 may be unsui table for the production graphics that 
makes up the vast bulk of the market, but they are the life 
blood of laboratories that conduct research into new techniques 
for combining computation and graphics. 
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