
199

Hardware Support for Multitasking Graphics

Wil/iam Cowan*, ChrislOpher Wein*, Marceli Weint, Kel/ogg s. Booth§

*Department ofCompUler Science, University of Waterloo, Waterloo, Ontario, N2L 3GI.

tInstitutefor Information Technology, National Research Council of Canada, Ouawa, Ontario, KIA OR6.

§Department ofCompUler Science, University of British Columbia , Vancouver, British Columbia, V6T lW5.

Abstract

Significant improvements in the performance of many
window systems are possible if tasks are allowed to write
directly to the di splay instead of having to synchronize with a
server. Sllch operation depends on the ability of tasks to perform
atomic transactions with the graphics subsystem, a capability
that depends on the provision of suitable hardware in the interface
to the graphics subsystem. This paper describes the design and
construct ion of an interface that makes atomic transactions
possible for multiple tasks by extending the sender id mechanism
into the address space of the host. New methods of strllcturing
multitasking graphics software that are made possible by the
interface are described, along with similar hardware features
that could further improve the performance of graphics programs
in multitasking environments.

1. Motivation and Introduction

The search for higher performance through parallelism in
computer graphics has usually been concentrated on rendering,
the time-consuming process by which data strllctures are turned
into pixels. There the search for parallel algorithms has been
very successful [IJ . Additionally, there are successful designs
for hardware that make it possible to take full advantage of the
parallelism of some algorithms [2]. This parallelism, which
commonly occurs at very small granularity, is usually conceived
as being internal to the graphics system itself, well below the
level at which user programs operate. The purpose of the present
paper is to discuss hardware support for parallelism at large
granularity. A typical example occurs in the psychology work­
station [3], which has been the focus of several years develop­
ment in the Computer Graphics Laboratory at the University
of Waterloo. An issue central to this project is the necessity of
establishing precise timing for the delivery of an image and the
user's response to it, making access to the graphics hardware
with a minimum of overhead an important design goal. In the
psychology workstation an application program consists of a

collection of tasks running on one or more processors under

the Harmony operating system [4]. The number of tasks is
relatively small, usually in the neighbourhood of twenty. Each
plays a distinct role, so the granularity is large. When several
tasks wish to access the graphics hardware, synchronization is
needed, which can be computationally expensive if the tasks
perform their graphics operations in small chunks. This paper
presents one solution that was implemented and discusses how
hardware might be designed to provide efficient graphics support
for such a system. Virtually all new high-performance work­
stations, such as those built by SGI, Stardent, and HP/Apollo,
support multitasking in one form or another. Thus, solutions
to the problems this paper addresses will be increasingly im­
portant for the next generation of graphics accelerators as per­
formance bottlenecks are identified and cleared by putting ad­

ditional functionality into hardware.

The relationship of multi task programs to graphics capa­
bilities is not a new problem. Large granularity multitasking is
useful for matching the multiple threads of user activity with­
multiple threads in the computation to achieve a program that
more naturally mimicks the user 's conceptual model of a system
[5,6,7). It is also useful for improving throughput by overlap­
ping update and refresh in the frame buffer [8), eliminating
performance bottlenecks by allowing flexible scheduling of
tasks based on real-time constraints imposed by the parameters
of human real-time performance [3), and separating rendering
activity from screen management activity in a window system
[9). In each case, the introduction of multitasking brings with
it the problem of synchronizing access to the underlying graphics
hardware which, if not resolved efficiently, will sabotage the
entire design by creating intolerable execution delays.

Three popular systems illustrate the range of software
techniques that are currently used for synchronizing access to

graphics hardware . The Macintosh, prior to System 7 [10),
solves the problem by executing all graphics primitives within
a single thread of control. Thus, non-atomic access to the graphics
hardware, such as the need to assign a graphics context prior
to drawing a line that uses it, is left in the hands of the application
programmer. The X window system [11], on the other hand,
was designed to allow multiple tasks independent access to the

Graphics Interface '91

graphics hardware. It solves the synchronization problem by
having all access to the hardware performed within the thread
of control of the server. Application tasks send requests to the
server, which serializes the requests and manipulates the hard­
ware with appropriate preservation of state. NeWS adopts an
intermediate course [12]. All graphics operations are executed
within the server, but multiple threads of control are allowed
inside the server. In fact, a user program can be written so that
it executes completely within the server. The implementation
within the server, however, is not pre-emptive so that each
thread of control is able to manipulate graphics state with confi­
dence that it will not be interrupted. The above solutions all
exist to allow software to interact gracefully with hardware that
provides no special suppon for multitasking. Each one has a
deficiency, however. The Macintosh does not allow pre-emptive
multitasking; the others do not allow the user program to control
the time at which graphics operations are executed. Thus, none
is suitable for real-time multitasking graphics, which is needed
in the psychology workstation.

frame
buffer

Figure 1. Several tasks accessing a graphics system
synchronized by a server.

Such suppon can be provided if the graphics hardware is
sufficiently primitive, and if allocation of the physical frame
buffer to tasks is static [13] . Static allocation is imponant,
because it creates a need for explicit synchronization: A task
must acquire a grant to write on a set of physical pixels and the
grant is guaranteed not to be revoked without explicit syn­
chonization. For example, the task might receive a request to
stop writing, reply with an acknowledgement, then do no writing
until a new grant with a new set of pixels is given. Allocation
strategies are imponant in the implementation of window sys­
tems, so they are discussed later in the paper. To see how to
provide multitask suppon with static allocation, suppose the
frame buffer resides completely within the address space of
user processes and contains no internal state. Then an adminis­
trator coordinates access to the frame buffer, responding to

requests for physical pixels by determining which of the pixels
are free and replying with suitable grants.

200

Having the frame buffer within the address space of the
user is imponant because it allows the interface to have no
internal state: a single bus transaction provides read or write
access atomically. Frame buffers with more complicated inter­
faces, using DMA or address registers, require several bus
transactions per transfer and consequently have internal state.
Then every graphics transaction must be explicitly synchronized.
Similarly frame buffers with internal state that affects graphics
transactions, such as write masks, require synchronization of
each transaction. Other aspects of internal state of the frame
buffer, such as colour look-up tables (LUTs), must be stan­
dardized by the administrator. The initial configuration of the
psychology workstation used a 'dumb' frame buffer with static
allocation to provide direct access to the frame buffer for indi­
vidual tasks. This direct access is very imponant because graph­
ics transactions must have timing latencies of the order of
milliseconds in a system that requires about a millisecond to
synchronize. Thus, synchronizing every graphics transaction is
not feasible.

Unfonunately the graphics performance of the system
thus configured is severely limited by the frame buffer, by its
access time and by its inability to do any graphics processing.
Most enhancements to the hardware performance reduce access
bandwidth at the cost of introducing internal state into the
graphics system. Unfonunately, the internal state of such sys­
tems makes synchronization of accesses essential and the loss
caused by synchronization overhead greatly outweighs all other
benefits. This problem applies to all methods of synchronizing
access to the system, even controlling the address space occupied
by the graphics system using memory mapping hardware [14].
The cost of a context switch unavoidably involves changing all
state referring to the graphics system. A different solution
presented itself in the form of an almost surplus Ikonas/Adage
RDS 3000 display system, a design almost a decade old, but
incorporating several features designed to suppon multiple pro­
cessors, features that are found on almost no modern systems.
These features contain two flaws , however. They are designed
for multiprocessing, not for multitasking, and the interface
treats the host as a single-processor, single-task machine. To
use the RDS 3000 a new interface had to be designed, since
IkonaS/Adage provided only interfaces to Digital Equipment
Unibus and Qbus and the psychology workstations use YME­
bus. In this design the challenge was to create an interface
capable of making these multitasking features available to Har­
mony tasks.

The remainder of this paper describes a solution to this
challenge and the insight it offers into extending hardware
suppon for large granularity multitasking graphics. The next
section describes the objectives of the interface design, relating
the principles of multitasking to the RDS 3000 architecture.
The third section discusses the design and construction of the
interface. The paper closes with a discussion of the capabilities
gained by this new interface and those aspects of rnultitasking
graphics it is unable to suppon. These lacunae suggest new
hardware features, likely to be needed by graphics systems

Graphics Interface '91

that are expected to suppon more advanced software.

2. Design Objectives

The overall objective of the design is to create an interface
that allows maximum parallelism, thus minimizing queues
inside servers and the necessity for time-consuming synchroni­
zation. The optimization is discussed in the context of features
provided by the RDS 3000, which is a raster display system,
but it can be considered from a general perspective, from which
principles applicable to graphics systems of any type can be
deduced.

A graphics system appears logically as a data structure
that is accessed by two processes, one being the host system
which determines the contents of the data structure, the other
being the video pipeline which uses it to create pixels on a
display surface. In a vector display system this structure can
be the display list; in a raster system it can be the image
memory; in a system with a geometry pipeline it can be the
data structure that feeds the pipeline. Most graphics systems
contain a large amount of internal state, which can be divided
into two pans. The first pan affects only transactions between
the host and the data structure, an example being the write
masks [IS] . The other affects the interpretation of data in the
video pipeline, an example being the colour LUTs. Although a
task writing to the graphics system needs to know both parts
of the state to get predictable results, the two pans of the
internal state have significantly different synchronization re­
quirements. To see why, imagine that a writing task has the
ability to tag its transactions. If the hardware that interprets the
host state is able to interpret the tag it can apply its state in a
way that is specific to the writing task. Thus, different tasks
can utilize different state without any need for synchronization.
However, if the tag is not stored in the main data structure it is
unavailable in the video pipeline and hardware that interprets
video state cannot apply it in a task specific way.

This process is easy to understand in the RDS 3000.
Transactions on the processor bus of the system can be tagged
by a 3-bit sender id (SID), which selects the write mask used
for read/write operations into the image memory. No provision
is made for storing the SID in image memory or for propagating
it down the video pipeline. (It would be more correct to say
'almost no' since the programmer can set aside pans of the
image to be used as SID in the video pipeline. This possibility
is addressed in the final section.) Tasks accessing the frame
buffer can use the SID capability to create atomic access, using
host state specific to the accessing task, state that was set on
earlier transactions. Contrarily, state in the video pipeline does
not have this capability. It must be synchronized by a server,
as is commonly done for the colour LUTs: a task requests the
use of an entry from the server and can use it only after
acknowledgement from the server. Note that the considerations
discussed here apply to whatever point in the chain from host
to video screen where SrD information is no longer retained, a
point that can be determined by software if the hardware is
sufficiently flexible.

201

Thus, in the RDS 3000 the SID provides atomic access
to the image memory through the write masks. Two tasks
using different write masks are able to access image memory
simultaneously because the interface hardware contains multiple
write masks and uses the SID for deciding which one to use.
How SIDs are set is thus a critical issue. Two different methods
are used. The first method, used by the original host interface
and by the BPS, a high performance graphics processor on the
processor bus, makes available a special register containing the
SID, which is setiable by the processor. Every subsequent bus
transaction from that processor is accompanied by the SID.
This method allows different processors on the processor bus
atomic access to the image memory, but it does not allow
different tasks on a processor atomic access. Thus, it is well­
suited to early versions of the BPS, which were not interruptible,
but not to later ones, which could be interrupted by other
processors. Similarly it is well-suited to hosts running operating
systems, like Unix, that do all access through a single device
driver, but it is unable to suppon hosts on which multiple
tasks access the image memory simultaneously. The second
method, used by the MPC, a MC68000-based computer used
to control peripherals, maps the address space of the processor
bus into its local bus through a large set of small windows,
each with its own SID. Thus, different tasks running on the
MPC can use different SIDs, allowing them atomic access to
image memory, a design that is well-suited to an interruptible
system for controlling interactive devices. Access to window
registers must, of course, be synchronized by an administrator,
and synchronization should occur infrequently to minimize
overhead. Unfonunately, the windows are small , 2K Ikonas
words corresponding to as little as one line of image memory,
and there are only 512 of them with the result that frequent
synchronization is likely to be necessary for many application
programs. This limitation is a consequence of the smallness of
the 68000 address space, 16 Mbytes, compared to the 64 Mbyte
address space of the processor bus.

In creating a new host interface the use of multiple SIDs
to create atomic access to the image memory for several tasks
simultaneously is an essential feature. Ideally, a task should be
able to access the whole processor address space with its own
SID. In particular, features such as mapping registers that create
state in the interface itself must be replicated enough times that
they are used atomically when an access is made to the processor
bus. Since the SID can be considered logically as extra address
specification the host bus must be able to address 64Mbytes
times the number of SIDs made available. This condition can
be fulfilled in a straightforward way on a host with a large
enough address space, especially since the RDS 3000 is designed
on the expectation that it will be a slave, comunicating to the
host only via interrupts.

3. Design Results

The primary objective of the interface design is to provide
the host computer with atomic access to as many of the resources
of the RDS 3000 as possible. The Unibus/Qbus interface re-

Graphics Interface '91

leased by Ikonas/Adage did not have this capability. preventing
the host from taking full advantage of the multitasking features
of the Ikonas. This design was sensible since the interface was
designed for use in time-sharing systems. which require access
to the graphics system to be synchronized by a driver/handler.
Complicating the interface design was the inability of the Uni­
bus/Qbus of that era to address more than 256 Kbytes. which
is very small compared to the 64Mbyte address space of the
RDS 3000 processor bus. To overcome this limitation. that
interface accesses the processor bus through a set of registers
that contain the address on the processor bus. the SID and the
function code. a set of signals on the processor bus indicating
the nature of the transaction. read/write. pixeVword. higMow
resolution and so on. Command and status registers are also
provided. along with pointers to Unibus data. Both write through
and DMA input/output are suppoI1ed. To perform one memory
operation each of the registers is set by a separate Unibus
cycle. violating the atomicity required for multitasking operation.
(This problem could have been overcome by allocating a set of
registers for each SID. For several reasons this approach makes
little sense. There is limited address space in the more or less
statically allocated VO page of the Unibus architecture; interface
hardware would be needed to synchronize simultaneous re­
quests; and the extra facilities offered would lie outside the
expected programming paradigm.)

1 11 Ilkonas memory address (25:2)

\.\ \ SID (28:26)

~ flag (29)

Gigabyte quadrant select (31 :30)

11

loo (1 :0)

Figure 2. Interpretation of the 32 bit VME address
word when used to access the Ikonas graphic system.

Interface design is simpler with the VMEbus. because its
4 Gbyte address space easily encompasses the address space
of the RDS 3000 processor bus. The approach chosen was to
reserve 30 bits of address space (one quaI1er of the VMEbus
address space) encoding the function code. SID and address
within those 30 bits. Twenty-six bits must be allocated to the
RDS 3000 address because the VMEbus is byte addressed
while the RDS 3000 is long word addressed. This addressing
choice forces all VME transactions with the interface to be of
type LONG and to be longword aligned [16]. The remaining 4
bits. 26-29. must encode the function code and sender id.
However, four bits are insufficient to encode these values directly
owing to the number of different function codes. To solve this
problem, only the SID is broadcast as pan of the Ikonas address
and each SID has a function code register located on the interface.
During a transaction, the interface uses the broadcast SID to
obtain the right function code from the register and com­
municates it to the RDS 3000. To allow setting of the function

202

codes the remaining bit is used as a flag to indicate that a task
is accessing the on-board function code register corresponding
to the given SID. This function code lookup method adds
overhead to update the function code, but it maintains atomicity
between SIDs. Furthermore, most accesses set the function
code once and execute many transactions using that function
code.

Xbar swnch
BPS
CLUT

Image
Memory

I/O and Rom

Second Ikonas

Slatus/control register

t------t'--- Function code for SI06

t------t'--- Function code for SIOO

t-------t-o __ -Ikonas via SI06

I====~"'- Ikonas via SIOO

680xO applications

Figure 3. Address space of the VME bus, showing
the poI1ions used by the seven Ikonas images, the
seven function code registers and the status/control
register.

Of the eight possible SIDs, one is reserved for the interface
control register, leaving seven for VMEbus tasks. The interface

Graphics Interface '91

control register provides functions that are controlled via the
processor bus, such as BPS operation and RDS 3000 generated
interrupts. Thus, an address is constructed as follows: Bits 0-1
are zero (because all transactions are aligned and of type LONG),
bits 2-25 contain the address to be put on the processor bus of
the RDS 3000, bits 26-28 contain the SID, bit 29 is the flag
indicating memory or register access and bits 30-31 indicate
which gigabyte (of four) the RDS 3000 occupies. Of the four
gigabytes in the VMEbus address space, only 1 and 2 are
available since user code and data reside in gigabyte 0 and
system code resides in gigabyte 3. Therefore, a maximum of
two independent RDS 3000 system ss can reside within the
VMEbus address space.

Two implementation methods are possible. Each produces
a subsystem consisting of two cards; one,the host interface
card, residing in the VME chassis and accepting VMEbus
cycles, and the other, the graphics interface card, residing in
the RDS 3000 chassis and generating RDS 3000 bus cycles.
The two cards communicate by a protocol that controls the
movement of data across the physical connection between the
two cards. The flfSt option is to design and build a new graphics
interface card along with the host interface card. This option
allows simultaneous transmission of all address, data and control
signals, ensuring the best possible performance at the cost of
high design effon. The second option is to build only the host
interface card, connecting to the existing graphics interface card
and emulating the card-to-card protocol used by the Unibus
interface subsystem. This method takes advantage of existing
hardware and eliminates the need for RDS 3000 prototype
cards, but provides slower operation because all signals must
be multiplexed over a 16 bit interface bus. Preliminary calcula­
tions indicated that the speed of this option is adequate, so it
was chosen. The correctness of this decision was born out by
subsequent performance measurements, reponed below.

The existing Unibus interface provides a write through
protocol : the host writes to a set of registers describing the
function it wishes to execute, then writes the data through a
pair of 16 bit registers. The VMEbus interface emulates this
functionality by accepting a VMEbus cycle. Then, while holding
the VMEbus, it sequences all signals over the interface bus at
the maximum rate. When the graphics interface acknowledges
the completion of the operation, the VMEbus cycle is terminated.
All information required to perform a complete RDS 3000
memory operation is contained directly or indirectly in the
signals presented by a single VMEbus cycle. Atomicity of
RDS 3000 bus operation is thus preserved.

In addition to supponing read/write cycles, the interface
provides a control/status register that allows the host to control
other features of the RDS 3000. Interrupts, both processor and
video, are transferred directly from the processor bus to the
VMEbus. They are auto-vectored and are cleared when the
controVstatus register, which indicates the source of the interrupt,
is read. This register also allows the host to control execution
of the Ikonas bit slice processor and to reject memory updates
that occur outside the video blanking interval. It also has a bit

203

which, when set, resets the internal state of the interface.

The VMEbus interface is designed as a 16 state algorithmic
state machine (ASM) which handles both the VMEbus protocol
of the VMEbus and the interface protocol. The ASM is imple­
mented with three PALs (programmable array logic) to increase
flexibility and to reduce the number of parts. Currently, the
ASM is clocked at a 4 Mhz using a PAL logic family with a
propagation delay of 15ns. At this speed the interface is capable
of a maximum transfer rate of 14.4 Mbits per second, close to
the maximum speed of the VMEbus in the psychology work­
station, which has no cards capable of block mode transfers.
Without any redesign the interface could be clocked as fast as
16 MHz, which would accomodate the full bandwidth of the
VMEbus with block mode transfers. Faster parts, wider PALs
and shorter cables should permit a miximum clock rate of
about 25 MHz, with a 80 Mbit per second transfer rate that
would essentially saturate the RDS 3000 bus on read accesses.
Thus, the choice of a multip1exed interface design does not
limit interface performance.

4_ Discussion

The 4 Gbyte address space of the full VMEbus is large
enough to make it possible to construct an interface that allows
atomic transactions with the image memory using the SID
mechanism The interface is fast enough to use the full bandwidth
of the VMEbus, so that it is saturated only by block transfers
or by several processors accessing it simultaneously. Block
transfers cannot be sustained by a single processor, because it
must stop to calculate new data. Thus, the full interface bandwidth
can be used only when several processors are using the graphics
system simultaneously. Without the SID mechanism such usage
would be impossible and the response time of graphics opera­
tions would be limited not by hardware but by the software
overhead of tasks synchronizing with one another or with a
server. The remainder of this section discusses a variety of
possibilities opened up by this hardware development. It begins
by discussing new software capabilities that are possible using
this interface, then describes features that cannot be supponed,
concentrating particularly in the area of high performance win­
dow systems. It concludes by mentioning a variety of new
hardware features needed if graphics systems are to have the
flexibility to suppon this software.

The present interface was designed specifically to suppon
direct frame buffer access· by tasks that use static areas of the
display surface. The software interface involves an administrator
during initialization. A task that intends to write to the frame
buffer requests an area from the administrator. The bounds of
the area, which may be affected by other areas, are replied to
the task, along with a unique SID. The task then uses this SID
when writing to the frame buffer and is guaranteed that its
write cycles are atomic. This scheme is used in the context of
video state, consisting of colour LUTs, cross bar switch, window
and viewpon registers, and the like, that is initialized to standard
values by the administrator and left untouched by the application
tasks. Of these resources one is potentially shareable, the colour

Graphics Interface '91

LUTs. Entries in the tables can be shared among tasks, with
the administrator handling the allocation. Many different strate­
gies are possible, similar to the set offered by X [17]. Experience
shows, however, that animated programs find colour table
allocation to be a major problem in X [18]. Another possibility
exists given the particular hardware of the RDS 3000, which
has four 256 entry colour LUTs and a cross-bar switch in the
video data path. Suppose three bits of image memory are
reserved for storage of the SID of whatever taSk wrote a particular
pixel. These three bits, propagated down the video pipeline, are
routed by the cross-bar switch so that two are used to select
among the four LUTs and the third is used as the highest order
bit indexing into the selected table. Effectively the LUTs then
become eight 128 entry tables, each independently dedicated to
a SID, so that they may be accessed directly by the task that
owns the appropriate SID. A similar feature recently appeared
in hardware specifically designed to support X [19], allowing

each of sixteen windows to have its own LUT.

8 SI01 --0
9SI0 2 ----------....

~::::~Q] 0
I

Figure 4. Several tasks writing to distinct parts of
the frame buffer, using their SIDs for independent
access to various bit-planes and pixels.

The multiple LUT technique, which is made possible by
the flexibility of the RDS 3000 hardware, points out an area
where small amounts of additional hardware produce significant
extensions of functionality . The solution that allows tasks to

use independent LUTs requires a fixed setting of the cross-bar
switch. The bits dedicated to SIDs are necessarily fixed, but
the other bits need not be. If they were to be replicated, with
one set per SID, then each task could set the low bits of the
cross-bar independently. Then all the graphic techniques made
possible by LUTs and cross-bars [15] could be practiced inde­
pendently by any task using the graphics system.

The BPS, which is used when high speed operation of

204

relatively simple tasks like scan conversion is required, shows
another aspect of SID usage. In normal use high level graphics
commands are given to the BPS by application programs, then
carried out by the BPS (the high performance graphics proces­
sor) which accesses the image memory. If the BPS is given
the SID of the requesting task it is able to write to image
memory using state set up by the requester, and to interleave
writing with access by other tasKs without any need for syn­
chronization. This technique requires a synchronous use of the
BPS by the requesting task, which is the normal usage pattern
in single task software.

The above description shows the possibilities for multi task
operation with static screen allocation, the application for which
the interface was designed. Dynamic screen allocation is also
possible. When the window manager receives a request to

move a window it must synchronize with tasks that own affected
windows, waiting until they acknowledge the request. Then
data structures indicating the window position can be updated
and damage reports sent out so that tasks can redraw their
windows . Although this procedure involves a round of syn­
chronization not needed in a system like X, the faster redraw,
which involves no communication or synchronization, is likely
to give superior performance.

At this point it is possible to see that current hardware
limits the performance of the software described above. Eight
SIDs are certain to be insufficient. To make use of them multiple
instantiations of the cross-bar switch and LUTs are needed.
Multiple LUTs are, in fact, already available as a single YLSI
component from Brooktree. And because the BPS can control
its SID, multiple BPSs can also improve system throughput,
although bandwidth limitations on the processor bus may pre­
vent effective utilization of a large number of them.

There remains the problem of providing independent pan,
scroll and zoom and independent cursors. The former are im­
portant components of systems designed to offer effective ani­
mation [15]. The latter are certain to be important when coordi­
nated windows are controlled by different tasks, for example,
in multiple views of three-dimensional scenes. Such a develop­
ment requires significant change in the design of the video
controller/sequencer, so that it fetches pixel values based on
independent origin, zoom and cursor registers, indexed by SID.
When this type of hardware innovation is available tasks can
write to image memory using window-relative coordinates,
with the window manager independently controlling origin reg­
isters to change the position of windows on the screen.

The final bottleneck is communication from the graphics
system to the host. Current systems make this a very narrow
path, with a single interrupt line connected to each interrupt
source in the graphics system. The interface is cumbersome.
For example, suppose several tasks wish to update their parts
of the screen during the next vertical retrace. Communication
times are too slow for one task to catch the retrace interrupt
and send messages indicating its occurrence to the tasks that
want to perform updates. Consequently the task that catches
the interrupt must maintain a queue of work orders, executing

Graphics Interface '91

them without any context switches when the interrupt occurs.
Whether or not it obtains a SID along with the work order and
uses it when accessing the graphics, serious synchronization
problems exist. Thus, a better system of distributing interrupts
is needed. The location monitor is the feature equivalent to the
SID. It allows interrupts to be distributed individually to multiple
recipients, and is an obvious feature of a more functional inter­
face. Unlike interrupts that involve volatile data, which must
be delivered to a single recipient since the interrupt acknowl­
edgement must be tied to turning off the interrupt, ones like
vertical retrace interrupts can be safely delivered to multiple
recipients and turned off by hardware. The provision in the
interface of a flexible facility for delivering interrupts to specific
tasks using location monitors completes the functions needed
for efficient two way communication between individual tasks
and the graphics resources they control.

S. Conclusion

In a large granularity system the sender id easily generalizes
into an effective mechanism that supports tight interaction be­
tween individual tasks and the graphics resources they control.
Future development of hardware and software along this direc­
tion is likely to pay significant dividends in terms of enhanced
graphics functionality in multi-window systems. In fact, the
architecture issues discussed in this paper are relevant to any
graphics system based on the concept of symmetric processing.
For example, the original design of the Titan workstation by
Ardent, which was carried over to the Stardent system, uses
symmetric multiprocessing where the graphics processor is
merely one of the system processors. This architecture leads
naturally to coarse-grain parallelism in which the issues dis­
cussed in this paper are relevant.

Finally, it is interesting to note that the interface construction
discussed in this paper and the further enhancements discussed
in this last section are easy to carry out in the RDS 3000, a
decade old design. Its flexibility, modularity and openness make
it possible to design and substitute components in a way that
cannot be done with newer designs offering higher graphics
performance at the cost of closed hardware. Systems like the
RDS 3000 may be unsui table for the production graphics that
makes up the vast bulk of the market, but they are the life
blood of laboratories that conduct research into new techniques
for combining computation and graphics.

6. Acknowledgements

This research was partially supported by grants from the
Natural Sciences and Enginerring Research Council and from
the Information Technology Research Centre, a Centre of Ex­
cellence supported by the Province of Ontario. One of the
authors (WC) wishes to thank Kevin Schlueter for informative
discussions concerning the structure of current window servers,
particularly X and NeWS . We would also like to thank Nick
England for moral and other support as we have worked at

205

getting extra mileage from our RDS 3000 systems.

Harmony is a mark reserved for the exclusive use of Her
Majesty the Queen in right of Canada by National Research
Council. Unix is a trademark of AT&T. NeWS is a trademark
of Sun Microsystems. Macintosh is a trademark of Apple
Computer. Unibus and Qbus are trademarks of Digital Equipo­
ment.

7. References

[1] C. Ferguson, Parallel Algorithms for Computer Graph­
ics, UCSC-90-D8, Computer Research Laboratory
Technical Report, University of California, Santa Cruz,
1990.

[2] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather,
D . Ellsworth, S. Molnar, G. Turk, B. Tebbs and L.
Israel, 'Pixel-planes 5: a heterogeneous multiprocessor
graphics system using processor-enhanced memories',
Proceedings of SIGGRAPH '89, published as Computer
Graphics, 23(3), 111-120,1989.

[3] K. S. Booth, L. R. Bartram, W. B. Cowan, J. D. Mor­
rison, and P. P. Tanner, 'A system for conducting
experiments concerning human factors in interactive
graphics', Graphics Interface' 88,34-42,1988.

[4] W. M. Gentleman, S. A. MacKay, D. A. Stewart and
M. Wein, Using the Harmony Operating System: Re­
lease 3.0, ERA-377, NRCC No. 30081, National Re­
search Council of Canada: Ottawa, 1989.

[5] J. C. Beatty, R. J. Beach, K. S. Booth, E. L. Fiume
and D. A. Plebon, 'The message is the medium: multi­
process structuring of an interactive paint program',
Ninth Annual Conference on Computer Graphics and
Interactive Techniques, 277-287, 1982.

[6] D. R. Forsey, Transposing Harmony, M. Math. Thesis,
Department of Computer Science, University of Water­
loo, 1985.

[7] K. S. Booth, W. B. Cowan and D. R. Forsey, 'Multi­
tasking support in a graphics workstation',lst Interna­
tional Conference on Computer Workstations, 82-89,
1985.

[8] K. S. Booth, D. R. Forsey and A. W. Paeth, 'Hardware
assistance for z-buffer visible surface algorithms',l EEE
Computer Graphics and Applications, 6, 31-39, 1986.

[9] J. V. Kelley, K. S. Booth and M. Wein, 'Design expe­
rience with a multiprocessor window system architec­
ture ' , Graphics Interface ' 89,62-69, 1989.

[10] At the time of writing System 7 for the Macintosh is
rumored to have possibly pre-emptive multitasking ca­
pability.

[11] R. W. Scheifler and J. Gettys, 'The X window system',
ACM Transactions on Graphics , 5, 79-109, 1986.

[12] J. J. Gosling, D. S. H. Rosenthal and M. Arden, The
NeWS Book, Springer-Verlag: New York, 1989.

Graphics Interface '91

[13] P. P. Tanner, K. S. Booth and B. M. Fowler, 'Experience
with graphics support for a multiprocessor workstation' ,
Parallel Processing for Computer Vision and Display
International Conference, Leeds, 1988. Appears in Par­
allel Processing for Computer Vis ion and Display , ed­
ited by P. M. Dew, R. A. Earnshaw and T. R. Heywood,
Reading : Addison-Wesley, 1989, pp. 298-307.

[14] D. Rhoden and C. Wilcox , Hardware acceleration for
Window systems, Proceedings of SIGGRAPH ' 89,
published as Computer Graphics, 22, 247-253.

[15] K. S. Booth and S. A. MacKay, 'Techniques for Frame
Buffer animation' , Graphics Interface' 82, 213-220,

1982.

[16] VMEbus Specification Manual, Micrology pbt: Tempe,
1985.

[17] O. Jones, Introduction to the X Window System, Prentice­
Hall : New York, 1989.

[1 8] F. K. T. Sun , W. Cowan and K. S. Booth, 'Under­
standing vi sual effects in a windowed environment ',
Graphics Interface ' 90, 100-107,1990.

[19] D. Voorhies, D. Kirk and O. Lathrop, 'Virtual Graphics',
Proceedings of SIGGRAPH '88, published as Com­
puter Graphics, 23, 61-67.

206

Graphics Interface '91

