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Abstract 

Polynomial parametric curves are powerful and popular 
modeling tools in Computer Graphics and Computer 
Aided Design. There are two requirements that are 
placed on techniques for displaying these curves. In 
interactive applications, such as drawing and design, the 
need is for a fast display. In non interactive applica
tions, such as typeset ting, the need is for accuracy (or at 
least the appearance of accuracy). Most techniques 
address one or the other of these conflicting require
ments. 

We propose and demonstrate the use of Chebyshev basis 
functions for an adaptive curve drawing method which 
is both fast and accurate. The use of Chebyshev poly
nomials provide us with an inexpensive linearity meas
ure which is useful in an recursive algorithm. Further 
applications of this approach include efficient boxing 
and the generation of smooth filtered curves. 

Resume 

Les courbes parametriques polynomiales constituent un 
outil puissant et populaire pour la modelisation en 
infographie et en conception assistee par ordinateur. Les 
techniques d'affichage pour ces courbes doivent repondre 
cl. deux exigences. Dans les applications interactives, 
telles que le dessin et le design , l'affichage doit etre tres 
.rapide. Dans les applications non-interactives, telles que 
la typographie digit ale, la precision (en tout cas 
l'apparence de la precision) est primordiale. La plupart 
des techniques sont concernees avec l'une ou l'autre de 
ces exigences. 

Nous proposons et nous illustrons I'utilisation des 
polynomes de Tchebychev comme bases pour une tech
nique adaptive de trace qui est et la fois rapide est 
precise. L'utilisation des polynomes de Tchebychev 
nous fournit une mesure de linearite economique tres 
utile dans le cadre d'une methode recursive. D'autres 
applications de la meme approche incluent une mise en 
boite efficace et la generation de courbes lissees et 
filtrees. 

CR Categories: 1.3.3 [Computer Graphics]: 
Picture/Image Generation 1.3.5 [Computer Graphics] : 
Computational Geometry and Object Modeling 

General Terms: algorithms. 

Additional Keywords and Phrases: Chebyshev polynomi
als, Linearity criteria, Adaptive curve drawing. 

1. Introduction 

Polynomial parametric curves are powerful and popular 
modeling tools in Computer Graphics and Computer 
Aided Design. A combination of hardware and algo
rithmic advances have made it possible to draw hun
dreds or thousands of these curves in real time on 
modern graphics workstations. There are two require
ments that are placed on techniques for displaying these 
curves. In interactive applications the need is for a fast 
display, and this can be achieved by drawing long 
straight line segments, sacrificing the smoothness of the 
original curve. In non-interactive applications the need 
is for accuracy . It is interesting to note that what 
matters is usually the appearance of accuracy . For 
example a curve with a visible discontinuity is normally 
perceived as worse than a smooth curve, even though by 
some metric the curve with the discontinuity might be 
better than the smooth curve. 

Most curve drawing techniques address one or the other 
of these conflicting requirements. We propose here a 
technique which is adaptive but fast, and has the advan
tage of offering a good "quality" criterion as part of the 
algorithm. 

1.1. Current Methods 

Since most of the display systems we work with 
currently are capable of drawing straight lines and set
ting pixels , the task of drawing a parametric curve can 
be reduced to that of either drawing a straight line or 
setting pixels. So an obvious strategy is to subdivide a 
curve until it can be satisfactorily represented by a suc
cession of straight line segments. There are many 
methods for subdividing parametric curves but the 
method of choice has been to perform a uniform subdivi
sion of the curve in the parameter t. The curve is given 
as: 

Q(t) = ( X(t), y(t) ) 

where X( t) and Y( t) are polynomials m t. Given a 
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6; = t'+l-t;, one calculates the coordinates Q(t j) and 
Q(ti+i) and draw the line segment which connects 
them. The full cost of directly evaluating the curve poly
nomials can be avoided by using forward differencing 
(see Foley & van Dam [Fole82] for a description of the 
technique in this context). Since the forward differencing 
computations can be put in the form of a multiplication 
by a 4x4 ma.trix in the case of cubic curves, in some 
graphics systems hardware is used to speed up this pro
cess. A major drawback of this method is tha.t there is 
no obvious good heuristic for determining a correct 
value of 6. The selection of a small 6 can result in 
excessive computation, the selection of a large 6 can 
result in a curve with a polygonal look (ie obvious 
discontinuities) and large "missing parts". 

Recursive subdivision is an old numerical method, and 
Catmull [Catm75] used it in the context of the display 
of Bezier surfaces. Many other followed, and to mention 
a still popular method Lane, Carpenter, Whitted and 
Blinn [Lane80 ] showed how a curve could be recursively 
subdivided until each section of the curve could be ade
quately approximated by a straight line segment. In 
their method they used the Bernstein polynomial basis 
and used the convex hull property of the Bezier curves 
to produce a measure of 'straightness'. Given a Bezier 
curve defined by the control points Po, Pi, P 2 and P 3, 

the straight line segment which approximates this curve 
is the line from Po to P 3 and the error measure is 
defined by whichever of the points Pi, P 2 is furthest 
from the approximating line. The cost of calculating 
this error measure at each level of subdivision is quite 
high . 

Adaptive forward differencing was a method introduced 
by Lien, Shantz, and Pratt [Prat87 , Chan88 , Rocc89] 
which attempted to bridge the gap between recursive 
subdivision and uniform subdivision. In this scheme the 
Euclidean distance between the current point and the 
next point is evaluated, if this distance is greater than a 
pixel the step size is halved and if the distance is smaller 
than a pixel it is doubled. The curves which are gen
erated using this method can be very accurate bu t the 
method suffers from serious drawbacks. First the 
unwary implementer may end up with an infinite loop 
as the method doubles and halves the next parametric 
step in an effort to find a correct step, since the distance 
is not linearly related to the parametric step. A simple 
solution to this is to check for the undershoot first, then 
check for the overshoot, and accept the resulting step. 
This ensures that a step is always taken . A second and 
more serious flaw is the possibility of omitting part of 
the curve, this can occur if a large initial value is 
selected for c. In Figure 1 we see a situation where a 
selection of 6=1 will result in a single pixel being ren
dered, since the two end points of the curves are 
geometrically the same. Cases like this will always come 
up with a method which uses onl.v a local, as opposed to 
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a global, criterion for the span considered. 

1.2. Geometric vs Parametric Straightness 

There can be two criteria when evaluating the straight
ness of a parametric curve. The first one, which can be 
called geometric straightness, is related to the distance 
between the curve and some straight line segment 
approximation. This would be ideally something like the 
minimum largest distance over the whole curve, or some 
value bounding it. The other one, parametric straight
ness, is related to the distance between a point on the 
straight line segment and the point on the curve with 
the same parameter. Here again one might be interested 
in a minmax measure . It of course assumes a parametri
zation of the line segment, and different parametriza
tions will give different results. One assumes here a uni
form (ie linear) parametrization for the line segment. It 
is clear that the parametric straightness "contains" the 
geometric straightness, since the distance in the former 
is always greater than or equal to the distance in the 
latter. In this respect the distinction is similar to the 
difference between geometric and parametric continuity 
(where the latter implies the former) . While in most 
applications involving surfaces parametric values are 
necessary, it is not obviously the case with curves. It 
could be the case that most curves used in practice are 
not very far from an arc-length parametrization, in 
which case the difference is not important. In curves 
used for shape design there is no advantage, and some 
disadvantages, in using a very non-uniform parametriza
tion . Furthermore, if one uses a subdivision process (as 
we do) the non-aniformi ty decreases at each subdivision 
level. 

1.3. Speed and Accuracy 

In this paper we introduce the use of the Chebyshev 
basis for subdivision and straightness control, and show 
how these polynomials provide us with a good recursive 
adaptive curve drawing method. The Chebyshev poly
nomials provide an accurate and inexpensive error meas
ure, and the subdivision of curves defined in this basis is 
quite fast . We will present statistics on over a thousand 
curves comparing our method to forward and adaptive 
forward differencing methods, showing our method to be 
faster for the same accuracy, or more accurate for the 
same speed. 

2. Chebyshev Polynomials 

The basis polynomials used with parametric curves are 
chosen primarily because they facilitate the design pro
cess, and additionally because they are easy to evaluate. 
There is no reason to believe that the same formulation 
will facilitate the display of the curve. Since the design 
and the rendering are normally two separate phases, and 
the rendering is done many times for every design 
change, there is little or no penalty incurred in a system 
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Figure 1. 
The wrong first step. 

if the internal representation uses a polynomial basis 
different from the one used for design . In fact this is 
widespread practice: for example systems using f3-
splines often use Bezier-Bernstein polynomials for 
rendering, since these give simpler subdivision formulae . 
It is therefore worth exploring if there is some polyno
mial basis (we want a basis so that the same space of 
curves is represented) which would speed up intersection 
calculations. 

2.1. Definition 

Chebyshev polynomials are orthogonal polynomials usu
ally denoted Tn(x) such that : 

To(x) = 1 

Tl(X) = X 

and with the recurrence relation: 

Tn(x) = 2 x Tn-l(X) - Tn-2(X) 

It is immediate that each polynomial Tn(x) is of degree 
n. A remarkable relation makes apparent many of their 
interesting properties: 

T n( CDSO) = cos( n 0) 

Figure 2 gives the plot of the first 4 Chebyshev polyno
mials. The polynomials are best used when the parame
ter varies in the closed interval [- 1,1 ]. 

Since Chebyshev polynomials are orthogonal, any poly
nomial of degree ~ n can be written as a linear combi-
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nation: 

Figure 2. 
First 4 Chebyshev polynomials. 

n 

Pn(x) = ~ ak TJ.,x) 
k=O 

In the case of a polynomial of degree 3, using standard 
notation: 

The 4x4 matrix [T] is: 

T~[~ 
0 0 4 
0 2 0 
1 0 -3 
0 - 1 0 1 

In geometric modeling with parametric curves and sur
faces, the parameter(s) range is usually [0,1 ], so to con
vert a standard parametric representation from their ori
ginal basis to the Chebyshev basis, one has to use the 
following matrix to convert from the [0,1 ] range to the 
[- 1,1 ] range: 

R - [-~2 ~ ~ ~ 1 - 6 - 4 2 0 
- 1 1 -1 1 

This matrix premultiplies [T]. 
To obtain the Chebyshev coefficient as a column vector 
r A 1 from any basis represen tation whose coefficient 
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column vector is [P] (often called the control points). 
whose 4x4 matrix is [M] (the unit matrix in the case of 
the power basis). and whose parameter is in the range 
[0.1 ]. one has to compute: 

[A] = [Tr1 [R r 1 [M] [P] (1) 

where 

R-1 _ 1/8 3 2 0 0 
[

1 0 0 0 1 
- 3 4 4 0 11 = 1/4 [~ ~ ~ ~ 1 

1 248 100 0 

The product of the 3 matrices has only to be computed 
once for a given basis. If we call [C] the basis conver
sion matrix: 

[Cl = [Tr1 [R r 1 [M] (2) 

then the transformation is: 

[A] = [Cl [P] (3) 

The basis conversion matrices for the power basis [Cp ] 

and the Be'zier basis [Cb] are 

C - 1/32 [:105 _66 ~ ~~ 1 
p - 6 - 6 - 6 6 

-1 3 - 3 1 

[

10 
15 

Cb = 1/32 ~ 

2.2. Properties 

The basic properties of Chebyshev polynomials are as 
follows (see[RivI74 ] for more details and proofs). 

• All the n roots of Tn(x) are real and within the 
open interval (-1.1). The roots are given by: 

2k-l 
ek,n = cos-

2
-mr k = 1 •....• n 

• Within the interval [-1.1]. I Tn(x) I ~ 1. The 
maxima and minima occur at: 

• 

k 
xk = COS-7I" k = O •. .. .• n 

n 

where Tn(x) has the values: 

Tn(Xk) = (_I)k 

The Chebyshev polynomials have the mlmmax 
property. Again. for any polynomial Pn(x) of 
degree ~ n we can find a vector [A ] of coefficients 
ak such that: 

n 

Pn(x) = ~ ak TJx) 
k=0 
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If we drop the Tn(x) term from the preceding 
sum. we obtain a polynomial of degree ~n-l: 

n-1 

P:-1(x) = ~ ak TJx) 
k=0 

P:-1( x) has the property that of all the polynomi
als of degree ~ n- l the maximum of the absolute 
difference: 

is minimum over the interval [-1.1]. Moreover. 
En = I a,J. that is the maximum difference is the 
absolute value of the coefficient of the Chebyshev 
polynomial dropped. 

The last property is central to the use of these polyno
mials in boxing and intersection. It means that if we 
want to replace a polynomial with another of smaller 
degree. then the way to minimize the maximum error is 
to convert the polynomial into its Chebyshev represen
tation and drop the Chebyshev polynomial of highest 
degree. 

A problem occurs because in practice we often want to 
reduce the degree by 2. for example from a cubic to a 
straight line segment. In general Chebyshev polynomi
als do not give the best approximation . In the case of a 
reduction by 2 degrees. the answer are polynomials 
whose value depends on the ratio of the coefficients of 
the two highest degree monomials. and are called Zolo. 
tare v polynomials of order n (if the original polynomial 
is of degree n+ 1) [RivI74] . Fortunately Chebyshev 
polynomials are close approximations of the best. and. 
for instance. in the case of going from degree 3 down to 
degree I" the Chebyshev approximation is ao + a1x. 
and we have: 

Since it is so easy to compute the reduced polynomials. 
and as we will see the cost of not having the best possi
ble polynomial is minor. we fell strongly that Chebyshev 
polynomial still should be used where they are not 
theoretically optimal. 

3. Subdivision 

In many algorithms it will be necessary to subdivide 
curves. One could of course subdivide in whatever basis 
the curves are initially represented. or other basis 
efficient for subdivision. but the conversion to and from 
the Chebyshev basis would more than offset the savings. 
Moreover subdividing using the Chebyshev basis directly 
is relatively easy. 

Given a curve C defined by the Chebyshev coefficients 
(ao. ab a2. a3). the following matrices. when applied to 
the coefficient vector will produce the coefficients of the 
two half curves: 
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[

1 1/2 - 1/4 -1/4] o 1/2 1 3/8 
M(-l,O)--+(-l,l) = 0 0 1/4 3/4 

o 0 0 1/8 

[

1 - 1/2 - 1/4 1/4] o 1/2 - 1 3/8 
M(O,l)-+(-l,l) = 0 0 1/4 -3/4 

o 0 0 1/8 
Since many modern workstations now provide hardware 
for performing 4 by 4 matrix multiplication this subdivi
sion can be computed using matrices. In the case where 
this hardware is not available the splitting can be more 
efficiently computed as follows. If the coefficients of the 
two sub-curves are called A' and A", where A' 
corresponds to the [-1 ,0] interval in parameter space 
and A" corresponds to [0,1 ], then the computation of 
the new coefficients is made more efficient by the use of 
temporary variables: 

to = ao/8 , t1 = a3/4, t2 = t1 *4 , t3 = t1+1o, 

t4 = a2/4 , t5 = acrt4,t6 = at!2, t7 = tot1 ' t8 = t6+t3 

a'D = to, a\ = t4- t1, a'2 = tg-a2' a'3 = tat7' 

a"o = to, a'\ = t4+t1l a"2 = t8+a2, a"3 = t5+t7 

4. Linear Chebyshev approximation. 

Given a curve C defined by the Chebyshev polynomials 
(aD, a1 , a2 , a3) we define the following quantities: 

6x =l a2J+l a3J 
6y =la21+l a31 

y y 

Since the Chebyshev polynomials T2 and T3 are 
bounded by [- 1,1], 6x and 6y bound the distance 
between a point: 

on the line and its parametric equivalent on the curve: 

Pc = aD To(to) + a1 T1(to) + a2 T2( to) + a3 T3(to) 

in the X and the Y direction , respectively. If the Che
byshev linear approximation is replaced with an interpo
lating line: 

the parametric error or distance between parametric 
points on the interpolating line and the curve is then 
bounded by 26x and 26y in X and Y respectively. 

The maximum Euclidean distance D between a point on 
the curve and its parametric equivalent on the line seg
ment is bounded: 

D ~ -)6/ + 6y
2 ~ F2 max(6:L1 6y) 
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5. Stopping criteria 

For regular subdivision the requirement is to find a glo
bal 6 which optimizes both look and speed. In some 
applications this can be set interactively by the user. If 
an adaptive subdivision is required then adequate and 
objective stopping criteria are needed. For adaptive for
ward differencing the stopping criteria is simply that the 
next step be no further than a pixel away. We are 
interested in developing a stopping criteria which 
correctly identifies sections of the curve which can be 
approximated by a straight line segment . This criterion 
is a good one both because most hardware draws 
straight lines efficiently (but of course filtered lines is 
another story), and because in many application 
numerous curves have low or zero curvature (in fact are 
designed to be straight) . Since any point on the curve 
cannot be farther from its corresponding point on the 
straight line segment than (6 x , 6y), it is convenient to 
define a new error measure on a curve namely 
6 = max(6:L16y). The maximum distance D defined 
above is then bounded by F2 6. 

The use of the Chebyshev polynomials thus provides us 
with a measure of deviation from linearity which is close 
to optimal (and optimal in many cases) and whose com
putation only costs two additions and a comparison 
given the Chebyshev coefficients for a span. 

6. The algorithm for drawing lines. 

The following pseudocode presents the algorithm using 
adaptive recursive subdivision and a stopping criterion 
based on Chebyshev basis: 

Curve = record 
aD, a1 , a2, a3 

end Curve 

DrawCurve( C,f) 
Curve c; real f 

if 6( c) < f then 
/* Draw the interpolating line * / 
DrawLine( ao-a1+aZ- a3, aO+a1+a2+a3) 

else 
SplitCurve( c,left ,right) 
/* SplitCurve applies formulas given in 
** section 3 to curve c to generate 
* * curves left and righ t 
*/ 
DrawCurve(left, f) 
DrawCurve( right, f ) 

end if 
end DrawCurve 

This method answers both general requirements for line 
drawing. First it is a fast adaptive method, and second 
it is capable of displaying curves with little error. It 
avoids the "self intersecting curve" problem since the 
error measure is a guaranteed global maximum over the 
entire span. 
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Figure 3 shows an example of a curve drawn adaptively 
with this algorithm, and the same curve drawn by for
ward differencing at a step corresponding to the smallest 
step used in the adaptive method. 

Figure 3. 
Cubic curve drawn adaptively and by forward difterencing. 

7. Statistics 

Just claiming a method is better of course does not 
make it so. Since the relative performance of various 
approaches depends on the distribution of the charac
teristics of the curves involved, the results will be some
what application dependent. A major application using 
large numbers of cubic curves is font design and display. 
On display, these curved outlines can be filled or drawn. 
We will here consider the case where they are drawn. 
Another paper will address the case where they are 
filled, since the basic operations are quite different 
[Buch91]. A single font set provides enough curves to 
obtain meaningful comparisons. Of course the exact 
results will vary from fonts to fonts, and if a good pred
ictor of actual performance is desired. the frequency of 
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individual letters and point sizes have to be taken into 
account. 

For our example we used the outline curves for the 
lower case letters of the Zapf Chancery font (nominally 
at 12 ps) as provided by the Cubicomp modelling sys
tem. The fonts were initially designed by BitStream, 
and are described in the Cubicomp system as cubic with 
bias and tension parameters (see [Koch84] for more 
details) . The outline of a few letters is shown in Figure 
4. 

Figure 4. 
Outlines of Zapf Olancery Font . 

These were converted to the Chebyshev basis (and to 
the Bezier basis for later statistics as well) which pro
vided us with 1303 curves (many of them actually 
straight line segments) . 

The first set of statistics was calculated by rendering 
each curve 1000 times (to beat the coarseness of Unix 
"time" command) using three methods. The first 
method used was our proposed method. It does not 
include the time to convert initially to the Chebyshev 
basis , since in a production system the fonts would be 
stored in this form. The limit for 6 was set at a length 
equal to one pixel spacing. 

The second method used a forward differencing tech
nique with the subdivision level set for all curves by 
keeping track of the maximum depth necessary in the 
Chebyshev step. This is necessary to obtain curves that 
are comparable in quality, since it is the only way for 
non-adaptive forward differencing to achieve the same 
precision achieved by the previous method. If leve l is 
the maximum level of subdivision needed, the 6.t for the 
forward differencing step is then 6.t = 1/2 level. 

The third method uses adaptive forward differencing to 
render the curve, with a step always between a half and 
one pixel. These statistics are presented in table 1 
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It is clear that the Chebyshev-based method takes on 
the average 30% of the time taken by forward 
differencing in our implementation. Adaptive forward 
differencing is really not in the picture. 

To be more comprehensive, two more comparisons are 
worth making. One is to use the Chebyshev approach 
(or a similar adaptive scheme) to predetermine the At 
step for forward differencing on a curve by curve basis. 
This is using our approach only as for the linearity cri
terion. The other interesting comparison is between the 
levels of subdivision achieved when using our method 
and using a common method derived from the convex 
hull property of the Be'zier control points. For this pur
pose we converted the curve representation to Be'zier 
(not charged) and at each level computed the maximum 
distance from the two "middle" B~zier control points 
(PI' P 2) to the line segment Po Pa. The curve is 
guaranteed to be found within this limit multiplied by 
2/3 (since the maximum weight on the middle points is 
2/3). Table 2 gives the results in these two cases, with 
a repeat of the relevant number for the Chebyshev 
method . 

It is clear that if "assisted" forward differencing can be 
improved by a factor of about 7 (that is an average of 
almost three level of su bdivision per curve). Of course 
the cost of finding out what the best level is is not 
charged to the method in this case, but it could be 
precomputed and stored which each curve (that would 
preclude scaling the curves, of course, but in font appli
cation this might be realistic). 

The comparison with the Be'zier test shows that the 
average level used is about 20% higher, which results in 
about 20% more work . What makes matter worse for 
the Be'zier solution is that while subdivision is a little 
faster for Be'zier than for Chebyshev (7 shifts and 6 adds 
for Be'zier, 10 shifts and 10 adds for Chebyshev) the 
computation of 8 is quite worse for Be'zier (one could 
have better implementations, but our version uses 20 
multiplications, 15 adds/subtracts, 1 square root and 2 
to 6 compares for Be'zier, versus 2 adds and 5 compares 
for Chebyshev). In fact the timing shown confirm the 
large disparity in performance between the two (Be'zier 
on the average takes twice as much as Chebyshev) . 

8. Conclusions 

We have introduced the use of the Chebyshev polyno
mial basis for fast adaptive recursive drawing of cubic 
parametric curves. This basis provides us with an acu
rate and inexpensive error measure for deviation from 
linearity . We have shown on statistics on a representa,
tive sample of more than 1300 curves that it is notably 
faster than forward differencing in our implementation, 
and that it gives a better stopping criterion that the use 
of the Be'zier control points. 
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For a better assessment of a practical implementation, 
the trade-offs between hardware, firmware, and software 
computations should be evaluated. As mentioned 
before, many systems use hardware matrix multiplica
tion for forward differencing. On the other hand the 
operations of subdivision and computation of 8 are 
easily microcoded in most systems as well. The speed of 
line drawing vs single pixel writing is also a relevant fac
tor to consider. 

The properties of Chebyshev polynomials make them 
also useful for boxing and intersection, and we are 
studying these aspects as well. Work currently under 
way involves the use of the Chebyshev basis to speed up 
intersections between polynomial parametric curves or 
surfaces and rays, for filling and trimming in 2D, and 
ray-tracing in 3D ([Four90, Buch91]). We are also 
investigating the use of a similar method to draw 
filtered curves. 
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1024 by 1024 

Subdivision Chebyshev Forward Adaptive 
depth method diff· difJ. 
(level) {ms} {ms} {ms} 

Average 1.132 0.3043 1.048 8.048 
Minimum 0 0.02 1.01 1.03 
Maximum 5 2.6 1.22 135.4 
Std dev 1.23 0.31 0.01 7.4 

Table 1: Timing comparisons for curve drawing. 

1024 by 1024 

Subdivision Bezier B€zier Chebyshev Assisted Forward 
depth basis basis method difference 

{level} (level) {ms} {ms} -{ms} 

Average 1.132 1.378 0.5979 0.3043 0.1358 
Minimum 0 0 0.05 0.02 0.04 
Maximum 5 5 14.93 2.6 1.04 
Std dev 1.23 1.17 0.84 0.31 0.102 

Table 2: Comparisons with the Bezier convex hull 
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