
16

Drawing Parametric Curves
Using Chebyshev Polynomials

John Buchanan
Aloin Fournier

Department of Computer Science
University of British Columbia
Vancouver, British Columbia

V6T lW5
{buchanan I fournier }@cs.ubc.ca

Abstract

Polynomial parametric curves are powerful and popular
modeling tools in Computer Graphics and Computer
Aided Design. There are two requirements that are
placed on techniques for displaying these curves. In
interactive applications, such as drawing and design, the
need is for a fast display. In non interactive applica
tions, such as typeset ting, the need is for accuracy (or at
least the appearance of accuracy). Most techniques
address one or the other of these conflicting require
ments.

We propose and demonstrate the use of Chebyshev basis
functions for an adaptive curve drawing method which
is both fast and accurate. The use of Chebyshev poly
nomials provide us with an inexpensive linearity meas
ure which is useful in an recursive algorithm. Further
applications of this approach include efficient boxing
and the generation of smooth filtered curves.

Resume

Les courbes parametriques polynomiales constituent un
outil puissant et populaire pour la modelisation en
infographie et en conception assistee par ordinateur. Les
techniques d'affichage pour ces courbes doivent repondre
cl. deux exigences. Dans les applications interactives,
telles que le dessin et le design , l'affichage doit etre tres
.rapide. Dans les applications non-interactives, telles que
la typographie digit ale, la precision (en tout cas
l'apparence de la precision) est primordiale. La plupart
des techniques sont concernees avec l'une ou l'autre de
ces exigences.

Nous proposons et nous illustrons I'utilisation des
polynomes de Tchebychev comme bases pour une tech
nique adaptive de trace qui est et la fois rapide est
precise. L'utilisation des polynomes de Tchebychev
nous fournit une mesure de linearite economique tres
utile dans le cadre d'une methode recursive. D'autres
applications de la meme approche incluent une mise en
boite efficace et la generation de courbes lissees et
filtrees.

CR Categories: 1.3.3 [Computer Graphics]:
Picture/Image Generation 1.3.5 [Computer Graphics] :
Computational Geometry and Object Modeling

General Terms: algorithms.

Additional Keywords and Phrases: Chebyshev polynomi
als, Linearity criteria, Adaptive curve drawing.

1. Introduction

Polynomial parametric curves are powerful and popular
modeling tools in Computer Graphics and Computer
Aided Design. A combination of hardware and algo
rithmic advances have made it possible to draw hun
dreds or thousands of these curves in real time on
modern graphics workstations. There are two require
ments that are placed on techniques for displaying these
curves. In interactive applications the need is for a fast
display, and this can be achieved by drawing long
straight line segments, sacrificing the smoothness of the
original curve. In non-interactive applications the need
is for accuracy . It is interesting to note that what
matters is usually the appearance of accuracy . For
example a curve with a visible discontinuity is normally
perceived as worse than a smooth curve, even though by
some metric the curve with the discontinuity might be
better than the smooth curve.

Most curve drawing techniques address one or the other
of these conflicting requirements. We propose here a
technique which is adaptive but fast, and has the advan
tage of offering a good "quality" criterion as part of the
algorithm.

1.1. Current Methods

Since most of the display systems we work with
currently are capable of drawing straight lines and set
ting pixels , the task of drawing a parametric curve can
be reduced to that of either drawing a straight line or
setting pixels. So an obvious strategy is to subdivide a
curve until it can be satisfactorily represented by a suc
cession of straight line segments. There are many
methods for subdividing parametric curves but the
method of choice has been to perform a uniform subdivi
sion of the curve in the parameter t. The curve is given
as:

Q(t) = (X(t), y(t))

where X(t) and Y(t) are polynomials m t. Given a

Graphics Interface '91

6; = t'+l-t;, one calculates the coordinates Q(t j) and
Q(ti+i) and draw the line segment which connects
them. The full cost of directly evaluating the curve poly
nomials can be avoided by using forward differencing
(see Foley & van Dam [Fole82] for a description of the
technique in this context). Since the forward differencing
computations can be put in the form of a multiplication
by a 4x4 ma.trix in the case of cubic curves, in some
graphics systems hardware is used to speed up this pro
cess. A major drawback of this method is tha.t there is
no obvious good heuristic for determining a correct
value of 6. The selection of a small 6 can result in
excessive computation, the selection of a large 6 can
result in a curve with a polygonal look (ie obvious
discontinuities) and large "missing parts".

Recursive subdivision is an old numerical method, and
Catmull [Catm75] used it in the context of the display
of Bezier surfaces. Many other followed, and to mention
a still popular method Lane, Carpenter, Whitted and
Blinn [Lane80] showed how a curve could be recursively
subdivided until each section of the curve could be ade
quately approximated by a straight line segment. In
their method they used the Bernstein polynomial basis
and used the convex hull property of the Bezier curves
to produce a measure of 'straightness'. Given a Bezier
curve defined by the control points Po, Pi, P 2 and P 3,

the straight line segment which approximates this curve
is the line from Po to P 3 and the error measure is
defined by whichever of the points Pi, P 2 is furthest
from the approximating line. The cost of calculating
this error measure at each level of subdivision is quite
high .

Adaptive forward differencing was a method introduced
by Lien, Shantz, and Pratt [Prat87 , Chan88 , Rocc89]
which attempted to bridge the gap between recursive
subdivision and uniform subdivision. In this scheme the
Euclidean distance between the current point and the
next point is evaluated, if this distance is greater than a
pixel the step size is halved and if the distance is smaller
than a pixel it is doubled. The curves which are gen
erated using this method can be very accurate bu t the
method suffers from serious drawbacks. First the
unwary implementer may end up with an infinite loop
as the method doubles and halves the next parametric
step in an effort to find a correct step, since the distance
is not linearly related to the parametric step. A simple
solution to this is to check for the undershoot first, then
check for the overshoot, and accept the resulting step.
This ensures that a step is always taken . A second and
more serious flaw is the possibility of omitting part of
the curve, this can occur if a large initial value is
selected for c. In Figure 1 we see a situation where a
selection of 6=1 will result in a single pixel being ren
dered, since the two end points of the curves are
geometrically the same. Cases like this will always come
up with a method which uses onl.v a local, as opposed to

17

a global, criterion for the span considered.

1.2. Geometric vs Parametric Straightness

There can be two criteria when evaluating the straight
ness of a parametric curve. The first one, which can be
called geometric straightness, is related to the distance
between the curve and some straight line segment
approximation. This would be ideally something like the
minimum largest distance over the whole curve, or some
value bounding it. The other one, parametric straight
ness, is related to the distance between a point on the
straight line segment and the point on the curve with
the same parameter. Here again one might be interested
in a minmax measure . It of course assumes a parametri
zation of the line segment, and different parametriza
tions will give different results. One assumes here a uni
form (ie linear) parametrization for the line segment. It
is clear that the parametric straightness "contains" the
geometric straightness, since the distance in the former
is always greater than or equal to the distance in the
latter. In this respect the distinction is similar to the
difference between geometric and parametric continuity
(where the latter implies the former) . While in most
applications involving surfaces parametric values are
necessary, it is not obviously the case with curves. It
could be the case that most curves used in practice are
not very far from an arc-length parametrization, in
which case the difference is not important. In curves
used for shape design there is no advantage, and some
disadvantages, in using a very non-uniform parametriza
tion . Furthermore, if one uses a subdivision process (as
we do) the non-aniformi ty decreases at each subdivision
level.

1.3. Speed and Accuracy

In this paper we introduce the use of the Chebyshev
basis for subdivision and straightness control, and show
how these polynomials provide us with a good recursive
adaptive curve drawing method. The Chebyshev poly
nomials provide an accurate and inexpensive error meas
ure, and the subdivision of curves defined in this basis is
quite fast . We will present statistics on over a thousand
curves comparing our method to forward and adaptive
forward differencing methods, showing our method to be
faster for the same accuracy, or more accurate for the
same speed.

2. Chebyshev Polynomials

The basis polynomials used with parametric curves are
chosen primarily because they facilitate the design pro
cess, and additionally because they are easy to evaluate.
There is no reason to believe that the same formulation
will facilitate the display of the curve. Since the design
and the rendering are normally two separate phases, and
the rendering is done many times for every design
change, there is little or no penalty incurred in a system

Graphics Interface '91

Figure 1.
The wrong first step.

if the internal representation uses a polynomial basis
different from the one used for design . In fact this is
widespread practice: for example systems using f3-
splines often use Bezier-Bernstein polynomials for
rendering, since these give simpler subdivision formulae .
It is therefore worth exploring if there is some polyno
mial basis (we want a basis so that the same space of
curves is represented) which would speed up intersection
calculations.

2.1. Definition

Chebyshev polynomials are orthogonal polynomials usu
ally denoted Tn(x) such that :

To(x) = 1

Tl(X) = X

and with the recurrence relation:

Tn(x) = 2 x Tn-l(X) - Tn-2(X)

It is immediate that each polynomial Tn(x) is of degree
n. A remarkable relation makes apparent many of their
interesting properties:

T n(CDSO) = cos(n 0)

Figure 2 gives the plot of the first 4 Chebyshev polyno
mials. The polynomials are best used when the parame
ter varies in the closed interval [- 1,1].

Since Chebyshev polynomials are orthogonal, any poly
nomial of degree ~ n can be written as a linear combi-

18

nation:

Figure 2.
First 4 Chebyshev polynomials.

n

Pn(x) = ~ ak TJ.,x)
k=O

In the case of a polynomial of degree 3, using standard
notation:

The 4x4 matrix [T] is:

T~[~
0 0 4
0 2 0
1 0 -3
0 - 1 0 1

In geometric modeling with parametric curves and sur
faces, the parameter(s) range is usually [0,1], so to con
vert a standard parametric representation from their ori
ginal basis to the Chebyshev basis, one has to use the
following matrix to convert from the [0,1] range to the
[- 1,1] range:

R - [-~2 ~ ~ ~ 1 - 6 - 4 2 0
- 1 1 -1 1

This matrix premultiplies [T].
To obtain the Chebyshev coefficient as a column vector
r A 1 from any basis represen tation whose coefficient

Graphics Interface '91

column vector is [P] (often called the control points).
whose 4x4 matrix is [M] (the unit matrix in the case of
the power basis). and whose parameter is in the range
[0.1]. one has to compute:

[A] = [Tr1 [R r 1 [M] [P] (1)

where

R-1 _ 1/8 3 2 0 0
[

1 0 0 0 1
- 3 4 4 0 11 = 1/4 [~ ~ ~ ~ 1

1 248 100 0

The product of the 3 matrices has only to be computed
once for a given basis. If we call [C] the basis conver
sion matrix:

[Cl = [Tr1 [R r 1 [M] (2)

then the transformation is:

[A] = [Cl [P] (3)

The basis conversion matrices for the power basis [Cp]

and the Be'zier basis [Cb] are

C - 1/32 [:105 _66 ~ ~~ 1
p - 6 - 6 - 6 6

-1 3 - 3 1

[

10
15

Cb = 1/32 ~

2.2. Properties

The basic properties of Chebyshev polynomials are as
follows (see[RivI74] for more details and proofs).

• All the n roots of Tn(x) are real and within the
open interval (-1.1). The roots are given by:

2k-l
ek,n = cos-

2
-mr k = 1 •....• n

• Within the interval [-1.1]. I Tn(x) I ~ 1. The
maxima and minima occur at:

•

k
xk = COS-7I" k = O •. .. .• n

n

where Tn(x) has the values:

Tn(Xk) = (_I)k

The Chebyshev polynomials have the mlmmax
property. Again. for any polynomial Pn(x) of
degree ~ n we can find a vector [A] of coefficients
ak such that:

n

Pn(x) = ~ ak TJx)
k=0

19

If we drop the Tn(x) term from the preceding
sum. we obtain a polynomial of degree ~n-l:

n-1

P:-1(x) = ~ ak TJx)
k=0

P:-1(x) has the property that of all the polynomi
als of degree ~ n- l the maximum of the absolute
difference:

is minimum over the interval [-1.1]. Moreover.
En = I a,J. that is the maximum difference is the
absolute value of the coefficient of the Chebyshev
polynomial dropped.

The last property is central to the use of these polyno
mials in boxing and intersection. It means that if we
want to replace a polynomial with another of smaller
degree. then the way to minimize the maximum error is
to convert the polynomial into its Chebyshev represen
tation and drop the Chebyshev polynomial of highest
degree.

A problem occurs because in practice we often want to
reduce the degree by 2. for example from a cubic to a
straight line segment. In general Chebyshev polynomi
als do not give the best approximation . In the case of a
reduction by 2 degrees. the answer are polynomials
whose value depends on the ratio of the coefficients of
the two highest degree monomials. and are called Zolo.
tare v polynomials of order n (if the original polynomial
is of degree n+ 1) [RivI74] . Fortunately Chebyshev
polynomials are close approximations of the best. and.
for instance. in the case of going from degree 3 down to
degree I" the Chebyshev approximation is ao + a1x.
and we have:

Since it is so easy to compute the reduced polynomials.
and as we will see the cost of not having the best possi
ble polynomial is minor. we fell strongly that Chebyshev
polynomial still should be used where they are not
theoretically optimal.

3. Subdivision

In many algorithms it will be necessary to subdivide
curves. One could of course subdivide in whatever basis
the curves are initially represented. or other basis
efficient for subdivision. but the conversion to and from
the Chebyshev basis would more than offset the savings.
Moreover subdividing using the Chebyshev basis directly
is relatively easy.

Given a curve C defined by the Chebyshev coefficients
(ao. ab a2. a3). the following matrices. when applied to
the coefficient vector will produce the coefficients of the
two half curves:

Graphics Interface '91

[

1 1/2 - 1/4 -1/4] o 1/2 1 3/8
M(-l,O)--+(-l,l) = 0 0 1/4 3/4

o 0 0 1/8

[

1 - 1/2 - 1/4 1/4] o 1/2 - 1 3/8
M(O,l)-+(-l,l) = 0 0 1/4 -3/4

o 0 0 1/8
Since many modern workstations now provide hardware
for performing 4 by 4 matrix multiplication this subdivi
sion can be computed using matrices. In the case where
this hardware is not available the splitting can be more
efficiently computed as follows. If the coefficients of the
two sub-curves are called A' and A", where A'
corresponds to the [-1 ,0] interval in parameter space
and A" corresponds to [0,1], then the computation of
the new coefficients is made more efficient by the use of
temporary variables:

to = ao/8 , t1 = a3/4, t2 = t1 *4 , t3 = t1+1o,

t4 = a2/4 , t5 = acrt4,t6 = at!2, t7 = tot1 ' t8 = t6+t3

a'D = to, a\ = t4- t1, a'2 = tg-a2' a'3 = tat7'

a"o = to, a'\ = t4+t1l a"2 = t8+a2, a"3 = t5+t7

4. Linear Chebyshev approximation.

Given a curve C defined by the Chebyshev polynomials
(aD, a1 , a2 , a3) we define the following quantities:

6x =l a2J+l a3J
6y =la21+l a31

y y

Since the Chebyshev polynomials T2 and T3 are
bounded by [- 1,1], 6x and 6y bound the distance
between a point:

on the line and its parametric equivalent on the curve:

Pc = aD To(to) + a1 T1(to) + a2 T2(to) + a3 T3(to)

in the X and the Y direction , respectively. If the Che
byshev linear approximation is replaced with an interpo
lating line:

the parametric error or distance between parametric
points on the interpolating line and the curve is then
bounded by 26x and 26y in X and Y respectively.

The maximum Euclidean distance D between a point on
the curve and its parametric equivalent on the line seg
ment is bounded:

D ~ -)6/ + 6y
2 ~ F2 max(6:L1 6y)

20

5. Stopping criteria

For regular subdivision the requirement is to find a glo
bal 6 which optimizes both look and speed. In some
applications this can be set interactively by the user. If
an adaptive subdivision is required then adequate and
objective stopping criteria are needed. For adaptive for
ward differencing the stopping criteria is simply that the
next step be no further than a pixel away. We are
interested in developing a stopping criteria which
correctly identifies sections of the curve which can be
approximated by a straight line segment . This criterion
is a good one both because most hardware draws
straight lines efficiently (but of course filtered lines is
another story), and because in many application
numerous curves have low or zero curvature (in fact are
designed to be straight) . Since any point on the curve
cannot be farther from its corresponding point on the
straight line segment than (6 x , 6y), it is convenient to
define a new error measure on a curve namely
6 = max(6:L16y). The maximum distance D defined
above is then bounded by F2 6.

The use of the Chebyshev polynomials thus provides us
with a measure of deviation from linearity which is close
to optimal (and optimal in many cases) and whose com
putation only costs two additions and a comparison
given the Chebyshev coefficients for a span.

6. The algorithm for drawing lines.

The following pseudocode presents the algorithm using
adaptive recursive subdivision and a stopping criterion
based on Chebyshev basis:

Curve = record
aD, a1 , a2, a3

end Curve

DrawCurve(C,f)
Curve c; real f

if 6(c) < f then
/* Draw the interpolating line * /
DrawLine(ao-a1+aZ- a3, aO+a1+a2+a3)

else
SplitCurve(c,left ,right)
/* SplitCurve applies formulas given in
** section 3 to curve c to generate
* * curves left and righ t
*/
DrawCurve(left, f)
DrawCurve(right, f)

end if
end DrawCurve

This method answers both general requirements for line
drawing. First it is a fast adaptive method, and second
it is capable of displaying curves with little error. It
avoids the "self intersecting curve" problem since the
error measure is a guaranteed global maximum over the
entire span.

Graphics Interface '91

Figure 3 shows an example of a curve drawn adaptively
with this algorithm, and the same curve drawn by for
ward differencing at a step corresponding to the smallest
step used in the adaptive method.

Figure 3.
Cubic curve drawn adaptively and by forward difterencing.

7. Statistics

Just claiming a method is better of course does not
make it so. Since the relative performance of various
approaches depends on the distribution of the charac
teristics of the curves involved, the results will be some
what application dependent. A major application using
large numbers of cubic curves is font design and display.
On display, these curved outlines can be filled or drawn.
We will here consider the case where they are drawn.
Another paper will address the case where they are
filled, since the basic operations are quite different
[Buch91]. A single font set provides enough curves to
obtain meaningful comparisons. Of course the exact
results will vary from fonts to fonts, and if a good pred
ictor of actual performance is desired. the frequency of

21

individual letters and point sizes have to be taken into
account.

For our example we used the outline curves for the
lower case letters of the Zapf Chancery font (nominally
at 12 ps) as provided by the Cubicomp modelling sys
tem. The fonts were initially designed by BitStream,
and are described in the Cubicomp system as cubic with
bias and tension parameters (see [Koch84] for more
details) . The outline of a few letters is shown in Figure
4.

Figure 4.
Outlines of Zapf Olancery Font .

These were converted to the Chebyshev basis (and to
the Bezier basis for later statistics as well) which pro
vided us with 1303 curves (many of them actually
straight line segments) .

The first set of statistics was calculated by rendering
each curve 1000 times (to beat the coarseness of Unix
"time" command) using three methods. The first
method used was our proposed method. It does not
include the time to convert initially to the Chebyshev
basis , since in a production system the fonts would be
stored in this form. The limit for 6 was set at a length
equal to one pixel spacing.

The second method used a forward differencing tech
nique with the subdivision level set for all curves by
keeping track of the maximum depth necessary in the
Chebyshev step. This is necessary to obtain curves that
are comparable in quality, since it is the only way for
non-adaptive forward differencing to achieve the same
precision achieved by the previous method. If leve l is
the maximum level of subdivision needed, the 6.t for the
forward differencing step is then 6.t = 1/2 level.

The third method uses adaptive forward differencing to
render the curve, with a step always between a half and
one pixel. These statistics are presented in table 1

Graphics Interface '91

It is clear that the Chebyshev-based method takes on
the average 30% of the time taken by forward
differencing in our implementation. Adaptive forward
differencing is really not in the picture.

To be more comprehensive, two more comparisons are
worth making. One is to use the Chebyshev approach
(or a similar adaptive scheme) to predetermine the At
step for forward differencing on a curve by curve basis.
This is using our approach only as for the linearity cri
terion. The other interesting comparison is between the
levels of subdivision achieved when using our method
and using a common method derived from the convex
hull property of the Be'zier control points. For this pur
pose we converted the curve representation to Be'zier
(not charged) and at each level computed the maximum
distance from the two "middle" B~zier control points
(PI' P 2) to the line segment Po Pa. The curve is
guaranteed to be found within this limit multiplied by
2/3 (since the maximum weight on the middle points is
2/3). Table 2 gives the results in these two cases, with
a repeat of the relevant number for the Chebyshev
method .

It is clear that if "assisted" forward differencing can be
improved by a factor of about 7 (that is an average of
almost three level of su bdivision per curve). Of course
the cost of finding out what the best level is is not
charged to the method in this case, but it could be
precomputed and stored which each curve (that would
preclude scaling the curves, of course, but in font appli
cation this might be realistic).

The comparison with the Be'zier test shows that the
average level used is about 20% higher, which results in
about 20% more work . What makes matter worse for
the Be'zier solution is that while subdivision is a little
faster for Be'zier than for Chebyshev (7 shifts and 6 adds
for Be'zier, 10 shifts and 10 adds for Chebyshev) the
computation of 8 is quite worse for Be'zier (one could
have better implementations, but our version uses 20
multiplications, 15 adds/subtracts, 1 square root and 2
to 6 compares for Be'zier, versus 2 adds and 5 compares
for Chebyshev). In fact the timing shown confirm the
large disparity in performance between the two (Be'zier
on the average takes twice as much as Chebyshev) .

8. Conclusions

We have introduced the use of the Chebyshev polyno
mial basis for fast adaptive recursive drawing of cubic
parametric curves. This basis provides us with an acu
rate and inexpensive error measure for deviation from
linearity . We have shown on statistics on a representa,
tive sample of more than 1300 curves that it is notably
faster than forward differencing in our implementation,
and that it gives a better stopping criterion that the use
of the Be'zier control points.

22

For a better assessment of a practical implementation,
the trade-offs between hardware, firmware, and software
computations should be evaluated. As mentioned
before, many systems use hardware matrix multiplica
tion for forward differencing. On the other hand the
operations of subdivision and computation of 8 are
easily microcoded in most systems as well. The speed of
line drawing vs single pixel writing is also a relevant fac
tor to consider.

The properties of Chebyshev polynomials make them
also useful for boxing and intersection, and we are
studying these aspects as well. Work currently under
way involves the use of the Chebyshev basis to speed up
intersections between polynomial parametric curves or
surfaces and rays, for filling and trimming in 2D, and
ray-tracing in 3D ([Four90, Buch91]). We are also
investigating the use of a similar method to draw
filtered curves.

Acknowledgemen ts

We acknowledge the support of NSERC through an
operating grant and an equipment grant which consider
ably facilitated this research. This work was started
while both authors were at the University of Toronto,
and we acknowledge the support of the Province of
Ontario through an Information Technology Research
Centre Grant . The support of the University of British
Columbia in establishing a computer graphics laboratory
in our department and providing grants to equip it and
run it is greatly appreciated. We also acknowledge the
help of Pierre Poulin, Peter Cahoon and Dave Clement
in various aspects of this work.

Graphics Interface '91

23

1024 by 1024

Subdivision Chebyshev Forward Adaptive
depth method diff· difJ.
(level) {ms} {ms} {ms}

Average 1.132 0.3043 1.048 8.048
Minimum 0 0.02 1.01 1.03
Maximum 5 2.6 1.22 135.4
Std dev 1.23 0.31 0.01 7.4

Table 1: Timing comparisons for curve drawing.

1024 by 1024

Subdivision Bezier B€zier Chebyshev Assisted Forward
depth basis basis method difference

{level} (level) {ms} {ms} -{ms}

Average 1.132 1.378 0.5979 0.3043 0.1358
Minimum 0 0 0.05 0.02 0.04
Maximum 5 5 14.93 2.6 1.04
Std dev 1.23 1.17 0.84 0.31 0.102

Table 2: Comparisons with the Bezier convex hull
References

Buch91 .
J. Buchanan and A. Fournier, "Curve Intersection
and Filling Using Chebyshev Polynomials," In
Preparation, 1991.

Catm75.
Edwin E. Catmull, "Computer Display of Curved
Surfaces," in Proceedings of the IEEE Conference
on Computer Graphics, Pattern Recognition, and
Data Structure, pp. 11-17, Los Angeles, 14 - 16
May 1975.

Chan88.
M Shantz, S Chang, "Rendering Trimmer
NURBS with Adaptive forward Differencing,"
Computer Graphics, vol. 22, 1988.

Fole82 .
James D. Foley and Andries van Dam, Funda
mentals of Interactive Computer Graphics,
Addison-Wesley Publishing Company, 1982.

Four90 .
A. Fournier and J . Buchanan, "Chebyshev Poly
nomials for Boxing and Intersections of
Parametric Surfaces," Technical Report, Depart
ment of Computer Science, University of British
Columbia, 1990.

Koch84.
D.H.U. Kochanek and R.H . Bartels, "Interpolat
ing splines with local tension, continuity, and bias
control," Comput. Graphics (USA), vol. 18, pp.
33-41, July 1984.

Lane80.
J.M. Lane, L.C. Carpenter, T . Whitted, and J .F .
Blinn, "Scan Line Methods for Displaying
Parametrically Defined Surfaces," Comm. 0/ the

A CM, vol. 23, no. 1, pp. 23-34, January 1980.

Prat87.
Hueue-Ling Lien, M Shantz, V Pratt, "Adaptive
Forward Differencing for Rendering Curves and
Surfaces," Computer Graphics, vol. 21, 1987.

Rivl74 .
T. J. Rivlin, The Chebyshev Polynomials, John
Wiley & Sons, 1974.

Rocc89.
S Chang, M Shantz, R Rocchetti, "Rendering
Cubic Curves and Surfaces with Integer Adaptive
Forward Differencing," Computer Graphics, vol.
23, Dallas, 1989.

Graphics Interface '91

