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Abstract 

This paper is concerned with the problem of reconstruct­
ing the surfaces of three-dimensional objects, given a 
collection of planar contours representing cross sections 
through the objects. This problem has important ap­
plications in clinical medicine, bio-medical research and 
instruction, and industrial inspection. 

The problem can be broken into four subproblems, the 
correspondence problem, the tiling problem, the branch­
ing problem, and the surface fitting problem. We describe 
our system for surface reconstruction from sets of con­
tours with respect to each of these subproblems. Special 
attention is given to the correspondence and branching 
problems. 

Resume 

Cet article examine le probleme de la reconstruction de 
la surface d 'un objet a. trois dimensions a. partir d'une 
serie de profiles plans represent ants des sections prises 
a. travers l'objet. Ce probleme a d'importantes appli­
cations en medecine clinique, en recherche biomedicale, 
dans l'enseignement et en contr6le industriel. 

Le probleme peut Hre divise en quatres parties: le 
probleme de correspondance, le probleme de facettage, le 
probleme de branchement et le probleme d'interpolation 
de la surface. Nous decrivons notre solution pour la re­
construction de surfaces a. partir de profiles par rapport 
a. chacune de ces ta.che. U ne attention particuliere est 
portee aux problemes de correspondance et de branche­
ment . 

Keywords: surface reconstruction, tiling, meshes, sur­
face fitting, branching surfaces 
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1 Introduction 

The problem of reconstructing a three-dimensional sur­
face from a set of planar contours is an important prob­
lem in diverse fields . For example, biologists try to un­
derstand the shape of microscopic objects from serial sec­
tions through them. Analysis of neural tissue involves at­
tempts to reconstruct the network from serial slices. In 
clinical medicine, the data generated by various imaging 
techniques such as CAT, ultrasound and NMR provide a 
series of slices through the object of study. 

The following definitions will be used: 

• A contour is a simple polygon representing the in­
tersection of the surface of an object and the plane 
of its section. 

• A section is the set of contours formed by one slice 
through an area of interest . The contours in a sec­
tion do not necessarily come from the same object. 

• A canyon is a region between two contours that 
merge in an adjacent section. Canyons are formed 
when two contours are close together along an ex­
tended portion of their perimeters. 

There are two basic approaches to constructing surfaces 
from contours: volume based and surface based. Volume 
based approaches assume data is available as a three­
dimensional grid. Surface based approaches assume the 
data defines the intersection of a surface and a plane of 
sectioning. Which approach is most applicable depends 
on the nature of the data. When the available data takes 
the form of a three-dimensional lattice of density values, 
as is the case with NMR and other radiological methods, 
a volume based approach such as the marching cubes al­
gorithm of Lorensen and Cline [10] is applicable. If the 
available data is in the form of a set of closed contours de­
noting the surfaces of the objects to be reconstructed, as 
would be available from hand digitized outlines of the ob­
jects in a set of serial sections, then a different approach 
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is preferred. If the spacing between contours is relatively 
small, the volume based approaches can be used by sim­
ply filling the interior of a contour with an appropriate 
value, distinct from the value exterior to a contour. If 
spacing between contours is large relative to the reso­
lution within a contour, volume based approaches yield 
unsatisfactory results. If objects are sliced very obliquely 
there may be insufficient overlap between contours in ad­
jacent sections to determine connectivity. In such cases, a 
surface based approach that constructs a triangular mesh 
from the data points defining the contours is preferred. 
This paper will concentrate on surface based approaches, 
and on work aimed at solving some of the problems with 
such approaches. 

Cnrn.'spondence 
Probltm 

Scl'liulI 2 -.. 

llranlohing 
Problem 

+ 
Surrace Filling 

Figure 1: This set of contours illustrates several of the 
problems that must be solved in order to reconstruct a 
surface. 

The problem of generating a surface from a set of con­
tours can be broken into several subproblems (see Fig­
ure 1) . 

• The correspondence problem involves deciding 
which contours from two different sections should 
be linked together in the generated surface. A so­
lution to the correspondence problem determines 
the coarse topology of the final surface. 

• The tiling problem consists of generating the "best" 
set of triangular faces using one contour from each 
of two adjacent sections. A commonly chosen met­
ric for determining what is "best" is minimization 
of the resulting surface area. 

• The branching problem involves dealing with pairs 
of sections in which a contour in one section splits 
into several contours in an adjacent section. A so­
lution to the tiling and branching problems deter-
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mines the topology of the surface, and its coarse 
geometry. 

• The surface fitting problem involves fitting a "best" 
surface to the topological mesh determined by the 
solution to the above problems. A solution to the 
surface fitting problem produces a detailed descrip­
tion of the geometry oLthe reconstructed surface. 

A brief summary of previous work on each of the above 
subproblems follows . 

The correspondence problem arises whenever there are 
multiple contours in a section. When this is the case, 
it becomes necessary to decide how the contours should 
be organized into groups representing individual objects. 
In the most general case, these contours may be widely 
spaced and there may be no information other than the 
contour boundary available to aid a solution. 

Automatic solution of the correspondence problem in its 
most general form is difficult. Due to the undercon­
strained nature of the problem, considerable ambiguity 
can exist with respect to linkage of contours in adja­
cent sections. For example, consider a set of slices taken 
through the dendritic tree of a neuron. Tracking the in­
dividual strands may well be impossible if the spacing 
between slices is too large. In order to help constrain 
the problem, assumptions about the nature of the ob­
jects to be reconstructed can be used. See [18] and [2] 
for descriptions of two approaches. 

The tiling problem has been the subject of most of the 
previous work on reconstructing surfaces from contours. 

Keppel [9] first reduced the problem of matching points 
in successive contours to a search problem on a toroidal 
graph (see Figure 2). Contours are represented by or­
dered lists of data points. Edges connecting neigh boring 
points in the same contour are called contour segments. 
Edges connecting a point from one contour to a point 
from another contour are called spans. 

The method involves associating spans with the nodes 
of a graph . The graph is a dense two-dimensional grid, 
overlaid on a torus. Arcs are allowed only if the two spans 
connected share an end point, and the other two vertices 
of the spans are connected by a contour segment. With 
these constraints, an arc defines a triangle consisting of 
two points from one contour and one point from the other 
contour. Costs are associated with arcs by using a met­
ric computable from the spans it connects. A surface 
connecting the two cross-sections is a cycle on the torus 
(with certain natural restrictions on the type of cycle). 
See Figure 2 for a depiction of a typical tiling problem 
and its translation into a search problem. 

Virtually every conceivable metric function has been used 
to distinguish good surfaces from bad. A listing of some 
of the more important ones includes "Maximize Volume" 
[9], "Minimize Area" [8], "Minimize Span Length" [3], 
and "Match Direction" [4]. Sloan and Painter [17] ad-
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Figure 2: The problem of tiling two contours can be ex­
pressed as a graph search. Contours are represented by 
ordered lists of data points . Edges connecting a point 
from one contour to a point from the other contour are 
represented by nodes in the graph. Tiles are represented 
by arcs between nodes in the graph. Finding a tiling is 
done by finding a minimal cost cycle in the graph . 

dressed the choice of metric for the graph cost function , 
and described a few improvements to the divide-and­
conquer algorithm of Fuchs et. al. [8]. 

We consider the tiling problem to be solved; we use the 
"One Column" method of Sloan and Painter [17], nor­
malize for scale and translation (but not rotation), and 
optimize for "Minimum Surface Area." 

The branching problem arises when several contours from 
one section merge into one contour in an adjacent section 
(more generally, when m contours become n contours) . 
Figure 3 shows a simple instance of the branching prob­
lem. Figure 4 shows a more complex example. 

Previous solutions to the branching problem have re­
quired that complicated instances of the problem be 
solved interactively. For example, Christiansen and 
Sederberg [3] describe a method that will handle some 
branching structures, but that requires user intervention 
in complex cases. 

Boissonnat [1] has proposed an approach to constructing 
surfaces from contours based on the three-dimensional 
Delaunay tetrahedralization of the set of vertices of the 
contours in adjacent sections. The method is capable of 
handling some branching structures without user inter­
vention. 

Solution of the correspondence, branching and tiling 
problems results in a triangulated mesh in three-space. 
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Figure 3: Upper: A simple case of the Branching prob­
lem. Two contours in one slice merge into one contour in 
an adjacent slice. A possible tiling is shown by the light 
lines, the contours are represented by the heavy lines. 
The two contours are merged to allow use of the graph 
search tiling algorithm. Lower: The same example, but 
the contours are merged as suggested by Christiansen 
and Sederberg [3]. 

The surface fitting problem involves finding a smooth 
surface that interpolates (or alternatively, approximates) 
the vertices of the mesh and maintains the same topol­
ogy. The choice of interpolation versus approximation 
depends to a large extent on the intended use of the re­
sulting surface, and on the nature of the input data. If 
the data are noisy or otherwise imprecise, an approximat­
ing method would be preferred. If the data are the pre­
cise specifications of some object, then an interpolating 
method is preferable. Current approximating schemes 
produce smoother and "prettier" surfaces than the avail­
able interpolating schemes [12]. Interpolating surfaces 
provide for more accurate measurement of properties of 
the original object. 

There are currently a number of methods in use for solv­
ing the problem of fitting a smooth surface to a mesh in 
three-space. The general method uses a series of para.­
metric surface patches in which the vertices of the mesh 
are the control points of the surface patches, and the 
topology of the mesh determines which vertices are used 
in a patch. The surface fitting problem is the subject of 
much current research, a complete summary of which is 
beyond the scope of this paper. For a general reference 
see Farin [6] . Mann et. al. [12] compare the properties 
of various interpolating surface fitting methods. 

This paper is a description of our current work on so­
lutions to the correspondence and branching problems. 
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Additional detail is available in [13]. 

2 Current Work 

What follows is a discussion of our current system, de­
scribing the methods we use for solving each of the prob­
lems mentioned in the introduction. This discussion will 
assume the contours given as input are planar contours. 
We will discuss methods for relaxing this restriction in 
the conclusions. 

2.1 Correspondence Problem 

We have developed a section description language that al­
lows the description of a solution to the correspondence 
problem for a set of sections and their associated con­
tours, and is suitable for manual or automated solution 
of the correspondence problem. The description of a con­
tour set in this language is generated by our correspon­
dence solver and is the input to the part of our system 
that solves the tiling and branching problems. 

As a concrete example of the section description lan­
guage, an abbreviated description of the set of contours 
shown in Figure 1 follows: 

{ SECTION SO , 
{ CONTOUR Co 9 

{ %0 YO '0 } 

{%SY8'.}} 
{ CONTOUR Cl 11 

{ %0 YO '0 } 

{ %10 YIO '10 } 
}} 
{ SECTION SI , 

{ CONTOUR CO 17 
{ %0 YO '0 } 

{ %16 )116 &16 } 
{ ADJNEXT { Cl 7 • } } 

} 
{ CONTOUR Cl 17 

{ %0 YO '0 } 

{ %16 "16 '16 } 
{ ADJNEXT { CO, 14 } } 

}} 
{ SECTION S, I 

{ CONTOUR C 18 
{ "'0 YO '0 } 

{ "'17 Y17 '17 } 

% Seciion SO h •• ~ contouu 
Cfo Contour CO h •• 9 point.. 

9'0 Bridl"e horn CO • 7 t o Cl _ S 

% Brid5"e fr o m Cl • 2 to CO - 14 

{ ALIAS, { CO } { Cl } } cy, Tile w;,h CO or Cl 
}} 

This section description language is capable of describ­
ing branching structures with any number of branches 
from one section to the next. There are cases that are 
not handledj of most importance is the inability to han­
dle "holes" in an object in which one contour is inside 
another contour from the same section. 

We are working on two solutions to the correspondence 
problem: one is based on Soroka's local processor [18], 
which assembles elliptical cylinders from contoursj the 
other computes the Euclidean minimum spanning tree of 
a graph constructed from the contours of the data set. 

Figure 4: A more complex instance of the Branching 
problem. In this case the canyon (shown in heavier lines) 
must be handled separately. 

We will first describe the local processor solution, and 
then the minimum spanning tree solution. 

An elliptical cylinder (or simply cylinder) consists of a set 
of adjacent, linearly varying elliptical contours. To solve 
the correspondence problem we use a 3-step process: 

1. Assemble elliptical cylinders from the contours . 

2. Assemble elliptical cylinders into objects. 

3. Process branch points. 

In the first step we classify the contours as elliptical or 
complex by fitting ellipses to the contours. We compute 
the ellipse parameters: the center x and Yj the major and 
minor diameters A and Bj and the angle (J between the 
major axis and the x axis using the principle axis method 
[5] and the dot product space method [16]. Contours that 
can't be classified elliptical are classified complex. 

We assemble elliptical contours into cylinders in which 
each of these parameters (except (J, which must be nearly 
constant to avoid modeling twisted cylinders) varies al­
most linearly with z (defined as having a linear least 
squares correlation coefficient of no less than 0.8, an em­
pirically determined value that works well in practice) . 
If a contour is elliptical, we use it to attempt to extend 
an existing cylinder. If an elliptical contour cannot be 
explained by extending an existing cylinder, a new (sin­
gleton) cylinder is created. If a contour is complex, we 
attempt to create an elliptical subcontour that can be 
used to extend some cylinder. This process continues 
until all contours are explained. 

The second step assembles objects from the cylinders 
found in the first step, and finds connections between 
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contours in different cylinders. If contours are found to 
be connected, they will be tiled together by later steps 
that solve the tiling and branching problems. If a cylin­
der cannot be merged with an existing object, a new ob­
ject is created. This process continues until all cylinders 
are explained. 

In the third step we use the inter-contour connections 
found in step 2 to find occurrences of branches. A 3-
cylinder branch is formed between the end contours of 3 
connected cylinders, while a 2-cylinder branch is formed 
by the connection of an end-contour of one cylinder 
with an interior contour of another cylinder. A straight 
cylinder connection occurs when the end-contours of two 
cylinders are connected only to each other. 

~~ /---I (I = (P ) I '-, (2 = (0) \ 

I Bo " J / .. ---
11 

B ( 

Figure 5: Computing adjacency points. Part a: To find 
adjacency points for composite contours we compute the 
closest pair of points, one from each contour. Part b: 
This method will not produce good results in the case 
where two contours approach closely over an extended 
portion of their perimeters. Part c: A good method 
would select adjacency points more carefully, as shown 
here, yielding a more accurate tiling of the canyon be­
tween the contours. 

Adjacency points between the two contours on the same 
section are computed as shown in Figure 5a. We choose 
as adjacency points the two most proximate points in 
those contours. 

Results produced by the above method depend on the 
order in which contours are specified within a section. It 
may be possible to eliminate this problem by modifying 
the conditions under which a new cylinder is generated. 

We are currently developing a method that uses a min­
imum spanning tree (MST) to cluster "close" contours. 
Because only a tree is generated rather than a more gen-
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eral graph, not all edges (representing connections be­
tween contours) will be found for an object with one or 
more cycles (e.g. a torus). However this method seems 
well suited to data that comprise a single acyclic object, 
like a branching artery, or a set of such objects. 

To build the tree, we associate the input contours with 
the nodes of a graph. The graph initially contains edges 
between all pairs of nodes representing contours on adja­
cent sections. We embed the nodes in the 4-dimensional 
spa.ce (x, y, A, B) defined by the contour's fitted ellipse 
center and major and minor diameters. We then com­
pute the cost of an edge as the square of the Euclidean 
4-space distance between the nodes. Next we compute 
the MST and break it into segments at its branch points. 
All contours in a segment of the MST are considered to 
be a "tube" and are given the same name so that they 
will be tiled together. Finally, we use the edge infor­
mation in the MST itself to discover connections to use 
as input to the same cylinder branch/connection finder 
used in step 3 by our initial correspondence problem so­
lution. Figure 6 compares resu lts obtained using the two 
methods. 

Figure 6: Biological structures obturator artery contours. 
Upper: Elliptical cylinders found using the elliptical 
cylinder growing algorithm are indicated by lines sur­
r()unding groups of adjacent contours. Lower: Segments 
found using the minimum spanning tree correspondence 
a lgorithm . The final solution is almost identical with the 
actual correspondence determined at the time the data 
,\lere collected. 

2:.2 Branching Problem 

Construction of a tiling at a branch point is accomplished 
by forming a composite contour from the several branch 
contours, and using this composite to construct a tiling 
w'ith the trunk contour. This is the approach used by 
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Christiansen and Sederberg [3]. The composite contour 
is only used for tiling the two sections between which the 
branch occurs. 

Figure 3 shows a set of contours in which the construction 
of a composite is relatively straightforward: the adjacent 
contours approach closely at a single point. In this case, 
we construct a composite contour connecting the two ad­
jacent contours at the "close" points. This composite 
contour is then tiled with the single contour from the ad­
jacent section, (which may itself be a composite contour). 

Note that we do not add any points to the data when 
forming the composite. We take the point of view that 
the mesh produced by the tiling algorithm is not the final 
surface. The subsequent surface fitting step will deter­
mine where the saddle between the contours should fall. 
An added point would force the saddle to fall in a partic­
ular place and unnecessarily constrain the final surface 
fitter. 

Added data points suffer from an additional problem: 
the original data points may have associated properties 
other than position (such as surface normal) that may be 
difficult to generate for the manufactured data points. 

Figure 4 shows an example in which the construction of a 
composite contour is not so straightforward. If adjacent 
contours that form a canyon are linked into a composite 
at a single point as in the simple case, the resultant tiling 
would not be a good representation of the surface. In 
cases like Figure 4, we form composite contours by linking 
the contours across the openings into the canyon between 
them. 

Referring to Figure 1 and the example description of its 
contours in Section 2.1, a composite contour constructed 
for tiling the two contours of section SI to the single 
contour of section S2 would consist of points 0 - 7 of 
contour CO followed by points 8 - 16 and 0 - 2 of Cl fol­
lowed by points 14 - 16 of contour CO. Points 7 - 14 of 
CO and points 2 - 8 of Cl form the walls of the canyon 
between the two contours. The composite contour is han­
dled by the normal tiling algorithm ; the canyon is tiled 
separately. 

Although we have limited our discussion to bifurcating 
branches, our method is much more general. It is ca­
pable of handling cases in which many contours in one 
section merge into a single contour in an adjacent section 
as well as cases in which the "single" contour is in reality 
a composite constructed to handle an incoming branch 
(for example an X shaped object in which there is no 
section through the junction of the arms). 

2.2.1 Canyon Tiling 

We now discuss the problem of tiling canyons between 
contours such as shown in Figure 4. 

One way to approach the problem of tiling a canyon is to 
treat the two walls of the canyon as contours to be tiled 
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together, and use the same graph search method used for 
tiling contours from separate sections. 

Figure 7: It is not always possible to construct a tiling 
in the plane using only Spans and Contour Segments. 
In such cases a general purpose polygon triangulation 
algorithm must be used. Two possible tilings are shown. 
Upper: A tiling that seeks to minimize the sum of span 
lengths. Lower: A tiling that seeks to minimize the 
number of intra-contour spans. 

Alas, this open curve graph search method doesn't work 
for all possible canyons. As shown in Figure 7, it is not 
always possible to construct a tiling of a canyon that 
satisfies the constraint required by use of the graph search 
tiling algorithm. 

Triangulation of a simple polygon has been extensively 
studied, and efficient algorithms exist [7]. They have as 
advantages their efficiency and that they handle all sim­
ple polygons. Their main disadvantage is the difficulty 
of controlling the nature of the triangulation . 

Most known simple polygon triangulation methods pro­
duce many "long skinny triangles" [7]. Such triangles are 
not desirable if the triangulation is to be used as a set of 
surface patches to be used in construction of a smooth 
surface, since the influence of a data point on the shape 
of the surface is not restricted to its local area. Rather, 
it is desirable to have a set of triangles in which the ver­
tices are "near neighbors" on the surface. The Delaunay 
triangulation [15] of a set of points in the plane has this 
property. 

We cannot simply use the Delaunay triangulation of the 
vertices of the polygon, since we must restrict the edges 
of our triangulation to fall within the original polygon. 
The Delaunay triangulation would only satisfy this cri­
terion for convex polygons. We start with an arbitrary 
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triangulation, and then modify it in a later optimization 
step. 

Given an initial trianglulation, we improve it by examin­
ing cases in which the edge shared by two triangles can 
be switched so it connects the two vertices opposite the 
edge. This can be done only when the vertices of two 
triangles sharing an edge form a convex quadrilateral. 
Swapping the edge in other cases is not possible, because 
the result is a pair of non-disjoint triangles. We replace 
the shared edge with one connecting the vertices oppo­
site the shared edge if the new configuration results in a 
smaller minimum radius for the circumscribed circles de­
fined by the pair of triangles. This is the criterion used in 
computing the Delaunay triangulation of a set of points. 

The method of optimizing an initial triangulation accord­
ing to some metric can also be used to control the final 
triangulation in a fashion similar to the use of a metric 
to guide the graph search algorithm. By starting from 
a valid triangulation of the canyon polygon and only 
allowing modifications that preserve the validity of the 
triangulation, we can gain some degree of control over 
the characteristics of the triangulation computed by gen­
eral polygon triangulation algorithms, at some loss of ef­
ficiency. In the preceeding paragraph we described the 
use of one such optimization criterion, the "Minimize Cir­
cumscribed Circle Radius" criterion . More control over 
the characteristics o( the final triangulation could be ob­
tained by designing a more complex evaluation function; 
for example one could assign added weight to an edge 
crossing from one canyon wall to the other if one wanted 
to favor tiles with "cross canyon" edges. By adjusting 
the weights associated with various parameters of such 
an evaluation function , one could achieve better control 
over the nature of the final triangulation. 

2.3 Surface Fitting 

The final step in the construction of a surface from a set 
of contours is the surface fitting step. Our approach does 
not attempt to create a mesh that is itself necessarily a 
good reconstructed surface. We rely on any of several 
methods for fitting a surface to data points using each 
facet of the mesh as the control polygon of a surface 
patch. Because of this, we are careful not to introduce 
extra "manufactured" points into the mesh. By avoiding 
the addition of extra points , we allow our chosen surface 
fitter to find a "best" surface unaffected by added non­
data points. Figure 9 illustrates various choices of surface 
fitting and rendering techniques applied to the contour 
sets shown in Figure 8. 

2.4 Future Work 

We are investigating methods for extending the MST 
method to handle objects with non-tree topologies, such 
as a torus. Automatic generation of the adjacency infor­
mation for complex adjacency regions (the boundaries of 
the canyons) is a near-term goal. 
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Figure 8: Two sets of contours. Upper: A single large 
object splits into two smaller objects. The intermedi­
ate slice is just above the point of separation, and the 
two parts are still very close together along a moderately 
complex border. Lower: An artery and several branches. 
Notice especially the lack of data near the branch point 
closest to the center of the image. 

Our current system cannot handle sets of contours in 
which one contour is enclosed within another contour 
with the object interior between them. We are currently 
extending our system to handle this important class of 
branching problem. 

3 Conclusions 

We have described a method for reconstructing surfaces 
from sets of contours that extends previous results by 
allowing for surfaces in which branching occurs. The key 
idea is to separate the problem into those parts already 
handled well by existing methods , and to concentrate on 
posing and attacking the subproblems that require new 
approaches. 

Previous methods have either not allowed for branching 
surfaces, or have required substantial user interaction in 
all but the simplest cases. In most of these methods, 
points are added to the data during the reconstruction 
process. We feel addition of non-data vertices to the con­
tours during reconstruction should be avoided. We prefer 
to allow the surface fitter to determine the precise geom­
etry of the final surface, rather than biasing its result by 
the addition of non-data points. 

We describe two methods for solving the correspondence 
problem. In one method, we use the elliptical cylinder 
method proposed by Soroka [18]. The other method 
has not to our knowledge been previously published. It 
involves constructing a graph from the contours in the 
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data set, and computing the minimum spanning tree of 
the graph. The method works well for objects that are 
"tree like" in their shape. In particular, note the striking 
improvement in the quality of the solution produced by 
the MST method as compared to the elliptical cylinders 
method for our branching artery data set. 

We assume a final surface fitting step independent of the 
steps required to generate a triangulated mesh from the 
input contours. This step produces the final detailed ge­
ometric description of the reconstructed surface. We use 
a surface fitting testbed that allows easy testing of the 
suitability of various surface fitting methods for recon­
struction of surfaces from contours [11]. 

Our discussion so far has assumed contours are planar, 
and that the plane of all contours in any section is the 
same. These restrictions simplify the presentation, but 
may be too restrictive in practice. We explicitly use the 
restriction of planarity only during solution of the cor­
respondence problem and when handling the tiling of 
canyons between branching surfaces. In both cases, if 
the data are not planar we can proceed by finding an av­
erage plane for the points involved using a least squares 
method , projecting the points onto this plane, and pro­
ceeding as before . We expect this will be sufficient for 
most practical problems where the concept of a "plane of 
section" has any meaning. The more general problem of 
scattered three-dimensional data does not fall into this 
class and will require entirely different methods. 
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Figure 9: Reconstructed surfaces. Top: A flat-shaded 
rendition of a piecewise planar mesh generated from the 
data in Figure 8a. Center: The same mesh, Gouraud 
shaded to give the illusion of a smooth surface. Bot­
tom: An interpolating surface, generated by the side­
vertex method of [14]. The mesh is shown as red balls 
and bl ue sticks. 
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Figure 10: Reconstructed surfaces. Top: a flat-shaded 
piecewise planar mesh generated from the data in Figure 
8b. Center: The mesh from part d , Gouraud shaded. 
Except for the branch point closest to the center of the 
image, this approximation is adequate. Bottom: An 
interpolating surface, generated from the mesh of part d 
by the side-vertex method of [14]. 

Graphics Interface '91 


