
246

Surfaces From Contours: The Correspondence and Branching Problems

David Meyers

Shelley Skinner

Department of Computer Science and Engineering,

University of Washington,

Seattle, Washington 98195

Kenneth Sloan

Department of Computer and Information Sciences,

U ni versi ty of Alabama, Birmingham

Birmingham, Alabama 35294

Abstract

This paper is concerned with the problem of reconstruct­
ing the surfaces of three-dimensional objects, given a
collection of planar contours representing cross sections
through the objects. This problem has important ap­
plications in clinical medicine, bio-medical research and
instruction, and industrial inspection.

The problem can be broken into four subproblems, the
correspondence problem, the tiling problem, the branch­
ing problem, and the surface fitting problem. We describe
our system for surface reconstruction from sets of con­
tours with respect to each of these subproblems. Special
attention is given to the correspondence and branching
problems.

Resume

Cet article examine le probleme de la reconstruction de
la surface d 'un objet a. trois dimensions a. partir d'une
serie de profiles plans represent ants des sections prises
a. travers l'objet. Ce probleme a d'importantes appli­
cations en medecine clinique, en recherche biomedicale,
dans l'enseignement et en contr6le industriel.

Le probleme peut Hre divise en quatres parties: le
probleme de correspondance, le probleme de facettage, le
probleme de branchement et le probleme d'interpolation
de la surface. Nous decrivons notre solution pour la re­
construction de surfaces a. partir de profiles par rapport
a. chacune de ces ta.che. U ne attention particuliere est
portee aux problemes de correspondance et de branche­
ment .

Keywords: surface reconstruction, tiling, meshes, sur­
face fitting, branching surfaces

1 This work was supported in part by the National Science
Foundation under grants DCR-8505713, CCR-8612543, and
IRI-881932.

1 Introduction

The problem of reconstructing a three-dimensional sur­
face from a set of planar contours is an important prob­
lem in diverse fields . For example, biologists try to un­
derstand the shape of microscopic objects from serial sec­
tions through them. Analysis of neural tissue involves at­
tempts to reconstruct the network from serial slices. In
clinical medicine, the data generated by various imaging
techniques such as CAT, ultrasound and NMR provide a
series of slices through the object of study.

The following definitions will be used:

• A contour is a simple polygon representing the in­
tersection of the surface of an object and the plane
of its section.

• A section is the set of contours formed by one slice
through an area of interest . The contours in a sec­
tion do not necessarily come from the same object.

• A canyon is a region between two contours that
merge in an adjacent section. Canyons are formed
when two contours are close together along an ex­
tended portion of their perimeters.

There are two basic approaches to constructing surfaces
from contours: volume based and surface based. Volume
based approaches assume data is available as a three­
dimensional grid. Surface based approaches assume the
data defines the intersection of a surface and a plane of
sectioning. Which approach is most applicable depends
on the nature of the data. When the available data takes
the form of a three-dimensional lattice of density values,
as is the case with NMR and other radiological methods,
a volume based approach such as the marching cubes al­
gorithm of Lorensen and Cline [10] is applicable. If the
available data is in the form of a set of closed contours de­
noting the surfaces of the objects to be reconstructed, as
would be available from hand digitized outlines of the ob­
jects in a set of serial sections, then a different approach

Graphics Interface '91

is preferred. If the spacing between contours is relatively
small, the volume based approaches can be used by sim­
ply filling the interior of a contour with an appropriate
value, distinct from the value exterior to a contour. If
spacing between contours is large relative to the reso­
lution within a contour, volume based approaches yield
unsatisfactory results. If objects are sliced very obliquely
there may be insufficient overlap between contours in ad­
jacent sections to determine connectivity. In such cases, a
surface based approach that constructs a triangular mesh
from the data points defining the contours is preferred.
This paper will concentrate on surface based approaches,
and on work aimed at solving some of the problems with
such approaches.

Cnrn.'spondence
Probltm

Scl'liulI 2 -..

llranlohing
Problem

+
Surrace Filling

Figure 1: This set of contours illustrates several of the
problems that must be solved in order to reconstruct a
surface.

The problem of generating a surface from a set of con­
tours can be broken into several subproblems (see Fig­
ure 1) .

• The correspondence problem involves deciding
which contours from two different sections should
be linked together in the generated surface. A so­
lution to the correspondence problem determines
the coarse topology of the final surface.

• The tiling problem consists of generating the "best"
set of triangular faces using one contour from each
of two adjacent sections. A commonly chosen met­
ric for determining what is "best" is minimization
of the resulting surface area.

• The branching problem involves dealing with pairs
of sections in which a contour in one section splits
into several contours in an adjacent section. A so­
lution to the tiling and branching problems deter-

247

mines the topology of the surface, and its coarse
geometry.

• The surface fitting problem involves fitting a "best"
surface to the topological mesh determined by the
solution to the above problems. A solution to the
surface fitting problem produces a detailed descrip­
tion of the geometry oLthe reconstructed surface.

A brief summary of previous work on each of the above
subproblems follows .

The correspondence problem arises whenever there are
multiple contours in a section. When this is the case,
it becomes necessary to decide how the contours should
be organized into groups representing individual objects.
In the most general case, these contours may be widely
spaced and there may be no information other than the
contour boundary available to aid a solution.

Automatic solution of the correspondence problem in its
most general form is difficult. Due to the undercon­
strained nature of the problem, considerable ambiguity
can exist with respect to linkage of contours in adja­
cent sections. For example, consider a set of slices taken
through the dendritic tree of a neuron. Tracking the in­
dividual strands may well be impossible if the spacing
between slices is too large. In order to help constrain
the problem, assumptions about the nature of the ob­
jects to be reconstructed can be used. See [18] and [2]
for descriptions of two approaches.

The tiling problem has been the subject of most of the
previous work on reconstructing surfaces from contours.

Keppel [9] first reduced the problem of matching points
in successive contours to a search problem on a toroidal
graph (see Figure 2). Contours are represented by or­
dered lists of data points. Edges connecting neigh boring
points in the same contour are called contour segments.
Edges connecting a point from one contour to a point
from another contour are called spans.

The method involves associating spans with the nodes
of a graph . The graph is a dense two-dimensional grid,
overlaid on a torus. Arcs are allowed only if the two spans
connected share an end point, and the other two vertices
of the spans are connected by a contour segment. With
these constraints, an arc defines a triangle consisting of
two points from one contour and one point from the other
contour. Costs are associated with arcs by using a met­
ric computable from the spans it connects. A surface
connecting the two cross-sections is a cycle on the torus
(with certain natural restrictions on the type of cycle).
See Figure 2 for a depiction of a typical tiling problem
and its translation into a search problem.

Virtually every conceivable metric function has been used
to distinguish good surfaces from bad. A listing of some
of the more important ones includes "Maximize Volume"
[9], "Minimize Area" [8], "Minimize Span Length" [3],
and "Match Direction" [4]. Sloan and Painter [17] ad-

Graphics Interface '91

Figure 2: The problem of tiling two contours can be ex­
pressed as a graph search. Contours are represented by
ordered lists of data points . Edges connecting a point
from one contour to a point from the other contour are
represented by nodes in the graph. Tiles are represented
by arcs between nodes in the graph. Finding a tiling is
done by finding a minimal cost cycle in the graph .

dressed the choice of metric for the graph cost function ,
and described a few improvements to the divide-and­
conquer algorithm of Fuchs et. al. [8].

We consider the tiling problem to be solved; we use the
"One Column" method of Sloan and Painter [17], nor­
malize for scale and translation (but not rotation), and
optimize for "Minimum Surface Area."

The branching problem arises when several contours from
one section merge into one contour in an adjacent section
(more generally, when m contours become n contours) .
Figure 3 shows a simple instance of the branching prob­
lem. Figure 4 shows a more complex example.

Previous solutions to the branching problem have re­
quired that complicated instances of the problem be
solved interactively. For example, Christiansen and
Sederberg [3] describe a method that will handle some
branching structures, but that requires user intervention
in complex cases.

Boissonnat [1] has proposed an approach to constructing
surfaces from contours based on the three-dimensional
Delaunay tetrahedralization of the set of vertices of the
contours in adjacent sections. The method is capable of
handling some branching structures without user inter­
vention.

Solution of the correspondence, branching and tiling
problems results in a triangulated mesh in three-space.

248

Figure 3: Upper: A simple case of the Branching prob­
lem. Two contours in one slice merge into one contour in
an adjacent slice. A possible tiling is shown by the light
lines, the contours are represented by the heavy lines.
The two contours are merged to allow use of the graph
search tiling algorithm. Lower: The same example, but
the contours are merged as suggested by Christiansen
and Sederberg [3].

The surface fitting problem involves finding a smooth
surface that interpolates (or alternatively, approximates)
the vertices of the mesh and maintains the same topol­
ogy. The choice of interpolation versus approximation
depends to a large extent on the intended use of the re­
sulting surface, and on the nature of the input data. If
the data are noisy or otherwise imprecise, an approximat­
ing method would be preferred. If the data are the pre­
cise specifications of some object, then an interpolating
method is preferable. Current approximating schemes
produce smoother and "prettier" surfaces than the avail­
able interpolating schemes [12]. Interpolating surfaces
provide for more accurate measurement of properties of
the original object.

There are currently a number of methods in use for solv­
ing the problem of fitting a smooth surface to a mesh in
three-space. The general method uses a series of para.­
metric surface patches in which the vertices of the mesh
are the control points of the surface patches, and the
topology of the mesh determines which vertices are used
in a patch. The surface fitting problem is the subject of
much current research, a complete summary of which is
beyond the scope of this paper. For a general reference
see Farin [6] . Mann et. al. [12] compare the properties
of various interpolating surface fitting methods.

This paper is a description of our current work on so­
lutions to the correspondence and branching problems.

Graphics Interface '91

249

Additional detail is available in [13].

2 Current Work

What follows is a discussion of our current system, de­
scribing the methods we use for solving each of the prob­
lems mentioned in the introduction. This discussion will
assume the contours given as input are planar contours.
We will discuss methods for relaxing this restriction in
the conclusions.

2.1 Correspondence Problem

We have developed a section description language that al­
lows the description of a solution to the correspondence
problem for a set of sections and their associated con­
tours, and is suitable for manual or automated solution
of the correspondence problem. The description of a con­
tour set in this language is generated by our correspon­
dence solver and is the input to the part of our system
that solves the tiling and branching problems.

As a concrete example of the section description lan­
guage, an abbreviated description of the set of contours
shown in Figure 1 follows:

{ SECTION SO ,
{ CONTOUR Co 9

{ %0 YO '0 }

{%SY8'.}}
{ CONTOUR Cl 11

{ %0 YO '0 }

{ %10 YIO '10 }
}}
{ SECTION SI ,

{ CONTOUR CO 17
{ %0 YO '0 }

{ %16)116 &16 }
{ ADJNEXT { Cl 7 • } }

}
{ CONTOUR Cl 17

{ %0 YO '0 }

{ %16 "16 '16 }
{ ADJNEXT { CO, 14 } }

}}
{ SECTION S, I

{ CONTOUR C 18
{ "'0 YO '0 }

{ "'17 Y17 '17 }

% Seciion SO h •• ~ contouu
Cfo Contour CO h •• 9 point..

9'0 Bridl"e horn CO • 7 t o Cl _ S

% Brid5"e fr o m Cl • 2 to CO - 14

{ ALIAS, { CO } { Cl } } cy, Tile w;,h CO or Cl
}}

This section description language is capable of describ­
ing branching structures with any number of branches
from one section to the next. There are cases that are
not handledj of most importance is the inability to han­
dle "holes" in an object in which one contour is inside
another contour from the same section.

We are working on two solutions to the correspondence
problem: one is based on Soroka's local processor [18],
which assembles elliptical cylinders from contoursj the
other computes the Euclidean minimum spanning tree of
a graph constructed from the contours of the data set.

Figure 4: A more complex instance of the Branching
problem. In this case the canyon (shown in heavier lines)
must be handled separately.

We will first describe the local processor solution, and
then the minimum spanning tree solution.

An elliptical cylinder (or simply cylinder) consists of a set
of adjacent, linearly varying elliptical contours. To solve
the correspondence problem we use a 3-step process:

1. Assemble elliptical cylinders from the contours .

2. Assemble elliptical cylinders into objects.

3. Process branch points.

In the first step we classify the contours as elliptical or
complex by fitting ellipses to the contours. We compute
the ellipse parameters: the center x and Yj the major and
minor diameters A and Bj and the angle (J between the
major axis and the x axis using the principle axis method
[5] and the dot product space method [16]. Contours that
can't be classified elliptical are classified complex.

We assemble elliptical contours into cylinders in which
each of these parameters (except (J, which must be nearly
constant to avoid modeling twisted cylinders) varies al­
most linearly with z (defined as having a linear least
squares correlation coefficient of no less than 0.8, an em­
pirically determined value that works well in practice) .
If a contour is elliptical, we use it to attempt to extend
an existing cylinder. If an elliptical contour cannot be
explained by extending an existing cylinder, a new (sin­
gleton) cylinder is created. If a contour is complex, we
attempt to create an elliptical subcontour that can be
used to extend some cylinder. This process continues
until all contours are explained.

The second step assembles objects from the cylinders
found in the first step, and finds connections between

Graphics Interface '91

contours in different cylinders. If contours are found to
be connected, they will be tiled together by later steps
that solve the tiling and branching problems. If a cylin­
der cannot be merged with an existing object, a new ob­
ject is created. This process continues until all cylinders
are explained.

In the third step we use the inter-contour connections
found in step 2 to find occurrences of branches. A 3-
cylinder branch is formed between the end contours of 3
connected cylinders, while a 2-cylinder branch is formed
by the connection of an end-contour of one cylinder
with an interior contour of another cylinder. A straight
cylinder connection occurs when the end-contours of two
cylinders are connected only to each other.

~~ /---I (I = (P) I '-, (2 = (0) \

I Bo " J / .. ---
11

B (

Figure 5: Computing adjacency points. Part a: To find
adjacency points for composite contours we compute the
closest pair of points, one from each contour. Part b:
This method will not produce good results in the case
where two contours approach closely over an extended
portion of their perimeters. Part c: A good method
would select adjacency points more carefully, as shown
here, yielding a more accurate tiling of the canyon be­
tween the contours.

Adjacency points between the two contours on the same
section are computed as shown in Figure 5a. We choose
as adjacency points the two most proximate points in
those contours.

Results produced by the above method depend on the
order in which contours are specified within a section. It
may be possible to eliminate this problem by modifying
the conditions under which a new cylinder is generated.

We are currently developing a method that uses a min­
imum spanning tree (MST) to cluster "close" contours.
Because only a tree is generated rather than a more gen-

250

eral graph, not all edges (representing connections be­
tween contours) will be found for an object with one or
more cycles (e.g. a torus). However this method seems
well suited to data that comprise a single acyclic object,
like a branching artery, or a set of such objects.

To build the tree, we associate the input contours with
the nodes of a graph. The graph initially contains edges
between all pairs of nodes representing contours on adja­
cent sections. We embed the nodes in the 4-dimensional
spa.ce (x, y, A, B) defined by the contour's fitted ellipse
center and major and minor diameters. We then com­
pute the cost of an edge as the square of the Euclidean
4-space distance between the nodes. Next we compute
the MST and break it into segments at its branch points.
All contours in a segment of the MST are considered to
be a "tube" and are given the same name so that they
will be tiled together. Finally, we use the edge infor­
mation in the MST itself to discover connections to use
as input to the same cylinder branch/connection finder
used in step 3 by our initial correspondence problem so­
lution. Figure 6 compares resu lts obtained using the two
methods.

Figure 6: Biological structures obturator artery contours.
Upper: Elliptical cylinders found using the elliptical
cylinder growing algorithm are indicated by lines sur­
r()unding groups of adjacent contours. Lower: Segments
found using the minimum spanning tree correspondence
a lgorithm . The final solution is almost identical with the
actual correspondence determined at the time the data
,\lere collected.

2:.2 Branching Problem

Construction of a tiling at a branch point is accomplished
by forming a composite contour from the several branch
contours, and using this composite to construct a tiling
w'ith the trunk contour. This is the approach used by

Graphics Int~rface '91

Christiansen and Sederberg [3]. The composite contour
is only used for tiling the two sections between which the
branch occurs.

Figure 3 shows a set of contours in which the construction
of a composite is relatively straightforward: the adjacent
contours approach closely at a single point. In this case,
we construct a composite contour connecting the two ad­
jacent contours at the "close" points. This composite
contour is then tiled with the single contour from the ad­
jacent section, (which may itself be a composite contour).

Note that we do not add any points to the data when
forming the composite. We take the point of view that
the mesh produced by the tiling algorithm is not the final
surface. The subsequent surface fitting step will deter­
mine where the saddle between the contours should fall.
An added point would force the saddle to fall in a partic­
ular place and unnecessarily constrain the final surface
fitter.

Added data points suffer from an additional problem:
the original data points may have associated properties
other than position (such as surface normal) that may be
difficult to generate for the manufactured data points.

Figure 4 shows an example in which the construction of a
composite contour is not so straightforward. If adjacent
contours that form a canyon are linked into a composite
at a single point as in the simple case, the resultant tiling
would not be a good representation of the surface. In
cases like Figure 4, we form composite contours by linking
the contours across the openings into the canyon between
them.

Referring to Figure 1 and the example description of its
contours in Section 2.1, a composite contour constructed
for tiling the two contours of section SI to the single
contour of section S2 would consist of points 0 - 7 of
contour CO followed by points 8 - 16 and 0 - 2 of Cl fol­
lowed by points 14 - 16 of contour CO. Points 7 - 14 of
CO and points 2 - 8 of Cl form the walls of the canyon
between the two contours. The composite contour is han­
dled by the normal tiling algorithm ; the canyon is tiled
separately.

Although we have limited our discussion to bifurcating
branches, our method is much more general. It is ca­
pable of handling cases in which many contours in one
section merge into a single contour in an adjacent section
as well as cases in which the "single" contour is in reality
a composite constructed to handle an incoming branch
(for example an X shaped object in which there is no
section through the junction of the arms).

2.2.1 Canyon Tiling

We now discuss the problem of tiling canyons between
contours such as shown in Figure 4.

One way to approach the problem of tiling a canyon is to
treat the two walls of the canyon as contours to be tiled

251

together, and use the same graph search method used for
tiling contours from separate sections.

Figure 7: It is not always possible to construct a tiling
in the plane using only Spans and Contour Segments.
In such cases a general purpose polygon triangulation
algorithm must be used. Two possible tilings are shown.
Upper: A tiling that seeks to minimize the sum of span
lengths. Lower: A tiling that seeks to minimize the
number of intra-contour spans.

Alas, this open curve graph search method doesn't work
for all possible canyons. As shown in Figure 7, it is not
always possible to construct a tiling of a canyon that
satisfies the constraint required by use of the graph search
tiling algorithm.

Triangulation of a simple polygon has been extensively
studied, and efficient algorithms exist [7]. They have as
advantages their efficiency and that they handle all sim­
ple polygons. Their main disadvantage is the difficulty
of controlling the nature of the triangulation .

Most known simple polygon triangulation methods pro­
duce many "long skinny triangles" [7]. Such triangles are
not desirable if the triangulation is to be used as a set of
surface patches to be used in construction of a smooth
surface, since the influence of a data point on the shape
of the surface is not restricted to its local area. Rather,
it is desirable to have a set of triangles in which the ver­
tices are "near neighbors" on the surface. The Delaunay
triangulation [15] of a set of points in the plane has this
property.

We cannot simply use the Delaunay triangulation of the
vertices of the polygon, since we must restrict the edges
of our triangulation to fall within the original polygon.
The Delaunay triangulation would only satisfy this cri­
terion for convex polygons. We start with an arbitrary

Graphics Interface '91

triangulation, and then modify it in a later optimization
step.

Given an initial trianglulation, we improve it by examin­
ing cases in which the edge shared by two triangles can
be switched so it connects the two vertices opposite the
edge. This can be done only when the vertices of two
triangles sharing an edge form a convex quadrilateral.
Swapping the edge in other cases is not possible, because
the result is a pair of non-disjoint triangles. We replace
the shared edge with one connecting the vertices oppo­
site the shared edge if the new configuration results in a
smaller minimum radius for the circumscribed circles de­
fined by the pair of triangles. This is the criterion used in
computing the Delaunay triangulation of a set of points.

The method of optimizing an initial triangulation accord­
ing to some metric can also be used to control the final
triangulation in a fashion similar to the use of a metric
to guide the graph search algorithm. By starting from
a valid triangulation of the canyon polygon and only
allowing modifications that preserve the validity of the
triangulation, we can gain some degree of control over
the characteristics of the triangulation computed by gen­
eral polygon triangulation algorithms, at some loss of ef­
ficiency. In the preceeding paragraph we described the
use of one such optimization criterion, the "Minimize Cir­
cumscribed Circle Radius" criterion . More control over
the characteristics o(the final triangulation could be ob­
tained by designing a more complex evaluation function;
for example one could assign added weight to an edge
crossing from one canyon wall to the other if one wanted
to favor tiles with "cross canyon" edges. By adjusting
the weights associated with various parameters of such
an evaluation function , one could achieve better control
over the nature of the final triangulation.

2.3 Surface Fitting

The final step in the construction of a surface from a set
of contours is the surface fitting step. Our approach does
not attempt to create a mesh that is itself necessarily a
good reconstructed surface. We rely on any of several
methods for fitting a surface to data points using each
facet of the mesh as the control polygon of a surface
patch. Because of this, we are careful not to introduce
extra "manufactured" points into the mesh. By avoiding
the addition of extra points , we allow our chosen surface
fitter to find a "best" surface unaffected by added non­
data points. Figure 9 illustrates various choices of surface
fitting and rendering techniques applied to the contour
sets shown in Figure 8.

2.4 Future Work

We are investigating methods for extending the MST
method to handle objects with non-tree topologies, such
as a torus. Automatic generation of the adjacency infor­
mation for complex adjacency regions (the boundaries of
the canyons) is a near-term goal.

252

C? D

-- --

Figure 8: Two sets of contours. Upper: A single large
object splits into two smaller objects. The intermedi­
ate slice is just above the point of separation, and the
two parts are still very close together along a moderately
complex border. Lower: An artery and several branches.
Notice especially the lack of data near the branch point
closest to the center of the image.

Our current system cannot handle sets of contours in
which one contour is enclosed within another contour
with the object interior between them. We are currently
extending our system to handle this important class of
branching problem.

3 Conclusions

We have described a method for reconstructing surfaces
from sets of contours that extends previous results by
allowing for surfaces in which branching occurs. The key
idea is to separate the problem into those parts already
handled well by existing methods , and to concentrate on
posing and attacking the subproblems that require new
approaches.

Previous methods have either not allowed for branching
surfaces, or have required substantial user interaction in
all but the simplest cases. In most of these methods,
points are added to the data during the reconstruction
process. We feel addition of non-data vertices to the con­
tours during reconstruction should be avoided. We prefer
to allow the surface fitter to determine the precise geom­
etry of the final surface, rather than biasing its result by
the addition of non-data points.

We describe two methods for solving the correspondence
problem. In one method, we use the elliptical cylinder
method proposed by Soroka [18]. The other method
has not to our knowledge been previously published. It
involves constructing a graph from the contours in the

Graphics Interface '91

data set, and computing the minimum spanning tree of
the graph. The method works well for objects that are
"tree like" in their shape. In particular, note the striking
improvement in the quality of the solution produced by
the MST method as compared to the elliptical cylinders
method for our branching artery data set.

We assume a final surface fitting step independent of the
steps required to generate a triangulated mesh from the
input contours. This step produces the final detailed ge­
ometric description of the reconstructed surface. We use
a surface fitting testbed that allows easy testing of the
suitability of various surface fitting methods for recon­
struction of surfaces from contours [11].

Our discussion so far has assumed contours are planar,
and that the plane of all contours in any section is the
same. These restrictions simplify the presentation, but
may be too restrictive in practice. We explicitly use the
restriction of planarity only during solution of the cor­
respondence problem and when handling the tiling of
canyons between branching surfaces. In both cases, if
the data are not planar we can proceed by finding an av­
erage plane for the points involved using a least squares
method , projecting the points onto this plane, and pro­
ceeding as before . We expect this will be sufficient for
most practical problems where the concept of a "plane of
section" has any meaning. The more general problem of
scattered three-dimensional data does not fall into this
class and will require entirely different methods.

4 Acknowledgements

We thank Tony DeRose for suggesting the minImum
spanning tree as a possible approach to solving the cor­
respondence problem. We would also like to thank our
colleagues in the GRAIL lab for their help and support
during the course of this work, especially the "gang of
seven" who thought it would be an interesting exercise
to survey the many existing fine methods of surface fit­
ting and pick one .. .

References

[1) Jean-Daniel Boissonnat. Shape reconstruction from
planar cross sections. Computer Vision, Graphics,
and Image Processing, 44(1):1-29, 1988.

[2) Y. Bresler, J.A. Fessler, and A. Macovski. A
Bayesian approach to reconstruction from incom­
plete projections of a multiple object 3d domain.
IEEE Trans . Pat. Anal. Mach . Intell., 11(8):840-
858, August 1989.

[3) H.N. Christiansen and T .W. Sederberg. Conversion
of complex contour line definitions into polygonal el­
ement mosaics. Computer Graphics, 12(2) :187- 192,
August 1978.

[4) Larry T. Cook, P. Nong Cook, Kyo Rak Lee,
Solomon Batnitzky, Bert Y. S. Wong, Steven L.
Fritz, Jonathan Ophir, Samuel J . Dwyer Ill,
Lawrence R. Bigongiari , and Arch W. Templeton.

253

An algorithm for volume estimation based on poly­
hedral approximation. IEEE Trans. Biomed. En­
gin., BME-27(9) :493-500, September 1980.

[5) Richard O. Duda and Peter E. Hart. Pattern Clas­
sification and Scene Analysis. John Wiley and Sons,
1973.

[6) Gerald Farin. Curves and Surfaces For Computer
Aided Geometric Design: A Practical Guide, Second
Edition. Academic Press, Inc., 1990.

[7) Alain Fournier and Delfin Y. Montuno. Triangulat­
ing simple polygons and equivalent problems. ACM
Transactions on Graphics, 3(2):153-174, April 1984.

[8) R. Fuchs, Z.M. Kedem, and S.P. Uselton . Optimal
surface reconstruction from planar contours. Com­
munications of the A CM, 20(10):693-702, October
1977.

[9) E . Keppel. Approximating complex surfaces by tri­
angulation of contour lines. IBM J. Res. Develop.,
19:2-11, January 1975.

[10) W.E. Lorensen and H.E. Cline. Marching cubes: A
high resolution 3d surface reconstruction algorithm .
Computer Graphics, 21(4):163-169, July 1987.

[11) Michael Lounsbery, Charles Loop, Stephen Mann,
David Meyers, James Painter, Tony DeRose, and
Kenneth Sloan. A testbed for the comparison of
parametric surface methods. In SPIEjSPSE Sympo­
sium on Electronic Imaging Science and Technology,
Santa Clara, CA, February 1990.

[12) Stephen Mann, Charles Loop, Michael Lounsberry,
David Meyers, James Painter, Tony DeRose, and
Kenneth Sloan. A survey of parametric scattered
data fitting using triangular interpolants. In Hans
Ragen, editor, Curve and Surface Modeling, chapter
Chapter 1. SIAM Publications, To Appear.

[13) David Meyers, Shelley Skinner, and Kenneth Sloan.
Reconstruction of surfaces from contours. Techni­
cal report, University of Washington, Dept. of Com­
puter Science and Engineering, In Preparation.

(14) Gregory M. Nielson. A transfinite, visually continu­
ous, triangular interpolant. In Gerald Farin, editor,
Geometric Modelling: Algorithms and New Trends ,
pages 235-246. SIAM, 1987.

(15) Franco P. Preparata and Michael Ian Shamos. Com­
putational Geometry, chapter 5, pages 203-204, 215,
217, 220. Springer-Verlag, 1985.

(16) K.R. Sloan, Jr. Analysis of 'dot product space' shape
descriptions. Technical Report 74, Department of
Computer Science, University of Rochester, 1980.

(17) K.R. Sloan, Jr . and J . Painter. Pessimal guesses may
be optimal: A counterintuitive search result . IEEE
Transactions on Pattern Analysis and Machine In­
telligence, 10(6):949-955, November 1988.

(18) B.I. Soroka. Generalized cones from serial sections.
Computer Graphics and Image Processing, 15 :154-
166, 1981.

Graphics Interface '91

Figure 9: Reconstructed surfaces. Top: A flat-shaded
rendition of a piecewise planar mesh generated from the
data in Figure 8a. Center: The same mesh, Gouraud
shaded to give the illusion of a smooth surface. Bot­
tom: An interpolating surface, generated by the side­
vertex method of [14]. The mesh is shown as red balls
and bl ue sticks.

254

Figure 10: Reconstructed surfaces. Top: a flat-shaded
piecewise planar mesh generated from the data in Figure
8b. Center: The mesh from part d , Gouraud shaded.
Except for the branch point closest to the center of the
image, this approximation is adequate. Bottom: An
interpolating surface, generated from the mesh of part d
by the side-vertex method of [14].

Graphics Interface '91

