
271 

Establishing Correspondences by Topological Merging: 
A New Approach to 3-D Shape Transformation 

James R. Kent 
Richard E. Parent 
Wayne E. Carlson 

Department of Computer and Information Science 
Advanced Computing Center for the Arts and Design 

The Ohio State University 
Columbus, Ohio 43210 

Abstract 

This paper presents a new technique for computing transforma­
tions between two polyhedral models. Unlike previous tech­
niques, the algorithm described herein employs both 
topological and geometric data from the original models in es­
tablishing vertex, edge, and face correspondences between the 
objects. This results in transformations which maintain their 
connectivity at intermediate steps of the transformation and 
which display far less distortion than those obtained using pre­
vious algorithms. 

Keywords: 

CR Categories: 

1.0 Introduction 

Computer Animation, Computer-Aided 
Geometric Design, Interpolation, Shape 
Transformation. 

1.3.5 [Computer Graphics]: Computa­
tional Geometry and Object Modeling; 
1.3.7 - [Computer Graphics]: Three-Di­
mensional Graphics and Realism 

The ability to a1gorithmically transform one shape into another 
is quite useful in animation and design. Traditional animation 
makes extensive use of shape transformation as a special effect. 
Growth processes, such as a tadpole turning into a fTOg, can be 
modeled by smoothly interpolating between models of the ob­
ject at various stages of maturity. In industrial design, Chen 
[Chen89] has used shape transformations to explore new forms, 
(e.g. by interpolating a teardrop and a car body to achieve a 
more stream-lined effect), and to extract trends in design (e.g. 
by blending objects with similar purposes to obtain the shape of 
an average object). 

This paper presents a new algorithm which, given two 3-D 
models, generates two new models which have the same shape 
as the original ones, but which allow transformations from one 
to another to be easily computed. Currently, the models are lim­
ited to star-shaped l polyhedral solids with no holes, but the ba-

sic concepts involved are applicable for arbitrary polyhedral 
models. 

2.0 Previous Work 

Most of the literature on shape modification in computer graph­
ics refers to the manipUlation of a single model. These algo­
rithms fall into two categories, methods which rely on a user­
specified distortion of a grid of controlling vertices [Burt76] 
[Pare77] [Sede86] [Coqu90], and methods which employ phys­
ically-based models [Barr84] [Wei186] [Terz87] [Haum88] 
[Terz88] [Plat88]. These techniques do not address the problem 
being considered in this paper (i.e. that of smoothly transform­
ing one model into another). 

Reeves [Reev81] describes a technique for smoothly trans­
forming one curve into another over time. The two curves can 
be viewed as the boundaries of a Coons' patch defined over a 
u-v rectangular parametric space (i.e. the two curves are the iso­
parametric curves, v=O and v=I). The v direction of the patch 
is taken to be time, and the isoparametric curves, v=constant, 
are used as the in-between shapes. A key notion introduced in 
this paper is that of establishing point correspondences between 
two objects, which in this case are user-specified. Reeves' tech­
nique works well for single curves, but does not easily extend 
to surfaces or solids. 

Hong [Hong88] matches the centroids of the faces of two ob­
jects to establish correspondences between the objects. These 
correspondences are then used to transform one face into anoth­
er. When one object has more faces than the other, the extra fac­
es are paired with the closest vertex in the other model. For 
carefully selected objects, this technique is effective, but for ar­
bitrary objects, severely distorted shapes occur during the inter-

1. A star-shaped polyhedral object is one for which some inte­
rior point, p, exists such that any semi-infinite ray originat­
ing at p intersects the surface of the object at exactly one 
point. Note that the set of convex polyhedra is a proper sub­
set of the set of star-shaped objects 

Graphics Interface '91 



polation. Additionally, the faces of the in-between objects may 
break apart and appear to fly randomly from their initial posi­
tion on one object to their final position on the other object dur­
ing the transformation. 

Terzides [Terz89] uses a very primitive shape transformation 
technique to investigate the use of interpolated shapes in archi­
tectural design. The technique associates the vertices of the two 
objects based on their index in the vertex coordinate arrays of 
the objects. This is clearly a very limited technique which will 
only provide useful results if explicit knowledge of the trans­
formation process is used when modeling the objects. 

Chen [Chen89] approaches the problem of transforming shapes 
by first creating coaxial 2-D slices through each object. The 
number of slices is user-specified. Corresponding slices from 
the two objects are transformed to have a common center point. 
New points are inserted in each slice at the point where the ray 
through each vertex of one slice intersects the other slice. Each 
of these pairs of points are interpolated to create intermediate 
slices, which are combined to create in-between objects using 
a lofting technique. No actual examples of the 3D algorithm are 
given and it is not clear how the original slices are obtained for 
arbitrary objects. Also, this method does not work for most 
non-convex objects, since a slice through a non-convex object 
may result in multiple rings of edges. 

Parent [Pare91] describes a solution to the shape transforma­
tion problem for arbitrary 3-D polygonal models2. His method 
involves first breaking the surface of the two objects into equal 
numbers of sheets of connected faces. New vertices are added 
along the boundaries of these sheets until there is a one-to-one 
correspondence of the points along the boundary of each pair of 
sheets. The corresponding pairs of sheets are subdivided by 
first finding a path of edges on one sheet which connects two 
vertices on the boundary of the sheet. A path of edges which 
connects the corresponding two vertices of the other sheet is 
then found, and vertices are added to the newly constructed 
paths so that a one-to-one point correspondence is obtained. 
These paths split each original pair of sheets into two new pairs 
of sheets with one-to-one correspondences between the points 
on their boundaries. The subdivision process continues recur­
sively until each sheet contains a single face. The subdivided, 
single-face sheets are then recombined, resulting in two objects 
which have the same shape as the original objects, but which 
share a common vertex-edge-face structure. The transforma­
tion between the two shapes is computed by interpolating the 
corresponding vertex positions of these two objects. The main 
drawback of this algorithm is that small regions of one model 
often map to large regions of the other, which results in severely 
distorted in-between shapes. 

2. The models must be valid in the sense of obeying Euler 's for­
mula (Euler validity): 

(# of Vertices) - (# of Edges) + (# of Faces) = 
2 - 2 * (Genus of Object) 

272 

A comparison of the four 3D shape transformation algorithms 
discussed above (i.e. [Hong88], [Terz89], [Chen89], and 
[Pare91]) with the one described in this paper is made in Sec­
tion 8.0. 

3.0 Geometry and Topology 

The models being discussed in this paper are three-dimensional 
Euler-valid solids which are bounded by planar faces (i.e. poly­
hedral solids). Such models are defined by giving the relative 
coordinates of each vertex of the model and describing the con­
nectivity of the vertices in terms of edges and faces. In this pa­
per, the term topology is used when referring only to the 
connectivity information. The term geometry is used when re­
ferring to a specific instance of the topology for which the rel­
ative vertex coordinates have been specified. 

This use of the term topology was established in the graphics 
literature by Weiler [Weil84]. It is quite different from the tra­
ditional meaning of topology used in mathematics when refer­
ring to properties of surface manifolds. 

The distinction between changes in the topology of a model (al­
tering the number of vertices and/or the connections between 
them) and changes in the geometry of a model (altering the rel­
ative locations of the vertices) is important. For example, rota­
tions and translations do not change either the topology or the 
geometry of the object. Scaling and shear operations change the 
geometry, but leave the topology unaltered. Boolean operations 
alter the topology and geometry of objects. 

4.0 The Shape Transformation Problem 

The general problem of transforming one polyhedral shape into 
another can be viewed as having two parts that will be referred 
to as the correspondence problem and the inJerpolation prob­
lem. The correspondence problem is that of establishing which 
surface elements of one object will be transformed into which 
surface elements of the other object. The interpolation problem 
is concerned with the actual transformation of corresponding 
surface elements. The two problems are interrelated since the 
method used to solve the interpolation problem is dependent 
upon the manner in which the surface element correspondences 
are established. 

Solutions to the shape transformation problem should be 
judged by the following criteria: 

1) Is face connectivity maintained for all intermediate 
shapes? 

2) Are the intermediate shapes overly distorted? 
3) What restrictions on the original models exist? 

The first criteria is essential for most applications. Of the four 
3D transformation algorithms discussed in Section 2.0, only 
[Chen89] and [Pare91] satisfy the first criteria. 

These two algorithms, as well as the one presented in this paper, 
use the same overall approach to solve the correspondence and 
interpolation problems. The correspondence problem is solved 

Graphics Interface '91 



by adjusting the topology of each original model until the ver­
tex-edge-face interconnection networks of the two objects are 
identical (i.e. there are one-to-one vertex, edge, and face corre­
spondences). Viewed another way, the solution to the corre­
spondence problem generates two new objects which have the 
same shape as the original objects, but which share the same to­
pology. 

Solving the correspondence problem in this manner leads to a 
simple solution to the interpolation problem. Since the vertices 
of the modified objects match one-to-one, any smooth interpo­
lation scheme between corresponding vertices (linear, spline 
curve, ease-in/ease-out, etc.) will cause the objects to smoothly 
transform from one to the other. Thus, [Chen89], [Pare9l] and 
this paper focus on different techniques for solving the corre­
spondence problem. 

Two potential problems may arise during the interpolation pro­
cess. First, for faces with more than three edges, interpolating 
vertices from one position to another will not guarantee that the 
faces maintain planarity. This mayor may not be a problem de­
pending on the rendering mechanism. If it is a problem, a pre­
interpolation processing step can be used to triangulate the ob­
jects. Second, an object may penetrate itself during the interpo­
lation. This usually occurs if one or both objects are extremely 
concave. No general solution to this problem is known, but pro­
viding the ability to control the rate at which each vertex moves 
from its initial to its final position can often cause interpenetra­
tions to be avoided. 

5.0 An Algorithm for Establishing Correspondences 
by Topological Merging 

The algorithm for solving the correspondence problem is first 
briefly described, followed by a more detailed description of 
the key steps . Throughout the description, the original polyhe­
dral models are referred to as MI and M2. MI (M2) has VI 
(V2) vertices, El (E2) edges, and FI (F2) faces. Except where 
noted, the algorithm will work for arbitrary polyhedral solids 
with no holes. Pseudocode for the correspondence algorithm is 
shown in Figure 1. 

The algorithm begins by projecting each model onto the surface 
of a unit sphere. These projected models are referred to as PMI 
and PM2, with vertices PVI and PV2, respectively. A modified 
Weiler polygon clipping algorithm is then used which clips 
each face of PMI to the faces of PM2. The clipped faces of 
PMI form a complete covering of the unit sphere with vertices 
PV' = (PVI u PV2 u arc-arc intersection points). These 
clipped faces tile the original faces of each model. Taking the 
union of these faces yields a common topology which has the 
required one-to-one vertex, edge, and face correspondences. 
The final step involves projecting this merged topology back 
onto the surface of each original model. 

As can be seen from Figure I, the algorithm runs in O(EI *E2) 
time, as each arc of PMI is tested for intersection with each arc 
of PM2. It is therefore important to the performance of the al­
gorithm to include tests which can quickly determine when two 

273 

arcs do not intersect In the current implementation, each pro­
jected vertex is labeled with a tag as to which octant it lies in, 
and these tags are used to quickly identify cases in which two 
arcs can not intersect. 

Read i n the Topo logy and Ge ome try o f Ea c h Model 

For Ea c h Edge of Each Model 
Pro jec t t he Edge onto the Un i t Sphe re 

(Modified Weiler Clipping Algorithm) 
For Each Projected Edge (Arc) of Model 1 

For Each Projected Edge (Arc) of Model 2 
Calculate Arc/Arc I ntersection Point 
If Arcs Intersect 

Subdivide Arcs a t Intersection Po i nt 
Adjust Edge Topology 

For each Projected Vertex, PV 
If PV is not an Original Vertex of Mode l 1 

Ma p PV to Model l's Surface 
If PV is not a n Original Vert e x of Mo de l 2 

Ma p PV to Model 2 's Surface 

Figure 1 - Pseudocode for the Correspondence Algorithm 

Figure 2 shows two polyhedral models, a cube and a soccer 
ball, before and after the correspondence algorithm is run. 

Original Models 
Models with Merged 

Topology Mapped 
onto Surface 

Figure 2 - An Example of Topological Merging 

5.1 Projecting Onto the Unit Sphere 

The first step in the algorithm is to project the topology of each 
model onto the surface of the unit sphere. This projection must 
be done in such a manner that no edges of the projected model 
intersect. In addition, the projected faces of each model must 
completely tile the surface of the sphere. For star-shaped poly­
hedra without holes, a simple projection exists, and is described 
below. A suitable projection technique has not been found for 

Graphics Interface '91 



general concave polyhedra without holes or for polyhedra with 
holes. Section 7.0 discusses this issue further. 

For star-shaped polyhedra, at least one interior point exists 
from which all the vertices are visible. (For convex polyhedra, 
all vertices are visible from all interior points). Such a point is 
chosen as the center of the object. For each vertex, a ray is con­
structed which originates at this center point and passes through 
the vertex. The vertex is moved along this ray in a positive or 
negative direction until it is at unit distance from the center. 
Performing this action on all vertices of the model generates a 
new model whose vertices lie on the surface of the unit sphere. 
The edges of each model project to arcs on the surface of the 
sphere (i.e. the arc which is obtained by projecting any point on 
the edge outward from the center point until it is at unit dis­
tance). The projected faces are arc-bounded patches which 
completely tile the surface of the sphere. 

Any point may be selected as the center point as long as it is 
strictly in the interior of the model and all vertices of the model 
are visible from it. For convex polyhedra, finding the centroid 
by averaging all vertex coordinates will produce a suitable cen­
ter. For concave star-shaped polyhedra, the center point must be 
specified either implicitly or explicitly, and checked for validity 
by ray-casting. In either case, sHowing the user control over the 
location of the center point is desirable, since selecting different 
center points will produce different transformations, as can be 
observed by comparing Figures 6 and 9. 

5.2 Merging the Topologies (A Modified Weiler Poly-
gon Clipping Algorithm) 

In [Weil771 and [Weil801, an algorithm is described which clips 
one polygon against another polygon. For our purposes, we de­
sire a version of this algorithm which clips arc-bounded patches 
on the surface of a sphere to other arc-bounded patches. By 
clipping each patch of one projected object against all the 
patches of the other object, a set of patches which completely 
tiles the original patches as well as the surface of the sphere is 
formed. The union of these patches forms the desired merged 
topology for the transformation. 

The first step in performing the clipping involves finding all 
arc-arc intersections between the arcs of PMl and the arcs of 
PM2. Consideration of the geometry of the projected objects 
provides a straightforward technique for computing these inter­
sections. Each edge of the original models projects onto an arc 
of the unit sphere which lies in the plane containing the center 
point of the sphere and the two endpoints of the arc. This is il­
lustrated in Figure 3, where 0 is the origin of the unit sphere, A 
and B are the endpoints of an edge, and PA and PB are the pro­
jected endpoints of that edge.3 Thus, any projected edge (i.e. an 
arc) of model 1 is contained in a plane P = PA t + PB u, where 
PA and PB are the projected endpoints of that edge. Similarly, 

3. Vector quantities are indicated by a bold letter. 

274 

some plane Q = PC v + PD w, contains the projected edge of 
model 2 with projected endpoints PC and PD. 

Figure 3 - Projecting an Edge onto the Unit Sphere 

If P and Q are not coplanar, then their intersection is a line. One 
point on this line is the center of the unit sphere, O. A second 
point, X, on the line can be found by solving for a point where 
the plane equations are equal. Setting P = Q, yields the follow­
ing three equations: 

Since there are 3 equations and four unknowns (t, u, v, and w), 
t is set to 1.0,4 and the other three are computed using an equa­
tion solving technique such as Kramer's rule. This establishes 
point X = PA t + PB u. 

If the arcs intersect, their point of intersection, I, must lie on the 
ray from 0 to X at unit distance from 0 (i.e. on the surface of 
the unit sphere). Once point I is determined, tests must be made 
to ensure that it does indeed lie on each of the two arcs. (It is 
possible that point I lies on the great circles of the unit sphere 
which contain arcs PA-PB and PC-PO, but does not actually lie 
on the arcs).5 This test is easily performed by determining 
whether or not the ray from 0 to point I intersects the chords 
PA-PB and PC-PD. If the ray intersects both chords, then point 
I is an arc-arc intersection point. If not then the arcs do not in­
tersect. Figure 4 illustrates the case where the arcs intersect. 

If P and Q are coplanar, the two edges project to arcs of the 
same great circle of the unit sphere. In this case, it is easy to de­
termine whether the two arcs abut, overlap, or are disjoint 

.The remainder of the modified Weiler algorithm involves clip­
ping each face of PMl against each face of PM2. This process 

4. Choosing t = 1.0 ensures that the point found lies in the same 
hemisphere as A and B. 

5. A great circle is the circle formed by intersecting a plane 
through the origin of a sphere with the sphere. 

Graphics Interface '91 



involves constructing contours for the pieces of each face of 
PM! which lie inside each face of PM2. Once the projected 
edges (Le. the arcs) have been divided into segments as above, 
this construction is exactly like the contour construction phase 
of the Weiler polygon clipping algorithm. For details of this 
construction, refer to [Weil80] or [Fole90]. 

Figure 4 - Arc-Arc Intersection on the Unit Sphere 

5.3 Determining the Locations of Added Vertices 

The remaining step in the correspondence algorithm is to deter­
mine where the vertices added to each object's topology map 
onto the face of the original models. For star-shaped polyhedra, 
this can be done by casting rays from the center point to each 
vertex. The intersection of these rays with the faces of the orig­
inal models determine the location of the added vertices, as 
shown in Figure 5. For general concave polyhedra, this step 
will depend on the method used for the initial projection onto 
the unit sphere. 

• - Vertex Added 
During Merge 
Step 

o - Location of 
Added Vertex 
on Original 
Surface 

Figure 5 - Determining the Location of Added Vertices by 
Ray Casting 

275 

6.0 Results 

Figures 6 to 9 show sequences of still frames from animations 
of the shape transformations between various pairs of objects. 
In each example, pay particular anention to the lack of distor­
tion in the in-between objects. Figure 6 illustrates a cube chang­
ing into a soccer ball. Notice how smoothly the soccer ball 
emerges from the surface of the cube. Figure 7 shows a soccer 
ball changing into a flat, 5-pointed star. This demonstrates the 
capability to transform between convex and concave star­
shaped polyhedra. Figure 8 shows a pair of concave star-shaped 
objects with very dissimilar shapes transforming from one to 
the other. Figure 9 shows the cube to soccer ball transformation 
again, but with the center of the cube selected to be near one of 
its vertices. Notice how the transformation is very different 
from that in Figure 6, but still quite smooth. The ability to alter 
the center point gives the designer/animator a tool to tune the 
exact transformation obtained. 

7.0 Future Research 

Further research needs to be done to develop projections for 
general concave polyhedra and for polyhedra with holes. For 
general concave polyhedra, a projection is needed which push­
es out the concavities of the objects while maintaining certain 
geometric properties of the objects, such as ratios of edge 
lengths. An algorithm which recursively reduces the number of 
concavities of an object is currently being investigated. For ob­
jects with holes, the desired projection of the objects and sub­
sequent polygon clipping could be carried out on the surface of 
a representative surface manifold with the same number of 
holes (e.g. a torus for an object with one hole). 

Other open issues include providing the designer/animator the 
capability of specifying that certain regions on one object be 
mapped to specific regions on the other object, investigating the 
effects obtained by projecting the objects onto and clipping on 
the surface of an object other than the unit sphere, such as a 
cube or an ellipsoid, and providing the capability to specify that 
only the points in certain regions of the objects be transformed. 
This last capability would allow the generation of new objects 
which combine features of each original model. 

8.0 Conclusions 

Most previous approaches to the 3-D shape transformation 
problem either ignored key topological information ([Hong88] 
and [Terz89]) resulting in models whose faces fly apart during 
the transformation, or key geometric information ([Pare90]), 
resulting in uneven, distorted transformations (i.e. large por­
tions of one object mapping to small portions of the other). 
[Chen89] employs both topological and geometric information 
from the two models, but lacks generality, due to necessity of 
creating contour slices of the models. 

The approach in this paper employs geometric information in 
the projection step and topological information in the clipping 
step to establish correspondences between the vertices, edges, 

Graphics Interface '91 



276 

Figure 6 - Cube to Soccer Ball Transformation 

Figure 7 - Soccer Ball to Star Transformation 

Figure 8 - Transformation between two complex objects 

Figure 9 - Cube to Soccer Ball Transformation with Center of Cube Offset 

Graphics Interface '91 



and faces of two polyhedral models. Since both types of infor­
mation are used, the intermediate objects obtained maintain 
their integrity (in an Euler sense), and have an appealing, intu­
itive appearance. 

Summarizing, any shape transformation algorithm whose in­
between shapes do not maintain face connectivity is of little 
practical use. [Hong88] and (Terz89] fall into this category. Of 
the other two algorithms, [Chen89], [Pare91], and the one de­
scribed in this paper, only [Pare9l] works for arbitrary models . 
[Chen89] has little hope of being extended due to the fact that 
slices through non-convex objects may result in multiple rings 
of edges. While the current implementation of our algorithm is 
limited to star-shaped polyhedra (of which convex polyhedra 
are a subset), the general approach of projecting both objects 
onto a unit sphere and merging the topologies is not. Wider 
classes of objects can be handled by determining suitable pro­
jections of the objects to the unit sphere. 

The advantage of our method over [Pare91] is that the in-be­
tween objects generated by our algorithm are much less distort­
ed than those generated by [Pare91]. This is due to the fact that 
[Pare91] largely ignores the geometric information contained 
in the original models which causes small regions of one model 
to map to large regions of the other. 

Acknowledgments 

We wish to thank the Department of Computer and Information 
Science and the Advanced Center for Computer Art and Design 
for the use of their facilities, Hewlett-Packard and AT & T for 
equipment grants which make this research possible, and Ken 
Supowit and Kevin Rodgers for useful ideas and criticism. 

277 

[Haum88] 

[Hong88] 

[Pare77] 

[Pare91] 

[Plat88] 

[Reev81] 

Bibliography [Sede86] 

[Barr84] 

[Burt76] 

[Chen89] 

[Coqu90] 

[Fole90] 

Barr, A., "Global and Local Deformations of 
Solid Primitives", Computer Graphics, Vol. 
18., No. 3, July 1984, pp. 21 -30. 

Burtnyk, N. and M. Wein, "Interactive Skele­
ton Techniques for Enhancing Motion Dynam­
ics in Key Frame Animation", 
Communications of the ACM. Vol. 19. NO. 10, 

(Terz87] 

October, 1976, pp. 564-569. (Terz88] 

Chen. E .• and R. Parent, "Shape Averaging and 
Its Applications to Industrial Design", IEEE 
Computer Graphics and Applications. Vol. 9, 
No. 11, January 1989, pp. 47-54. (Terz89] 

Coquillart, S., "Extended Free-Form Deforma­
tion: A Sculpturing Tool for 3D Geometric 
Modelling", Computer Graphics. Vol. 24, No. 
4, August, 1990, pp. 187-196. [Wei186] 

Foley, 1., A. van Dam, S. Feiner and J. Hughes, 
Computer Graphics - Principles and Practice, 

Graphics Interface '91 

Addison-Wesley Publishing Company, Inc., 
Reading. Massachusetts, 1990. 

Haumann, D. and R. Parent, 'The Behavioral 
Test-Bed: Obtaining Complex Behavior from 
Simple Rules", VISUal Computer, Vol. 4, No. 6, 
December 1988, pp. 332-347. 

Hong, T., N. Magnenat-Thalmann and D. Thal­
mann. "A General Algorithm for 3-D Shape In­
terpolation in a Facet-Based Representation", 
Proceedings of Graphics Interface '88, June 
1988, pp. 229-235. 

Parent, R., "A System for Sculpting 3-D Data", 
Computer Graphics, Vol. 11, No. 2, Summer 
1977, pp. 138-147. 

Parent, R., "Shape Transformation by Bound­
ary Representation Interpolation: A Recursive 
Approach to Establishing Face Correspondenc­
es", Technical Report OSU-CISRC-2/91-TR7, 
Computer and Information Science Research 
Center, The Ohio State University, 1991. 

Platt, 1. and A. Barr, "Constraint Methods for 
Flexible Models", Computer Graphics, Vol. 
22, No. 4, August 1988, pp. 279-288. 

Reeves, W., "Inbetweening for Computer Ani­
mation Utilizing Moving Point Constraints", 
Computer Graphics, Vol. 15, No. 3, August 
1981, pp. 263-269. 

Sederberg, T. and S. Perry, "Free Form Defor­
mations of Solid Geometric Models', Comput­
er Graphics, Vol. 20, No. 4, August 1986, pp. 
151-160. 

Terzopoulos, D., 1. Platt, A. Barr and K. Fleis­
cher, "Elastically Deformable Models", Com­
puter Graphics, Vol. 21, No. 4, July 1987, pp. 
205-214. 

Terzopoulos, D. and K. Fleischer, "Modeling 
Inelastic Deformation: Viscoelasticity, Plastic­
ity, Fracture", Computer Graphics, Vol. 22, No. 
4, August 1988, pp. 269-278. 

Terzides, C., ''Transformational Design", 
Knowledge Aided Architectural Problem Solv­
ing and Design, NSF Project #DMC-8609893, 
Final Report. June 1989. 

Weil, 1., ''The Synthesis of Cloth Objects for 
Computer Graphics", Computer Graphics, Vol. 
20, No.4, August 1986, pp. 49-54. 



[WeiI77] 

[WeiI80] 

[WeiI84] 

Weiler, K. and P. Atherton, "Hidden Surface 
Removal Using Polygon Area Sorting", Com­
puter Graphics, Vol. 11, No. 2, Summer 1977, 
pp. 214-222. 

Weiler, K., "Polygon Comparison Using a 
Graph Representation", Computer Graphics. 
Vol. 14, No. 3, August 1980, pp. 10-18. 

Weiler, K., "Topology as a Framework for Sol­
id Modeling", Proceedings of Graphics Inter­
face '84. May, 1984. 

278 

Graphics Interface '91 


