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Abstract 

Shading techniques should be wavelength dependent, a 
fact which has traditionally been ignored in computer 
graphics: colour is usually represented in t.erms of an 
RGB coordinate system, which is inappropriat.e and has 
demonstrable problems. The use of spectral refl ectances 
for materials in place of the RGB values in t.he shading 
comput.at.ions would solve these problems. 

Our techniqne proposes using piecewise cn hic polyno
mials to approximate the re fl ectance spectra. With this 
met. hod, we t.ake the entire visible spectrum into account 
and avoid any wavelength sampling problems. We also 
propose a solut.ion to the problem of having a large de
gree polynomial, as a result of successive multiplications 
in the shading comput.at.ions. 

Il est. un fait. qui souvent He omis en infographie: les 
techniques d'ombrage devrai ent etre dependantes des 
longueurs d'ondes , alors que generalement la couleur est 
represent.ees en fonction d'un syst.eme de coordonees RVB 
(Rouge Vert, Bleu). Ceci est insuffisant, et cree des 
problemes reels. L'utilisation des reflectances spectrales 
pour les mat.eriaux, 11 la place des valeurs RVIl , peut 
resoudre ces problemes pour les calculs d'ombrages. 

Notre technique propose d'lIt.liser des polynomes cu
biques, pour approximer le spectre de reflectance . Cette 
methode prend en compte la totalite du spectre visible, et 
evite ainsi tout probleme d'cchantillonage des longueurs 
d'ondes. Nous presentons egalement une solution au 
probleme des polynomes de degre eleve, suit.e aux multi
plicat.ions successives pour le calcul d'ombrage. 
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1 Introduction 

Colour is fundamental in computer graphics for displays. 
Shading techniques have wavelength dependent terms. 
However, hy using RGIl values in the shading comput.a
tions, problems such as undersampling of the spectrum 
will occur. Colorimetry is used to solve problems re
lated to the use of colour in computer graphics. The CIE 
XYZ colonr system [Wyse82) was developed in 1931 by 
the CIE (Commission Int.e rnationale de l'Eclairage) as 
a standard universal colour system that takes into ac
count the human visual system. The CIE XYZ colou r 
matching functions are positive across the entire visible 
spectrum, unlike the CIE RGB colour matching func
tions which have negative portions and are inconvenient 
for some computations. 

Several techniques which have been proposed for 
solving t.he "RGIl problem" use measured spectral re
fl ectances of materials in the shading computations. 
However, these techniques also have problems associated 
with them. We present a solution to the problems of us
ing RGIl values for shading in computer graphics. Our 
solution uses the spectral reflec tances of materials repre
sented as piecewise polynomials, and takes into account 
the entire visible spectrum.! 

2 RGD for Illumination and Shading 

lllumination models require information about all light 
sources in an environment. This includes direct light 
sources, refl ected, refracted, and ambient light . In gen
eral, the diffuse component of reflected light provides 
most of the surface colour and the specular component 

. provides the highlights on an object as a result of direct 
light source reflections. User supplied RGB values are 
generally (incorrectly) used in place of the wavelength 
dependent intensities in an illumination model. 

lThe visible spectrum is defined in the range 300- 830nm 
though it is commonly limited to a smaller range such as 380-
780nm. 
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Traditionally in computer graphics, colours are com
puted in an RGB space. The basis for using these three 
colour values is due to the monitor phosphors which are 
triads of red , green, and blue dots . However, the values 
given to each of the RGB terms are usually based on the 
user 's perception of what they should be. These should 
in fact be measured RGB values based on monitor cal
ibrations if t he user is actually thinking of Ihe RGB in 
terms of monitor phosphors. 

When specifying colour in terms of RGR values, it 
should be made apparent which RGB space I he shading 
computat.ions are being performed in . There are many 
RGB spaces, among them the CIE RGB, the NTSC RGB, 
and the monitor RGB. 

The Commission Internationale d 'Eclairage (CIE) de
veloped the CIE RGB system based on three monochro
mat.ic colours chosen so that red (R) is at 700nm, green 
(G) at 546.1nm, and blue (B) at 435. 8nm. Chromaticity 
values are obtained from the CIE RGB tristimulus values 
in the following way : 

___ G __ 

9 - R + G + B b - B 
- R + G + B' (1) 

The NTSC2 RGB values correspond to th e chromatic
ity values of phosphors for hom e television sets . Since 
nol. all t.elevision sets have the same chromal icities, the 
NTSC signal assumes stand a rd chromaticit.y values for 
virtu al phosphors. This is the reason that the colour on 
different televisions do not appear th e same. 

The RGB values of monitors used for displaying com
put.er graphics images a re specific to that monitor, and 
therefore the same im age can he perceived differently on 
separate monitors. This is du e t.o the non-st.andard chro
mat.i citi es of the phosphors among the varions screens. 

A\t.hough other colour syst.('ms exist., any sys t.em used 
fo r comput.ing colour must be co nverted to a moni to r 
RG B system before displ aying the image. An neB colour 
space is th e conventional method employed in computer 
grapllics for representing colour in im ages. However , even 
assuming we kn ow whi ch RGll space is being referred 
to in th e shading computations, it does not solve the 
problems related to using RG R values. If all colours in 
the graphics system are to be speci fi ed in te rms of RGll 
values , th en the colour computation using the monitor 
RG II space is appropriate. On the other hand , if the user 
wants the colours in the image to be a tr ue represent.at.ion 
of th e interaction of light with a material , then spectral 
dis tributions are necessary. 

3 Prohlems Related to RGB Spaces 

Using RGll values in shading computations can be seen 
as a sampling of the spectru m at only three wavelengths, 
result.ing in severe unde rsamplin g (unless the spectra is 
a simple curve) or as a filtering of the spect.rum throu gh 
th e t.ri stimulus curves. 

2Nationa l Television Standards Committee. 
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In ray tracing, the multiplications of the wavelength 
dependent terms in the shading model are accumulated 
to compute the intensity of a point in the image. If these 
computations involve RGB values, then colour distortion 
can occur. It is incorrect to compute refl ection and re
fr ac tion using RGB values. The product of the spectral 
distribution of the light source and the wavelength de
pendent refl ections of the surface determine the sp ectral 
distribut.ion of the refl ected light. 

In addit.ion , colour information is lost in complex il
lumination models and reflection and refract.ion models 
when only three values of the spectrum are used. For 
example, a white light reflected off a smooth coloured 
surface will have a specular highlight the colour of the 
light source (as is the case with the Phong illumination 
model)3. The diffuse and ambient terms are scaled by 
each of the RGB values. The highlight should be the 
desaturat.ed colour of th e combination of the light and 
surface colonrs . 

The space of the spectral light source and material re
fl ectance has infinite dimension. If they are projec ted to 
any three dim ensions, information is lost that can never 
be recovered. Shading effects cannot be computed ac
curately after that since these are physical effects in the 
original infinite dimension spectral space. For example, 
consider t.he two refl ect.ing objects in Figure 1. A white 
light source is refl ected off Object 1 onto Object 2, and 
then off of Object 2 reaching the observer. If Object 1 
is a material having a reddish colour of [1,0 .5,0] and Ob
ject 2 has a bluish colour of [0,0 .5, 1], the RGB value ob
se rved by the viewer would be a dark green colour (i .e. 
[O,x, O] wh ere x is some value between ° and 1) . However , 
the spect.ral distribution of the refl ectance reaching the 
observer should actually be black for some specific re
fl ectance curves. In the example of F igure 2 one can see 
what the speclral dist ribution of th e refl ectance reaching 
the observer would be . 

Obje c t. 1 

Figure 1: Reflection of light in a scene. 

Researchers are now beginning to take into account t he 
wavelengt.h dependencies of illuminat.ion models in order 
to improve shading techniques in rend ering systems. 

4 Solutions Involving Spectral Distributions 

Several techniques have been proposed that use spectral 
dist.ribut.ions in t.he models. One solut.ion is a sampling 

3HGB models oftcn r ender the specular highlight the same 
colour as the light source, evcn though this is incorrect. 
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Figure 2: Spectral distributions for Figure 1. 

solution that samples the spectrum at various values for 
colour computations. Prior to image storage or display, 
some method is used to convert the spectral values to 
an RGB colour space appropriate for monit.or display! 
Another solut.ion is to use a linear model t.o rppresent the 
reflectance spectra. 

4.1 Arbitrary Sampling of the Spectrum 

Hall and Greenberg [Ha1l83] developed a testhed image 
synthesis syst.em at the Computer Graphics Lab of Cor
nell Universit.y which uses ray tracing techniques to gen
erate realist.ic images. The t.esthed system point samples 
t.he spectrum at. arbitrary intervals . Aft.er th e shading 
computat.ions are completed, t.h e resulting samples are 
transformed into the CIE XYZ space and then by matrix 
multiplicat.ions into the RGD space of the monitor used 
for display. Although they produced more reali stic im
ages, they point sampled the spectrum arbit.rarily, which 
could result in loss of colour information . 

4.2 Sampling Using a Gaussian Quadrature 
Technique 

Meyer [Meye88] developed a technique that. uses Gaus
sian quadrat.ure to select. t.he wavelengt.hs t.o sample. A 
minimum number of wavelengths5 are select.ed by this 
technique, which are located across the sped.rum at the 
important positions necessary for accurately rendering 
the material's colour . Meyer used his own colour space 
AC1 C2 in order to determine the wavelengt.hs to sam
ple and compared his results to the CIE XYZ space. A 
problem with this technique is that. integrations for some 
wavelengt.hs may not be possible since port.ions of his 
cJ(,x) and C2(,x) colour matching curves are negat.ive. The 
gaussian technique only complicates the comput.ation of 
chromaticity values. 

4 The computations on the sampled points are all completed 
before the transformation into the RGB space of t.he monitor. 

5The illumination model has to be repeated for every wave
length sampled. 
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4.3 Representing Spectra By a Linear Model 

Maloney [Ma1087] used linear models for light sources and 
surfaces over a limited range in order to achieve colour 
constancy. Surface reflectances are represented by a lin
ear model wit.h a small number of parameters. The linear 
model is composed of band-limited functions having 5-7 
parameters. A problem with this method is that it relies 
on global optimization of all spectral data which could 
result in an incorreci linear model for some curves. 

5 The Piecewise Polynomial Solution 

The method we propose uses piecewise cubic polynomials 
to represent spectral distributions [Ras09Q]. The visible 
spectrum is divided into two spans with a cubic polyno
mial approximating the spectral data in each span. After 
all comput.ations are complete, the resulting polynomial 
represent.at.ion of the spectra is transformed to the CIE 
XYZ coordinat.e system. Matrix mult.iplications will then 
convert t.h e XYZ values to the RGD space of the monitor 
used for di splay. 

Polynomial s are a simple way to represent spectral dis
tributions and dividing the spectrum into spans provides 
more fl exibility. It is conveni ent for our operations to use 
polynomials. It is easy to fit a polynomial to the orig
inal spectral data points. Also, multiplying reflectance 
and absorptance polynomials and integrating the final 
polynomials to comput.e the CIE XYZ chromaticity co
ordinates are all simple to do. 

5.1 Polynomial Degree and Number of Spans 

In order to use piecewise polynomials, the appropriate 
polynomial degree and number of spans to use must be 
determined. Preliminary tests were performed in order 
to achieve this . Refer to Figure 3 for the various methods 
that can be used . 

de~ree spa.ns fittin ~ c riteria. fittinS methods 

unifo rm 

;f 
• least square err o r • least square 

fixed 
• min max erro r · Chebyahev 

~ • least area 

n o n _un iform 
. Hermite 

- lea.st luminance 

# difference • a weishted 

,/ meth od 
. least ROB 

va.ria.ble 
differen c e 

~ . lea.st perc eptual 

b o und difference 

Figure 3: Methods for fitting a curve to data points. 

The degree of the polynomials can be varied. The divi
sion can be fixed at wavelength positions such that there 
are equal or different ranges in each span. The number 
of spans can be varied as well as the bound on each span. 
In addition , it must be determined beforehand what is 
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to be minimized. In Figure 3, the various measures are 
listed under the column on fitting criteria. 

5.2 Polynomial Representation 

All light sources are described by a spectral energy distri
bution and surfaces are defined by spectral reflectances 
for some type of material. In order to simplify the illumi
nation computations, all spectral data are approximated 
by two spans of a cubic polynomial with the spectrum 
divided at 550nm. 

The division value 550nm was determined by the fact 
that the wavelength 555nm is the point at which the 
luminous efficiency function of the cones in the eye is 
maximum. 6 By dividing the spectrum at this maximum, 
the wavelength value is accounted for twice in the com
putations (since it is an end point for each span) and it 
is equivalent to weighting the curve at this point. How
ever , errors in accuracy for approximating the CIE XYZ 
values may arise if there is a large discontinuity at this 
point when the polynomials are computed for each span. 

We use a least squares algorithm to determine the co
efficients for the spectral reflectance polynomials. The 
cubic polynomials resulting from the least squares algo
rithm will have the following form (one for each span): 

(2) 

We wanted a curve fitting algorithm that would fit a cubic 
polynomial to the spectral data reasonably well and that 
would be easy to implement. A least squares algorithm 
fit our criteria. Refer to Figure 4 for the fit of a cubic 
polynomial to reflectance data for a blue paint. 

Reflectance 

1.0 ---,----------, 

0.8 

0.6 

0.4 

0.2 

0.0 -+--,---.---r--.-----I 

300 400 500 600 700 800 

Wavelength (nm) 

Figure 4: C ubic polynomial fit to the reflectance data 
for a blue paint. 

5.3 The XYZ System 

The CIE XYZ colour coordinate system was chosen to 
compute the colour coordinates from the polynomial rep-

6The cones are the cells of the eye responsible for colour 
vision . Since the method we propose has spectral data in 
increments of 10nm, we went down to 550nm from 555nm. 
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resentation of the spectra. In the CIE XYZ system, the 
three primaries X, Y, and Z represent the tristimulus val
ues as computed by the integrals: 

1
780 

X = Q(,x)x(,x)d,x 
>.=380 

(3) 

f80 

Y = J>.= 380 Q(,x)y(,x)d,x (4) 

f80 

Z = J>.=380 Q(,x)z(,x)d,x (5) 

where Q(,x) represents the spectral distribution of some 
stimulus. In our case, Q(,x) is the polynomial represen
tation of the reflectance distribution of materials. The 
values x(,x), y(,x), and z( ,x) are the colour matching 
functions, each of which is also represented by a cubic 
piece wise polynomial (the 1964 colour matching func
tions [Wyse82] were used in this case). 

5.4 Advantages and Disadvantages 

We present the piecewise polynomial approach as a solu
tion to the problems with using RGB values in shading 
computations. Our technique avoids the problems that 
arise with the solutions discussed in Section 4, since we 
take the entire visible spectrum into account (i.e. no sam
pling errors occur with our method) . However, by using 
piecewise polynomials, discontinuities may arise between 
the spans. Note that since we do not do "shape fitting", 
a discontinuity is not a problem. The problem is when 
the discontinuity introduces significant differences in the 
final colour values. The approximation errors may be 
reduced by using some method that is more restrictive 
on the spans t.han the simple least squares algorithm we 
use (refer to Figure 3 for fitting criteria). However, since 
most of the material reflectance curves are smooth, the 
least squares approximation does not yield significant er
rors. 

6 The Closure Problem 

The use of polynomials in computations results in a clo
sure problem . There are many multiplications in the il
lumination model with each multiplication doubling the 
degree in the resulting polynomial. The degree of the fi
nal polynomial for the integration computations for each 
X, Y, and Z could end up being a very large value, es
pecially in the context of ray tracing . This problem is 
solved by keeping the degree of the polynomials constant 
by using a degree "reduction" technique. The "reduc
tion" is accomplished by use of Chebyshev polynomials 
to approximate large degree polynomials. 

6.1 The Chebyshev Polynomial Solution 

Chebyshev polynomials are defined in the region -1 ::; 
x ::; 1. Therefore, it was necessary that the degree reduc
tion technique convert the polynomials which represent 
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the spectral data in the region 380-780nm to the range 
[-1,1]. 

The new reduced polynomial is then computed by the 
formula: 

P3(>' ( [380,780]) = [1 >. >.2 >.3]R T M T-1 R-1 Ps 
(6) 

where Ps is t.he vector matrix of the coefficient.s for the 
polynomial to be reduced, R is the matrix to convert 
the polynomials in the spectral range 380-780nm to the 
Chebyshev range [-1,1], T is the Chebyshev polynomial 
matrix, and M is a variation on the identity matrix.7 The 
matrix M is used to select the first four coefficients for 
the new polynomial. 

In effect, what Equation 6 does is first change t.he range 
of the polynomial from [380,780] to [-1,1] (hy multiply
ing Ps by R- 1

) . This result. is then mult.ipli ed by the 
inverse Chebyshev polynomial matrix T- 1

. The M ma
trix selects the first four coefficients. Then in order to get 
the new coefficients back to the original range, these val
ues are mult.ipli ed by t.he Chebyshev polynomia.i mat.rix 
T and then t.he R matrix to get back to the original ran ge 
again. The result.ing vector mat.rix which holds the new 
coefficients has four values in the first 4 rows and O's in 
the remaining rows (the O's are du e to the mult.iplication 
by M). The multiplication by M is similar to t.runcating 
the degree 6 polynomial. Note that Equation 6 will have 
to be applied for each span. 

0.2 R esults From Degree "Reduction" 

Figure 5 illustrates how close two spans having degree 3 
polynomials can approximat.e two spans havi ng degree 
6 polynomials (with the subdivi sion at 55011111). The 
solid line in each span is the degree 6 polynomial and 
the dashed line in each span is the approxima.t.ed degree 
3 polynomial. 

Refl ectance 

0.1 -,------------, 

0.05 -

0.0 -

-0.05 -

-0.1 -+--'--,-',--",--'-,---1 

300 400 500 600 700 800 

Wavelength (nm) 

Figure 5: Approximating a degree 6 polynomial by a 
degree 3 polynomial. 

7M is a 7 X 7 matrix having 1 's in the first four diagonal 
positions . 
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By using this Chebyshev method to approximate large 
degree polynomials, the computations in the illumination 
model are "reduced" and made easier. Also, the error in 
reducing the polynomial is generally less than the initial 
error of approximating the spectral data points. Refer to 
Table 1 for the error values . The table gives the errors for 
fitting a cubic to the refl ectance data for a green shingle 
under the tirst error column. The second error column 
lists the errors in fitting a curve to the x colour matching 
functions. The last column gives the errors from reducing 
the polynomial as a result of multiplying the reflectance 
and x colour matching cubic polynomials. 

span # errors 
reflectance x reduced 

one 3.532443e-5 6.953191 e-3 4.819727e-6 
two 2.381345e-6 2.124504e-2 3.651482e-6 

TABLE 1 : Comparison of errors in "reducing" a polynomial. 

7 Implementation and Results 

Our method was implement.ed in Optik, a ray tracing pro
gram developed at the University of Toronto's Dynamic 
Graphics Project (DGP). The illumination model in Op
tik is represented by: 

J = ambient + Lamber-tian diffuse + reflect ed + 
Phong spewlar + refra cted 

The usual way in which surfaces and light colours are 
speci tied in Optik (and many other rendering systems) 
is by RGB components: red green blue . In our imple
mentation, this triple is replaced inte rnally by two cubic 
polynomials representing the surface reflectance or the 
spect.ral energy distribut.ion of the light. source. The spec
tral refl ectance distributions of materials were obtained 
from the collection of natural phenomena data by Krinov 
[Krin47] and from spectral data in [Wyse82]. 

The reflectance values for a surface material are used to 
determine the polynomial representation of the spectral 
data. In addition, the surface colour transmittance is 
represented by a spectral distribution, where the spectral 
information is defined by a colour filter distribution. The 
polynomial representations of the filter distributions can 
also be multiplied by the light source distributions to 
simulate a coloured light source. 

7.1 Representing Light Sources 

It should be noted that light source spectral data does 
not have to be approximated by polynomials. In fact, 
it is difficult to approximate light source data with suffi
cient precision using any method since light spectra are 
so irregular in shape.8 Some light source spectral data is 

8The light source spectral data can be approximated by 
polynomials if the spectrum is subdivided into enough spans 
to reasonably fit a curve to the data in each span. This may 
also require a different degree polynomial for each span, which 
would further complicate the computations. 
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more complex than surface reflectances since it has high 
frequ encies at certain wavelengths and is less smooth. For 
example, the spect ral distribution for a fluorescent light 
is difficult to approximate because of the spiky frequen
cies , whereas sunlight is smoother and can be represented 
more easi ly by a polynomial. 

It is not necessary to represent the light. sources in 
ray tracers with the same method used to define the re
flectances and colour matching functions. A different rep
resentation can be used for light.s while s t.ill keeping the 
polynomial representation for su rface reflectances. This 
is possible because in ray tracing after all reflection and 
refraction computations are complete, we are left with a 
cubic polynomial which is then convolved wit.h the light 
source . It does not matter how this light sonrce is repre
sented (for example , as samples, basis fun ctions, or even 
polynomials) as long as we know how to convolve it. 9 

7.2 Polynomial R epresentation to eIE XYZ 
Space 

Aft.er all computations and degree reductions are com
pleted, we are left with one polynomial for each span as 
a representat.ion of the spectral dist.ribution : 

span #1- ao + alA + a2A2 + a3A3 

span #2- bo + blA + b2A2 + b3A3 

These polynomials are mult.ipli ed by th e X(A), YP), and 
Z(A) colour matching fun ctions . The result is int.egrated 
using Equat.ions 3 - 5 to determin e t.he X, Y, and Z tris
timulus values (similarly for Y and Z) : 

X 1550 

(ao + alA + a2A 2 + a3A 3)1' I (.A)dA 
380 

(7) 

where Xi (A) , (similarly for Yi(A) , and Zi(A)) is the poly
nomial representation of the colour matching functions 
for span #1 and span #2. The multiplicat.ion of the 
polynomials under the integration will resnlt. in degree 
6 polynomials which are not required to be "reduced" 
because this is one of the final steps in det.ermining the 
chromaticity values. There will no longer be any poly
nomia.l mult.iplication with these polynomials after this 
point . 

Equation 7 is easily solved using any integral solving 
technique of calculus. Once each of the XYZ values have 
been computed, Equations 8 are used to dct.ermine the 
xyz chromatici ty values . 

x 
x = x+y+z 

y 
y = x+y+z Z - z - x+\·+z· (8) 

9 Unfort.unately, the current. version of Optik computes in
tensities from the light source to the eye, forcing us to rep
resent the light. source spectral data in some form from the 
beginning. 
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7.3 eIE XYZ Space to Monitor RGB Space 

After the CIE XYZ chromaticity values are determined 
they are converted to rgb chromaticity values, taking into 
account the chromaticities of the monitor phosphors .10 

Once all previous steps are completed, the RGB values 
that are to be written to the monitor can be dete rmined . 
This requires t hat the luminance for each red, green, and 
blue phosphor be known. 

It is possible that some of the RGB va.!ues will be out
side the range [0 ,1). This will be a result of the values 
being outside the gamut of realizable colours or there be
ing too much lumin ance. In this case, the out of range 
R, G or D values are clamped to the [0,1) range.1l 

Finally, t he shading computation is completed by mul
tiplying each of these RGD values by 256, resulting in the 
in tensity values t hat will be written to t he dis play file or 
the display monitor. 

7.4 R esults 

In terms of computation time, it will obviously take 
longer to run a ray tracer using the spectral re fl ectance 
distributions rather than the RGD values. On average, 
the ratio in total computation time to render an image 
is about two. T hi s is due to the eight values that are 
required to be comput.ed (each coefficient for the cubic 
polynomial of each span) whereas the RGD method com
putes three values. There is no initial overhead, however, 
in determining the polynomial representation of the spec
tra.! refl ect.ance dat.a of a material. 

The differences in using the RGB method versus the 
spectral distributions can be seen in the following exam
ples. Example 1 is composed of two highly specular red 
spheres . These spheres were shaded using the spectral 
reflectance for a red paint from the spectra in Figure 6. 
T he specul ar component of the Phong model was set to 
a value of 60 in both cases. The highlight is larger for the 
sphere rendered using reflectance spectra. This is due to 
the problem that shading information is lost when using 
an RG B model. 

Example 2 uses the spheres from Example 1 inside a 
transparent blue cube. The cube was shaded using the 
spectral refl ectance for a blue filter for the transmissivity. 
Refer to Table 2 for the approximate times in rendering 
each of these examples. 

example shading method time (hh:mm:ss) 
Example 1 RGB 00:52:55 

Reflectance Spectra 01:59:38 
Example 2 RGB 02 :23:4 '1 

Reflectance Spectra 04 :28:39 

TABLE 2: Approximate total rendering times. 

10These values are necessary to determine the rgb colours 
produced by the monitor on which the image will be displayed. 

11 In computer graphics, the RGB values are incorrectly 
clamped to the [0 ,1 ) range. However, this problem is a sepa
rate issue to this paper and will not be addressed here. 
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Figure 6 : Reflectance curve for a red paint. 

8 Conclusions 

We have presented a simple solution to the problems 
with using RGB values in shading computations. Our 
meth od involves representing spectral data hy piecewise 
cubi c polynomials. Having two spans of cubic polynomi
als is not guaranteed to be an optimal solution , but it 
does solve the problems of RGB values in shading com
pu tations. 

T he method we have proposed models the int.eraction 
(i.e. refl ection and absorption) between light. and a mate
ri al whi ch cannot be treated accurately with RGB triples. 
We avoid the problems of sampling that other researchers 
have, by takin g the entire visible spectrum int.o account . 
In add it ion, we have suggested a solution t.o t.h e closure 
problem by using C hebyshev polynomials for degree "re
du ct. ion". The fin al images are correc tl y converted from 
the C IE XYZ space to the RG B space of the monitor 
used for display. Although our implementat.ion increases 
th e com putat.ion time, the traditional method uf'ing RGB 
values (which is fas ter) does not give accurat e results in 
some cases. 
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