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Abstract 

Solid textures or textures defined over 3d have provided 
computer graphics with a new set of tools. Using these 
tools we can obtain effects which were difficult, if not 
impossible, to obtain with 2d texture mapping meth
ods. These textures are simple to implement using ei
ther scan line renderers or ray-tracers. Research in this 
area has focused on the generation and rendering of 
these textures with little consideration of the sampling 
and filtering problems which arise when these textures 
are used. The de-facto answer to the filtering prob
lem has been to clamp the signal so that no aliasing 
frequencies appear in the texture . Clamping a signal 
can cause variety of problems including energy loss and 
cross-spectrum energy leaks, we show how these arti
facts can arise in fairly simple examples. We propose 
a filtering method for filtering 3d textures which uses a 
box shaped kernel. A variety of filters can then be ap
plied over this box. This method is illustrated by using 
two kernels: the first aligned with the tangent plane of 
the surface; the second aligned along the ray from the 
intersection point to the eye. 

Keywords: Solid texture, Aliasing, Clamping, Fil
tering, Quadrature rules. 

Resume 

Les textures definies en 3d procurent de nouveaux out
ils en infographie. En utilisant ces outils, il est possible 
de creer des effets difficiles, sinon impossibles a obtenir 
avec les techniques conventionnelles de mapping de tex
ture 2d . Ces textures 3d sont faciles a implanter dans 
des algorithmes de rendu a balagage et lancer de rayons. 
Jusqu'a present la recherche dans ce domaine etait con
centree sur la creation et le rendu de ces textures sans 
trop de consideration pour les problemes d'echantillon
nage et de filtrage qui surviennent lors de l'utilisation de 
ces textures. La solution au probleme de filtrage trop 
souvent adoptee etait de tronquer le signal, eliminant 
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ainsi l'aliasing des hautes frequences. Tronquer un sig
nal peut causer plusieurs problemes allant d'une pede 
globale d 'energie a des pedes d'energies a travers le 
spectre. Nous montrons comment ces problemes peu
vent apparaltre dans de simples exemples. Nous pro
posons une technique de filtrage pour les textures 3d 
utilisant un noyau en forme de bolte. Plusieurs types 
de filtres peuvent alors etre employes sur cette boite. 
Cette technique est illustree avec deux noyaux: le pre
mier aligne au plan tangent ala surface; le second aligne 
le long du rayon defini par les positions de l'oeil et du 
point d 'intersection. 

Mots cles: Texture en 3d, Aliasing, Tronquage, 
Filtrage, Regles de quadratures. 

1 Introduction 

In 1984 Fournier and Amanatides [grin84] and Perlin 
[perl84] talked about solid-textures. They defined a 
solid texture as a map which mapped !R3 

-+ 

T{Pl , P2 , ... pp}, where Pi is some shading parameter . 
This definition is the one which we are going to use in 
this paper and it can equally include textures which are 
defined procedurally or textures which are digitized and 
the values interpolated from the nearest sample point . 
Gardner[gard84, gard85] presented a system for generat
ing transparency maps over ellipsoidal and quadric sur
faces. Some of these textures were defined as functions 
of !R3 and so they could be called 3d textures. Using 
these maps he modelled clouds and terrain for use in 
flight simulators. 

In 1985 Perlin [perl85] and Peachey [peac85] inde
pendently introduced the term solid texture. Peachey 
used a variety of solid textures which show how solid 
textures could be generated and applied. In this paper 
he recognized that aliasing artifacts could arise but did 
not address the issue of anti-aliasing his textures. Per
lin proposed a system which used various transforma
tions of a solid noise function to model several textures. 
Recognizing the aliasing problems which could be intro
duced, he suggested clamping the texture based on the 
size of pixels. 

In 1989 Lewis Qewi89] introduced more noise defor
mation algorithms, his main contribution was the in
troduction of Wiener interpolation for the use of noise 
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generation and manipulation. He did not address filter.
ing or sampling issues. 

Perlin [perl89] extended the ideas presented in 
[perl85] . He used the noise function and its transforma
tions to deform object surfaces. These were rendered 
using a ray marching algorithm. Some of the objects he 
generates have a very high frequency surface. He uses 
these high frequency deformations to model fur-like tex
tures over object's surfaces. Again Perlin suggests the 
use of clamping to filter his images. 

Kajiya and Kay [kaji89] presented a system for mod
eling and rendering fur like textures. Their texture 
parameters included colour, opacity, local coordinate 
frames, and shading parameters. In a typical applica.
tion a small texel of this texture would be generated. 
This generic texel would then be replicated over the 
surface of the object and rendered . Their texels are 
rendered by ray tracing through the texture. There is 
no discussion of potential aliasing problems or filtering 
solutions. 

These two papers are interesting since they both pro
duce a similar set of 3d textures, but the process by 
which they arrive there is quite different. Kajiya and 
Kay set out to produce a model of fur which could be 
applied to objects, their approach was very focused on 
generating a texture which would have the visual char
acteristics of fur . Perlin on the other had uses the sur
face deformation algorithms to generate objects with 
increasingly higher frequency surfaces until he arrives 
at a model for a surface which resembles fur . 

Volume rendering systems attempt to display tex
tures without using any geometric objects. There are 
two approaches to the problem: pixel based and voxel 
based. Pixel based volume rendering systems calculate 
the pixel value for a particular view. Most pixel based 
volume renderers use a ray tracing method with a line 
integral being performed along the ray. Voxel based 
volume rendering renderers calculate the influence that 
each voxel will have on the screen and update the pixels 
affected. 

Upson and Keeler [ups088] present two methods for 
volume rendering, ray casting and voxel by voxel pro
cessing. Their ray casting technique steps through the 
data starting near the eye and traveling into the data. 
The evaluation of the colour coefficients in the voxel 
method is performed by clipping the voxel by a projec
tion of the pixel l into the data. Once the volume of the 
voxel which projects onto the pixel is computed a 3d 
integral is performed over this volume to evaluate the 
texture components and opacity. the pixel. The result
ing colour and opacity values are composited onto the 
pixel. 

Westover [west90] presents a method for calculating 
the convolution of a reconstruction filter with a set of 
samples using a precomputed footprint . He first com
putes a generic footprint for a generic kernel, a sphere 
of radius 1. The footprint is generated by projecting 
the sphere onto the screen. For a discreet grid in the 
resulting circle the integral along z through2 the ker-

I Pixels are square in this context 
2This calculation is done relative to the traditional eye coor

dinate system 
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nel is computed. The resulting values represent the in
fluence that a particular data point will have over its 
footprint. When a view is selected the kernel surround
ing each sample Si is projected to its footprint :Ft and 
the generic footprint :Fg is transformed onto :Fi. This 
'view-transformed' footprint can then be used to cal
culate which pixels are affected and in what manner. 
When this has been done for all the samples and the 
information appropriately accumulated the process is 
done. 

Even though these methods perform filtered voxel 
rendering they are not appropriate for the display of 
textured objects in traditional computer graphics ap
plications. When we are displaying textured objects we 
are not interested in displaying all the texture data, but 
rather we are interested in calculating the texture coor
dinates of a point on the object. 

1.1 Clamping 

In 1982 Norton et al. [nort82] introduced a clamping 
method for the purpose of anti-aliasing, in this method 
the signal is clamped so that the aliasing frequencies are 
damped. In their paper the clamping method is devel
oped for signals whose frequency spectrum is known so 
that when the signal is clamped it can be replaced with 
its average. Towards the end of the paper they recognize 
that many textures must be dealt with for which there 
is no spectral information . In this case they suggest 
clamping the signal since in their experience this has 
lead to acceptable results. Even though clamping the 
signal in such a fashion will remove the aliasing frequen
cies it is easy to show that the energy of the resulting 
signal has been diminished . 

Parseval's theorem [rose76] can be considered as a 
stating the conservation of energy between a signal s(t) 
and its Fourier transform F(s). 

Thus replacing the function s(t) with a clamped func

tion s' (t) which contains no frequencies greater than 
some frequency f o will remove energy from the right 
hand of the above equation since 

J~oo IF(s)12dt = J~~o IF(sWds + f;o IF(sW ds 

+ Jf~ IF(sW ds 

> J~;o IF(sW ds 

= J~oo IF(s')1
2 

ds 

and the energy we have removed from the signal is 

The following example clearly illustrates the prob
lem. In this example we will use the function f(t) = 
)'~~I sin(nt). This function and a plot of If(tW are 
;n'own in figure 1 for different values of N. The first 
plot illustrates the function f( t) on the left and on the 
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right a plot of If(t)1 2 for t E [-10,10] and N=20. In 
t he subsequent plots we show the result of clamping the 
signal for N = 15, and 10 respectively. The integral 
I = J~~o If(tWdt in these plots decreases significantly 
from plot to plot as the signal is progressively clamped. 

Our criticism of clamping would not be complete 
without a set of images which show the effects of clamp
ing. In the image presented in figure 4 we show a plane 
which has been textured with the turbulence function 
presented by Perlin [perJ85]. 

pi:rel<.,j,. 

f(u ,v, w)= L: 2Inlnoise(X2n,Y2n,Z2n)1 
N=l 

Near the horizon we have significant aliasing artifacts 
which we would like to get rid of. In the next image 
(figure 5) we see the result of clamping the texture . The 
texture on the plane near the horizon has been clamped 
to O. 

A simple solution to this energy loss problem would 
be to compensate the rest of the texture components so 
that the energy is conserved. This can lead to chroma 
aliasing as the following example shows. Consider a 
two colour texture in which each colour signal is narrow 
band . If one of these signals has much higher spectral 
frequencies than the other, then the clamping of this 
signal will occur sooner on a perspective plane. If we 
try to compensate for the energy loss by transferring the 
energy from the clamped signal to the remaining signal 
we will have introduced an incorrect colour. 

2 3D Box filter 

The task of selecting a filter is a complex one. This se
lection process must select a filter whose cost and qual
ity matches t he requirements of the application . The 
computer graphics literature is full of good filters which 
can be used in a variety of 2d-texture filtering applica
tions . These filters provide users with a wide variety of 
features, strengths, and weaknesses. However when one 
considers the task of filtering a 3d-texture there is lit
tle to choose from even though in some applications the 
careful application of clamping may provide an adequate 
anti-aliasing technique. We wish to extend this choice of 
filters as part of an ongoing project to develop filtering 
techniques for 3d-textures. A first step approximation 
can be generated by performing a weighted integral 

Y (Ph) = 1 F(x - Xo, Y - Yo, z - zo)t(x, Y, z)dv 

over the rectangular volume IC. In this section we show 
t.he construction of two integral volumes IC, ur f and ICray • 

The first integral volume IC.ur f is intended to be 
used for objects made of materials with a low trans
parency coefficient such as wood or stone. This volume 
is aligned with the tangent plane of the surface and typ
ically has a small dimension perpendicular to this plane. 
T he second volume ICray is intended to be used for ob
jects which exhibit some degree of translucency. This 
kernel is aligned with the ray from the object to the eye 
and can penetrate the object to arbitrary depths. 
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Figure 1: Function s(t) and S(t)2 for N = {20, 15, I D} 

where I is the integral f~o s(t? 
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2.1 A surface box filter 

A simple yet effective approach to filtering 3d textures is 
to construct a box kernel which is aligned with the tan
gent plane of an object. We wish this box to be a good 
representation of the projection of the pixel onto the 
tangent plane. One such box is defined by calculating 
the box which is the projection of a circular pixel onto 
the tangent plane of the object. Note that when per
spective projection is being used most of the cones gen
erated by the projection of circular pixels on the screen 
will not be circular cones but elliptical cones. Since we 
are interested in a quick approximation we will approxi
mate these elliptical cones by the smallest circular cones 
which will enclose the elliptical cone. This approxima
tion will cause us to over filter some pixels. This overfil
tering may become apparent in the edge pixels of images 
with strong perspective. 

Let Ph be the projection of the centre of the pixel 
onto the object. It is easy to show that Ph does not 
correspond to the centre of the projected ellipse, rather 
it lies on the major axis somewhere between the two foci. 
To calculate the box we need to calculate the vectors U 
and V which will lie parallel to the minor and major axis 
respectively. The centre of the box Pc is then calculated 
by computing the two quantities lLA and lLB which are 
the distances from the intersection point Ph to either 
end of the major axis respectively, as illustrated in figure 
3. The centre of the box is the point Pc = UA ;UB U + Ph 

Let R be a ray which is shot from the eye through 
the centre of the pixel. This ray and the circumference 
of the pixel define an elliptical cone. When we examine 
the angle between the line R and the edges of the cone 
we find that for every pixel there is a maximum angle 8 
which can be calculated by 

t:.z = viewz/resz , t:.y = viewz/resy 

and d is the distance from the eye to the projection 
plane. 

We can then calculate a box aligned with the tangent 
plane defined by the vectors U, V, W as illustrated in 
figure 2. If the tangent plane is perpendicular to the 
incident ray then we choose U and V so that the kernel 
is aligned with the pixel. If the tangent plane is not 
perpendicular to the incident ray then we define the 
vectors 0, V, and W as follows 

V= N xE 
IIN x Ell 

• NxV 
U = --=---

IIN x VII 
W=N 

We now need to calculate the values lLo , V o , and W o 

where lLo, V o , Wo are half the length, width, and height 
of the kernel respectively. Since the centre of the pixel 
does not project to the centre of the required box we 
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Figure 2: The Box Kernel construction 

must perform some intermediate calculations, namely 
the calculation of lLA and lLB 

dh sin(8) 
lLA = 

cos(8 + tp) 

dh sin(8) 
lLB = 

cos(8-tp) 

lL o = uA1uB andvo = dh sin(8) 
The last dimension (woe) of the box is the height 

of the box perpendicular to the tangent plane, in our 
current implementation we have allowed the user to set 
this as a parameter. We have implemented this as a 
user defined parameter since different settings of this 
parameter will produce quite differen t effects. If, for 
example, one wished to present an object with a soft 
or translucent object this parameter should be set quite 
large. When hard surfaces are desired e should be set 
close to o. modeled by setting w close to o. In figure 
6 we present the boxes which were generated over the 
surface of a sphere for a 30 by 30 image. The image on 
the left of figure 6 is rendered with the same viewing 
parameters as those used to generate the kernels. The 
image on the right shows the same scene from a higher 
point of view. This second view shows the variety of 
shapes that our kernels can assume. 

2.2 A volume box filter 

Kajiya [kaji89] and Perlin [perl89] use a ray marching 
algorithm to compute the integral 

J" 
1= t(r(s))ds 

'0 

where r(s) is the equation of the ray and So,SI are the en
try and exit points into the texture. In this case we cal
culate a kernel /Cm which is aligned along the ray. In the 
general case we can define /C W by the vectors Om, Vm, 
and Wm where Om and Vm define a plane perpendicular 
to the ray and W m is parallel to the ray. The kernel /Cm 
is then defined by the vectors U = lLoO, V = VO V, and 
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Figure 3: Calculation of UA and UB 

w = IIr(s,);r(so)lIW. For most applications we would 
set uo/vo equal to the aspect ration of the display de
vice. In our current application the aspect ratio is 1 so 
we have set U o = Vo = dh sin(lI). Once we have defined 
the kernel we can simply use the quadrature methods 
described later to evaluate the integral. 

In our current implementation the user can include 
in the parameters a spread factor which is applied to 
the U o and Vo parameters. By increasing/decreasing 
this spread factor we can produce over/under filtered 
images . The use of this parameter is illustrated in fig
ure 8 

3 Evaluating the integral over the kernel 

Given a function f : R3 -+ RI defined for all u, v, w in 
[-1,1] x [-1,1] x [-1 ,1] we wish to calculate a nu.merical 
approximation to the integral , we must also satIsfy the 

constraint that fl fl fl dudvdw = 1. 
-I -I -I 

I = ~ 11 11 11 f(u, v, w)du dvdw 
8 -I -I -I 

with a maximum error f. We can extend the com
mon adaptive quadrature method based on Simpson's 
method [burd81] to deal with this case as follows. From 
calculus we can rewrite the integral 

8I=Iu=1

1 

fu(u)du 
-I 

where 

Iv = fu(u) 
= fl fl f(u,v,w)dvdw 

-I -I 

= fl j(v) lu=uo dv 
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similarly 

and 

u = U o 

v = Vo 

u = U o 

v = Vo 

dw 

= 11 f(u o, vo, w) 
- I 

We now have three integrals in one variable. Each 
of these can be approximated using appropriate quad ra
ture rules. We have chosen to use adaptive Simpson's 
rule for the approximation of Iu and Iv. When the mag
nitude of ( is small compared to U o and Vo we use a order 
3 gaussian approximation for the evaluation of I w. If ( 
is large then we use an adaptive Simpson's rule. For a 
more detailed discussion of quadrature rules please see 
[burd81]. 

4 Timing: or we knew you would ask this ques
tion 

In those cases where a closed form solution for the con
volution integral can be calculated apriori timing should 
not be a problem, unless the evaluation of the resulting 
function proves to be to costly. In the general case the 
increased cost is dependent on the quadrature method(s) 
used in the convolution eval uation, on the function, and 
on the size of the kernel K. . In the situation where we 
have chosen to use Simpson's quadrature rule for the 
first two levels of the integral and a degree 3 Gaus
si an approximation for the last integral. The mini
mum number of texture evaluations required would be 
5 x 5 x 3 = 75. When adaptive quadrature methods are 
being used the texture evaluations could become much 
greater . In general function s with high frequency com
ponents will cause these adaptive quadrature methods 
to work harder. For many applications it may prove 
sufficient to use a fixed quadrature method for all our 
integrals. . 

Using a network of 4 IBM RS/6000 workstatlOns and 
13 SGI iris workstations the images in figures 7 and 8 
were rendered at a resolution of 320 by 240. The point 
sampled version of the marble block in figure 8 required 
45 seconds for display. Using a degree 3 Gaussian ap
proximation for the integrals the display time was ~ min
utes. When we used adaptive quadrature for the dIsplay 
of this image the display time was 6 minutes. 

5 Examples 

Figure 7 shows a progression of a sphere textured with 
the texture function 

{ 

(1,1,1) 
T(p) = (0,1,0) 

(t(IOx, IOy, 10z), 0, 0) 

if IIplI > 0.9 
if 0.9 ~ IIplI > 0.7 
otherwise 
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( = .1 (= .4 ( = .7 
(= .2 (= .5 ( = .8 
( = .3 (= .6 ( - .9 

Table 1: Parameters for figure 7 

Box filter Bartlett filter Volume filter 

(= 0.01 ( - 0.01 (- 0.025 
spread = 1.0 spread = 1.0 spread = 1.0 
(= 0.01 ( = 0.01 ( = 0.100 
spread = 2.0 spread = 2.0 spread = 1.0 
(= 0.01 ( - 0.01 ( - 0.200 
spread = 4.0 spread = 4.0 spread = 1.0 

Table 2: Parameters for figure 8 

where t(x , y, z) = turbulence(x, y, z) is the turbulence 
function proposed by perlin [perl85] . Nine versions of 
the sphere are presented with various penetration depths 
for the integral volume Kray . The ( values for this figure 
are presented in table 1 In figure 8 we illustrate a marble 
block whose size is 2 x 2 x 2 x rendered with various filter 
parameters. In the first column we have a surface box 
filter, in the second column we have an application of a 
bartlett filter to the same box, and in the third column 
we apply a volume filter to the texture . In table 2 table 
we outline the parameters of the filters in this image. 

6 Conclusion 

In this paper we have shown that there is a need for 3d 
texture filtering. We illustrated some of the shortcom
ings of clamping as a filtering or anti-aliasing technique. 
We proposed the use of filters evaluated over rectangu
lar boxes. These boxes allow the application of arbitrary 
filters over rectangular volumes of the texture. We il
lustrated the use of these boxes with two filter kernels: 
the first, a kernel aligned with the tangent plane of the 
object; the second, a kernel oriented with the ray. We 
presented a set of images which illustrate the applica
tions of these techniques. 

7 Future work 

This work is a first step in a project whose goal is to 
develop adequate filters for 3d textures. The author is 
very much challenged by the idea of extending the con
stant cost 2d filtering algorithm presented by Fournier 
and Fiume [four88]. 
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Figure 4: Point sampled turbulence function Figure 5: Clamped turbulence function 

Figure 6: Kernels generated by the system 
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Figure 7: Filter aligned with the ray 

Figure 8: Different filter results 
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