
53

The Filtering of 3d textures

John Buchanan*
Imager,

Department of Computer Science,
University of British Columbia,

Vancouver, British Columbia
Canada V6T 1W5

(604) 228-2218
e-mail buchanan@cs.ubc.ca

Abstract

Solid textures or textures defined over 3d have provided
computer graphics with a new set of tools. Using these
tools we can obtain effects which were difficult, if not
impossible, to obtain with 2d texture mapping meth
ods. These textures are simple to implement using ei
ther scan line renderers or ray-tracers. Research in this
area has focused on the generation and rendering of
these textures with little consideration of the sampling
and filtering problems which arise when these textures
are used. The de-facto answer to the filtering prob
lem has been to clamp the signal so that no aliasing
frequencies appear in the texture . Clamping a signal
can cause variety of problems including energy loss and
cross-spectrum energy leaks, we show how these arti
facts can arise in fairly simple examples. We propose
a filtering method for filtering 3d textures which uses a
box shaped kernel. A variety of filters can then be ap
plied over this box. This method is illustrated by using
two kernels: the first aligned with the tangent plane of
the surface; the second aligned along the ray from the
intersection point to the eye.

Keywords: Solid texture, Aliasing, Clamping, Fil
tering, Quadrature rules.

Resume

Les textures definies en 3d procurent de nouveaux out
ils en infographie. En utilisant ces outils, il est possible
de creer des effets difficiles, sinon impossibles a obtenir
avec les techniques conventionnelles de mapping de tex
ture 2d . Ces textures 3d sont faciles a implanter dans
des algorithmes de rendu a balagage et lancer de rayons.
Jusqu'a present la recherche dans ce domaine etait con
centree sur la creation et le rendu de ces textures sans
trop de consideration pour les problemes d'echantillon
nage et de filtrage qui surviennent lors de l'utilisation de
ces textures. La solution au probleme de filtrage trop
souvent adoptee etait de tronquer le signal, eliminant

• This research was partially supported by grants from the
Natural Sciences and Engineering Research Counci l and from the
Unive rsity of British Columbia and equipment donations from
IBM

ainsi l'aliasing des hautes frequences. Tronquer un sig
nal peut causer plusieurs problemes allant d'une pede
globale d 'energie a des pedes d'energies a travers le
spectre. Nous montrons comment ces problemes peu
vent apparaltre dans de simples exemples. Nous pro
posons une technique de filtrage pour les textures 3d
utilisant un noyau en forme de bolte. Plusieurs types
de filtres peuvent alors etre employes sur cette boite.
Cette technique est illustree avec deux noyaux: le pre
mier aligne au plan tangent ala surface; le second aligne
le long du rayon defini par les positions de l'oeil et du
point d 'intersection.

Mots cles: Texture en 3d, Aliasing, Tronquage,
Filtrage, Regles de quadratures.

1 Introduction

In 1984 Fournier and Amanatides [grin84] and Perlin
[perl84] talked about solid-textures. They defined a
solid texture as a map which mapped !R3

-+

T{Pl , P2 , ... pp}, where Pi is some shading parameter .
This definition is the one which we are going to use in
this paper and it can equally include textures which are
defined procedurally or textures which are digitized and
the values interpolated from the nearest sample point .
Gardner[gard84, gard85] presented a system for generat
ing transparency maps over ellipsoidal and quadric sur
faces. Some of these textures were defined as functions
of !R3 and so they could be called 3d textures. Using
these maps he modelled clouds and terrain for use in
flight simulators.

In 1985 Perlin [perl85] and Peachey [peac85] inde
pendently introduced the term solid texture. Peachey
used a variety of solid textures which show how solid
textures could be generated and applied. In this paper
he recognized that aliasing artifacts could arise but did
not address the issue of anti-aliasing his textures. Per
lin proposed a system which used various transforma
tions of a solid noise function to model several textures.
Recognizing the aliasing problems which could be intro
duced, he suggested clamping the texture based on the
size of pixels.

In 1989 Lewis Qewi89] introduced more noise defor
mation algorithms, his main contribution was the in
troduction of Wiener interpolation for the use of noise

Graphics Interface '91

generation and manipulation. He did not address filter.
ing or sampling issues.

Perlin [perl89] extended the ideas presented in
[perl85] . He used the noise function and its transforma
tions to deform object surfaces. These were rendered
using a ray marching algorithm. Some of the objects he
generates have a very high frequency surface. He uses
these high frequency deformations to model fur-like tex
tures over object's surfaces. Again Perlin suggests the
use of clamping to filter his images.

Kajiya and Kay [kaji89] presented a system for mod
eling and rendering fur like textures. Their texture
parameters included colour, opacity, local coordinate
frames, and shading parameters. In a typical applica.
tion a small texel of this texture would be generated.
This generic texel would then be replicated over the
surface of the object and rendered . Their texels are
rendered by ray tracing through the texture. There is
no discussion of potential aliasing problems or filtering
solutions.

These two papers are interesting since they both pro
duce a similar set of 3d textures, but the process by
which they arrive there is quite different. Kajiya and
Kay set out to produce a model of fur which could be
applied to objects, their approach was very focused on
generating a texture which would have the visual char
acteristics of fur . Perlin on the other had uses the sur
face deformation algorithms to generate objects with
increasingly higher frequency surfaces until he arrives
at a model for a surface which resembles fur .

Volume rendering systems attempt to display tex
tures without using any geometric objects. There are
two approaches to the problem: pixel based and voxel
based. Pixel based volume rendering systems calculate
the pixel value for a particular view. Most pixel based
volume renderers use a ray tracing method with a line
integral being performed along the ray. Voxel based
volume rendering renderers calculate the influence that
each voxel will have on the screen and update the pixels
affected.

Upson and Keeler [ups088] present two methods for
volume rendering, ray casting and voxel by voxel pro
cessing. Their ray casting technique steps through the
data starting near the eye and traveling into the data.
The evaluation of the colour coefficients in the voxel
method is performed by clipping the voxel by a projec
tion of the pixel l into the data. Once the volume of the
voxel which projects onto the pixel is computed a 3d
integral is performed over this volume to evaluate the
texture components and opacity. the pixel. The result
ing colour and opacity values are composited onto the
pixel.

Westover [west90] presents a method for calculating
the convolution of a reconstruction filter with a set of
samples using a precomputed footprint . He first com
putes a generic footprint for a generic kernel, a sphere
of radius 1. The footprint is generated by projecting
the sphere onto the screen. For a discreet grid in the
resulting circle the integral along z through2 the ker-

I Pixels are square in this context
2This calculation is done relative to the traditional eye coor

dinate system

54

nel is computed. The resulting values represent the in
fluence that a particular data point will have over its
footprint. When a view is selected the kernel surround
ing each sample Si is projected to its footprint :Ft and
the generic footprint :Fg is transformed onto :Fi. This
'view-transformed' footprint can then be used to cal
culate which pixels are affected and in what manner.
When this has been done for all the samples and the
information appropriately accumulated the process is
done.

Even though these methods perform filtered voxel
rendering they are not appropriate for the display of
textured objects in traditional computer graphics ap
plications. When we are displaying textured objects we
are not interested in displaying all the texture data, but
rather we are interested in calculating the texture coor
dinates of a point on the object.

1.1 Clamping

In 1982 Norton et al. [nort82] introduced a clamping
method for the purpose of anti-aliasing, in this method
the signal is clamped so that the aliasing frequencies are
damped. In their paper the clamping method is devel
oped for signals whose frequency spectrum is known so
that when the signal is clamped it can be replaced with
its average. Towards the end of the paper they recognize
that many textures must be dealt with for which there
is no spectral information . In this case they suggest
clamping the signal since in their experience this has
lead to acceptable results. Even though clamping the
signal in such a fashion will remove the aliasing frequen
cies it is easy to show that the energy of the resulting
signal has been diminished .

Parseval's theorem [rose76] can be considered as a
stating the conservation of energy between a signal s(t)
and its Fourier transform F(s).

Thus replacing the function s(t) with a clamped func

tion s' (t) which contains no frequencies greater than
some frequency f o will remove energy from the right
hand of the above equation since

J~oo IF(s)12dt = J~~o IF(sWds + f;o IF(sW ds

+ Jf~ IF(sW ds

> J~;o IF(sW ds

= J~oo IF(s')1
2

ds

and the energy we have removed from the signal is

The following example clearly illustrates the prob
lem. In this example we will use the function f(t) =
)'~~I sin(nt). This function and a plot of If(tW are
;n'own in figure 1 for different values of N. The first
plot illustrates the function f(t) on the left and on the

Graphics Interface '91

right a plot of If(t)1 2 for t E [-10,10] and N=20. In
t he subsequent plots we show the result of clamping the
signal for N = 15, and 10 respectively. The integral
I = J~~o If(tWdt in these plots decreases significantly
from plot to plot as the signal is progressively clamped.

Our criticism of clamping would not be complete
without a set of images which show the effects of clamp
ing. In the image presented in figure 4 we show a plane
which has been textured with the turbulence function
presented by Perlin [perJ85].

pi:rel<.,j,.

f(u ,v, w)= L: 2Inlnoise(X2n,Y2n,Z2n)1
N=l

Near the horizon we have significant aliasing artifacts
which we would like to get rid of. In the next image
(figure 5) we see the result of clamping the texture . The
texture on the plane near the horizon has been clamped
to O.

A simple solution to this energy loss problem would
be to compensate the rest of the texture components so
that the energy is conserved. This can lead to chroma
aliasing as the following example shows. Consider a
two colour texture in which each colour signal is narrow
band . If one of these signals has much higher spectral
frequencies than the other, then the clamping of this
signal will occur sooner on a perspective plane. If we
try to compensate for the energy loss by transferring the
energy from the clamped signal to the remaining signal
we will have introduced an incorrect colour.

2 3D Box filter

The task of selecting a filter is a complex one. This se
lection process must select a filter whose cost and qual
ity matches t he requirements of the application . The
computer graphics literature is full of good filters which
can be used in a variety of 2d-texture filtering applica
tions . These filters provide users with a wide variety of
features, strengths, and weaknesses. However when one
considers the task of filtering a 3d-texture there is lit
tle to choose from even though in some applications the
careful application of clamping may provide an adequate
anti-aliasing technique. We wish to extend this choice of
filters as part of an ongoing project to develop filtering
techniques for 3d-textures. A first step approximation
can be generated by performing a weighted integral

Y (Ph) = 1 F(x - Xo, Y - Yo, z - zo)t(x, Y, z)dv

over the rectangular volume IC. In this section we show
t.he construction of two integral volumes IC, ur f and ICray •

The first integral volume IC.ur f is intended to be
used for objects made of materials with a low trans
parency coefficient such as wood or stone. This volume
is aligned with the tangent plane of the surface and typ
ically has a small dimension perpendicular to this plane.
T he second volume ICray is intended to be used for ob
jects which exhibit some degree of translucency. This
kernel is aligned with the ray from the object to the eye
and can penetrate the object to arbitrary depths.

55

10

,
r... .,. '.0' ~J~ 'J~ '.0' '0 .,

·10

1(1) l OO

J ' 0

.10 0.0, , >.S, ¥S7 ' 0

.. 0

·100

1(11

N= 20 1 =124211

10

l
,

l
·1. ' "~r"'''JY' 'i"·' '0 .,

.10

sr,) lOO

1 '0 1
'·10 -6.'" , >.S, '0

. '0

·100

1(11

N= 15 1= 93.4084

10

,
~ 11. "rO' ~J7" '''''V·,·, ,0

.,

.10

sr,) lOO

'0

.M .lA.
~/. ...,."' , >.S, ... , '0

· '0

·100

1(11

N= 10 1= 0.568259

Figure 1: Function s(t) and S(t)2 for N = {20, 15, I D}

where I is the integral f~o s(t?

Gra phics Inter face ' 91

2.1 A surface box filter

A simple yet effective approach to filtering 3d textures is
to construct a box kernel which is aligned with the tan
gent plane of an object. We wish this box to be a good
representation of the projection of the pixel onto the
tangent plane. One such box is defined by calculating
the box which is the projection of a circular pixel onto
the tangent plane of the object. Note that when per
spective projection is being used most of the cones gen
erated by the projection of circular pixels on the screen
will not be circular cones but elliptical cones. Since we
are interested in a quick approximation we will approxi
mate these elliptical cones by the smallest circular cones
which will enclose the elliptical cone. This approxima
tion will cause us to over filter some pixels. This overfil
tering may become apparent in the edge pixels of images
with strong perspective.

Let Ph be the projection of the centre of the pixel
onto the object. It is easy to show that Ph does not
correspond to the centre of the projected ellipse, rather
it lies on the major axis somewhere between the two foci.
To calculate the box we need to calculate the vectors U
and V which will lie parallel to the minor and major axis
respectively. The centre of the box Pc is then calculated
by computing the two quantities lLA and lLB which are
the distances from the intersection point Ph to either
end of the major axis respectively, as illustrated in figure
3. The centre of the box is the point Pc = UA ;UB U + Ph

Let R be a ray which is shot from the eye through
the centre of the pixel. This ray and the circumference
of the pixel define an elliptical cone. When we examine
the angle between the line R and the edges of the cone
we find that for every pixel there is a maximum angle 8
which can be calculated by

t:.z = viewz/resz , t:.y = viewz/resy

and d is the distance from the eye to the projection
plane.

We can then calculate a box aligned with the tangent
plane defined by the vectors U, V, W as illustrated in
figure 2. If the tangent plane is perpendicular to the
incident ray then we choose U and V so that the kernel
is aligned with the pixel. If the tangent plane is not
perpendicular to the incident ray then we define the
vectors 0, V, and W as follows

V= N xE
IIN x Ell

• NxV
U = --=---

IIN x VII
W=N

We now need to calculate the values lLo , V o , and W o

where lLo, V o , Wo are half the length, width, and height
of the kernel respectively. Since the centre of the pixel
does not project to the centre of the required box we

56

Figure 2: The Box Kernel construction

must perform some intermediate calculations, namely
the calculation of lLA and lLB

dh sin(8)
lLA =

cos(8 + tp)

dh sin(8)
lLB =

cos(8-tp)

lL o = uA1uB andvo = dh sin(8)
The last dimension (woe) of the box is the height

of the box perpendicular to the tangent plane, in our
current implementation we have allowed the user to set
this as a parameter. We have implemented this as a
user defined parameter since different settings of this
parameter will produce quite differen t effects. If, for
example, one wished to present an object with a soft
or translucent object this parameter should be set quite
large. When hard surfaces are desired e should be set
close to o. modeled by setting w close to o. In figure
6 we present the boxes which were generated over the
surface of a sphere for a 30 by 30 image. The image on
the left of figure 6 is rendered with the same viewing
parameters as those used to generate the kernels. The
image on the right shows the same scene from a higher
point of view. This second view shows the variety of
shapes that our kernels can assume.

2.2 A volume box filter

Kajiya [kaji89] and Perlin [perl89] use a ray marching
algorithm to compute the integral

J"
1= t(r(s))ds

'0

where r(s) is the equation of the ray and So,SI are the en
try and exit points into the texture. In this case we cal
culate a kernel /Cm which is aligned along the ray. In the
general case we can define /C W by the vectors Om, Vm,
and Wm where Om and Vm define a plane perpendicular
to the ray and W m is parallel to the ray. The kernel /Cm
is then defined by the vectors U = lLoO, V = VO V, and

Graphics Interface '91

Figure 3: Calculation of UA and UB

w = IIr(s,);r(so)lIW. For most applications we would
set uo/vo equal to the aspect ration of the display de
vice. In our current application the aspect ratio is 1 so
we have set U o = Vo = dh sin(lI). Once we have defined
the kernel we can simply use the quadrature methods
described later to evaluate the integral.

In our current implementation the user can include
in the parameters a spread factor which is applied to
the U o and Vo parameters. By increasing/decreasing
this spread factor we can produce over/under filtered
images . The use of this parameter is illustrated in fig
ure 8

3 Evaluating the integral over the kernel

Given a function f : R3 -+ RI defined for all u, v, w in
[-1,1] x [-1,1] x [-1 ,1] we wish to calculate a nu.merical
approximation to the integral , we must also satIsfy the

constraint that fl fl fl dudvdw = 1.
-I -I -I

I = ~ 11 11 11 f(u, v, w)du dvdw
8 -I -I -I

with a maximum error f. We can extend the com
mon adaptive quadrature method based on Simpson's
method [burd81] to deal with this case as follows. From
calculus we can rewrite the integral

8I=Iu=1

1

fu(u)du
-I

where

Iv = fu(u)
= fl fl f(u,v,w)dvdw

-I -I

= fl j(v) lu=uo dv

57

similarly

and

u = U o

v = Vo

u = U o

v = Vo

dw

= 11 f(u o, vo, w)
- I

We now have three integrals in one variable. Each
of these can be approximated using appropriate quad ra
ture rules. We have chosen to use adaptive Simpson's
rule for the approximation of Iu and Iv. When the mag
nitude of (is small compared to U o and Vo we use a order
3 gaussian approximation for the evaluation of I w. If (
is large then we use an adaptive Simpson's rule. For a
more detailed discussion of quadrature rules please see
[burd81].

4 Timing: or we knew you would ask this ques
tion

In those cases where a closed form solution for the con
volution integral can be calculated apriori timing should
not be a problem, unless the evaluation of the resulting
function proves to be to costly. In the general case the
increased cost is dependent on the quadrature method(s)
used in the convolution eval uation, on the function, and
on the size of the kernel K. . In the situation where we
have chosen to use Simpson's quadrature rule for the
first two levels of the integral and a degree 3 Gaus
si an approximation for the last integral. The mini
mum number of texture evaluations required would be
5 x 5 x 3 = 75. When adaptive quadrature methods are
being used the texture evaluations could become much
greater . In general function s with high frequency com
ponents will cause these adaptive quadrature methods
to work harder. For many applications it may prove
sufficient to use a fixed quadrature method for all our
integrals. .

Using a network of 4 IBM RS/6000 workstatlOns and
13 SGI iris workstations the images in figures 7 and 8
were rendered at a resolution of 320 by 240. The point
sampled version of the marble block in figure 8 required
45 seconds for display. Using a degree 3 Gaussian ap
proximation for the integrals the display time was ~ min
utes. When we used adaptive quadrature for the dIsplay
of this image the display time was 6 minutes.

5 Examples

Figure 7 shows a progression of a sphere textured with
the texture function

{

(1,1,1)
T(p) = (0,1,0)

(t(IOx, IOy, 10z), 0, 0)

if IIplI > 0.9
if 0.9 ~ IIplI > 0.7
otherwise

Graphics Interface '91

(= .1 (= .4 (= .7
(= .2 (= .5 (= .8
(= .3 (= .6 (- .9

Table 1: Parameters for figure 7

Box filter Bartlett filter Volume filter

(= 0.01 (- 0.01 (- 0.025
spread = 1.0 spread = 1.0 spread = 1.0
(= 0.01 (= 0.01 (= 0.100
spread = 2.0 spread = 2.0 spread = 1.0
(= 0.01 (- 0.01 (- 0.200
spread = 4.0 spread = 4.0 spread = 1.0

Table 2: Parameters for figure 8

where t(x , y, z) = turbulence(x, y, z) is the turbulence
function proposed by perlin [perl85] . Nine versions of
the sphere are presented with various penetration depths
for the integral volume Kray . The (values for this figure
are presented in table 1 In figure 8 we illustrate a marble
block whose size is 2 x 2 x 2 x rendered with various filter
parameters. In the first column we have a surface box
filter, in the second column we have an application of a
bartlett filter to the same box, and in the third column
we apply a volume filter to the texture . In table 2 table
we outline the parameters of the filters in this image.

6 Conclusion

In this paper we have shown that there is a need for 3d
texture filtering. We illustrated some of the shortcom
ings of clamping as a filtering or anti-aliasing technique.
We proposed the use of filters evaluated over rectangu
lar boxes. These boxes allow the application of arbitrary
filters over rectangular volumes of the texture. We il
lustrated the use of these boxes with two filter kernels:
the first, a kernel aligned with the tangent plane of the
object; the second, a kernel oriented with the ray. We
presented a set of images which illustrate the applica
tions of these techniques.

7 Future work

This work is a first step in a project whose goal is to
develop adequate filters for 3d textures. The author is
very much challenged by the idea of extending the con
stant cost 2d filtering algorithm presented by Fournier
and Fiume [four88].

Acknowledgements

Alain Fournier was an excellent challenger and gener
ator of ideas. Pierre Poulin did not believe anything
I said. Peter Cahoon again became the lab photog
rapher. The members of the Imager and GraFiC lab
did not complain (to much) when I was using all the

58

machines. Ruhamah provided a constant reminder of
reality. Mary Jane constantly encouraged me. To all of
you THANKS!!!!!!!

References

[burd81] R . Burden, J. Faires, and A . Reynolds. Nu
merical Analysis, Second edition. PWS Pub
lishers, Boston, Massachusetts, 1981.

[iour88] Alain Fournier and Eugene Fiume. "Constant
Time Filtering with Space-Variant Kernels".
Computer Graphics (SIGGRAPH '88 Proceed
ings) , Vo!. 22, No. 4, pp. 229-238, August
1988.

[gard84] Geoffrey Y. Gardner. "Simulation of Natu
ral Scenes Using Textured Quadric Surfaces".
Computer Graphics (SIGGRAPH '84 Proceed
ings), Vo!. 18, No. 3, pp. 11-20, July 1984.

[gard85] G.Y. Gardner. "Visual Simulation of Clouds".
Computer Graphics (SIGGRAPH '85 Proceed
ings), Vo!. 19, No. 3, pp. 297-303, J uly 1985.

[grin84] D. Grindal. "The Stochastic Creation of
Tree Images" . Master's thesis, University of
Toronto, Toronto, Canada, 1984.

[kaji89] James T. Kajiya and Timothy L. Kay. "Ren
dering Fur with Three Dimensional Textures".
Computer Graphics (SIGGRAPH '89 Proceed
ings) , Vo!. 23, No. 3, pp. 271-280, July 1989.

~ewi89] J . P . Lewis. "Algorithms for Solid Noise Syn
thesis" . Computer Graphics (SIGGRAPH '89
Proceedings), Vo!. 23, No. 3, pp. 263-270, July
1989.

[nort82] A. Norton, A.P. Rockwood, and P.T. Skol
moski. "Clamping: A Method of Antialias
ing Textured Surfaces by Bandwidth Limit
ing in Object Space". Computer Graphics
(SIGGRAPH '82 Proceedings), Vo!. 16, No. 3,
pp. 1-8, July 1982.

[peac85] D .R. Peachey. "Solid Texturing of Complex
Surfaces". Computer Graphics (SIGGRAPH
'85 Proceedings), Vo!. 19, No. 3, pp. 279-286 ,
July 1985.

[pe rl84] K . Perlin. "A tutorial on texture mapping".
Siggraph course., July 1984.

[perl85] K . Perlin. "An Image Synthesizer" . Com
puter Graphics (SIGGRAPH '85 Proceedings),
Vo!. 19, No. 3, pp. 287-296, July 1985.

[perl89] Ken Perlin and Eric M. Hoffert. "Hypertex
ture" . Computer Graphics (SIGGRAPH '89
Proceedings), Vo!. 23, No. 3, pp. 253-262, July
1989.

[rose76] A . Rosenfeld and A. Kak . Digital Picture Pro
cessing. Academic publishers, New York, New
York, 1976.

Graphics Interface '91

59

[upso88] Craig Upson and Michael Keeler. "V- *
BUFFER: Visible Volume Rendering". Com-
puter Graphics (SIGGRAPH '88 Proceedings),
Vo!. 22, No. 4, pp. 59- 64, August 1988.

[west90] Lee Westover. "Footprint Evaluation for Vol
ume Rendering". Computer Graphics (SJG
GRAPH '90 Proceedings), Vo!. 24, No. 4 ,
pp. 367-376, August 1990.

Figure 4: Point sampled turbulence function Figure 5: Clamped turbulence function

Figure 6: Kernels generated by the system

Graphics Interface '91

60

Figure 7: Filter aligned with the ray

Figure 8: Different filter results

Graphics Interface '91

