
61

Differential Manipulation *

Michael Gleichert

Andrew Witkin

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

USA

Abstract
Direct manipulation has proven to be an excellent
method for interacting with geometric objects. Unfor­
tunately, traditional approaches for implementing direct
manipulation suffer from a lack of generality, requiring
the system designer to hand craft interfaces to different
types of objects. In this paper we present differential
manipulation, a new paradigm for direct manipulation
of geometric objects. By interpreting graphical entities
as physical objects, we obtain a uniform interface to
a wide variety of geometric objects, making it simple
to add new types of complicated or compound objects.
Geometric constraints fit neatly into the paradigm.

Resume
La manipulation directe est une excellente methode
pour le traitement interactif des objets geometriques.
Malheureusement, les approches traditionelles pour
l'implementation de la manipulation directe manquent
de generalite en necessitant que differentes interfaces
soient associees a differents types d'objets. Dans cet ar­
ticle nous presentons un nouveau paradigme, la manipu­
lation differentielle, pour la manipulation directe des ob­
jets geometriques. En interpretant les entites graphiques
comme des objets physiques, nous obtenons une seule
interface pouvant etre utilisee pour une grande variete
d'objets geomctriques, facilitant ainsi l'addition de nou­
veaux types d'objets complexes ou composes. Les con­
traintes geometriques peuvent etre proprement incluses
avec ce paradigme.
Keywords - Direct Manipulation, Interaction Tech­
niques, Geometric Modeling

"This resea.rch was sponsored in part by Apple Computer and
Silicon Graphics Incorporated. The first author is supported in part by
a fellowship from the Schlumberger Foundation, Inc. The views and
conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of Schlumberger, SGI or Apple.

t electronic mail: gleicher@cs.cmu.edu

1 Introduction

Direct manipulation interfaces have proven to be su­
perior in a wide variety of tasks[Shn83] and are an
appealing method for manipulating shapes. Such in­
terfaces couple the motion of a graphical object to the
motion of the pointing device. For example, in a direct
manipulation drawing program, such as [LV89, Cor88],
we can grab a rectangle by its corner and have it move
to follow the mouse or pull a spline by a control point
and have it bend in the direction moved.

Unfortunately, direct manipulation can be difficult to
extend because each shape has its own degrees of free­
dom. The coupling between these parameters and the
user's control is traditionally designed by hand. The
diversity of attributes creates a lack of uniformity which
makes it difficult to automate the process of adding
shapes to a system.

In this paper we present differential manipulation. a
new scheme for providing direct manipulation interfaces
to geometric objects. Users are permitted to pick points
on objects and drag them. Objects respond by changing
all of their relevant parameters, allowing control of all
aspects of an object's shape through this single interface.

The interface we implement allows the user to manip­
ulate objects by controlling points on them. However,
it is not possible to specify an absolute target position
for a point on an object in a general way. Instead, we
treat the problem of controlling the position of a point on
an object differentially: rather than specifying the target
position of the point, we specify, from moment to mo­
ment, how we would like it to move. To do this requires
the derivatives of the function defining the object, not the
function's inverse. Derivatives are easy and inexpensive
to compute, and, combined with the techniques in this
paper, make it possible to provide a general method for
grab-and-pull interfaces.

With differential manipulation, we can use a single,

Graphics Interface '91

uniform interface for a wide variety of objects. Adding
a new type of object is made much simpler, requiring the
addition of only a few well-defined routines. For many
types of objects, these routines can even be automatically
generated from mathematical definitions of the shape.

Geometric constraints are handled gracefully by dif­
ferential manipulation. By maintaining constraints dif­
ferentially instead of solving them, non linear constraints
are handled by solving systems of linear equations.

Differential manipulation resembles physical interac­
tions with real-world objects. To move or shape an ob­
ject we grab it and pull on it. Because we are interested
in manipulation, not the quantitative prediction of real
physical behavior, we are able to simplify the physical
model, making objects easier to control and simulate.

2 Differential Manipulation

In this section we develop a method that allows a user
to drag points on arbitrary geometric objects. Objects
respond by changing their attributes to cause the dragged
point to move towards the pointing device.

The configuration of an object can be described by
vector of parameters q. For example, a circle might
be described by a vector of length three containing the
position of its center and its radius. For each point p
on an object, there is a function which determines the
point's position as a function of the vector of the object's
parameters

p = xp(q) .

To specify the position of the point directly would require
the inverse of xp . Not only is it difficult to automate
finding inverses, but few of the functions have unique
inverses.

Instead of specifying the position of a point directly,
differential control allows users to control the motion of
the point. This goal is achieved using simplified physical
simulation. Point forces on the object are translated into
generalized forces on the parameters and then integrated
in time to provide changes in the object's state.

To implement differential manipulation, we consider
geometric objects as physical entities and simulate their
responses to user applied forces. However, since we
are interested not in accurate quantitative prediction, but
in manipulating objects, we can simplify the physical
model. Since most of the objects which exist in our
simulation have no real-world counterparts, there is no
expected behavior to duplicate.

Differential manipulation implements a model of
physics whose equations of motion are first order dif­
ferential equations, effectively replacing f = ma by

62

f = mv. This first order formulation approximates sit­
uations in which frictional effects dominate inertial ef­
fects, such as moving heavy objects around on a table.1

The lack of inertia is good for manipulation because
objects remain where they are placed.

The methods of generalized coordinates [Lan86] per­
mit the use of an arbitrary representation for objects and
provide a method for computing the effects of forces on
these parameters. Given a force on a point, the general­
ized force can be obtained by multiplying the point force
by the transpose of the Jacobian of the point's position
function,

g = (~~) T f,

where f is the applied point force, g is the generalized
force, and the point is related to the parameters by the
function p = xp (q).

The generalized force governs the rate of change of
the state. We can even connect it directly, letting

q= g . (1)

This differential equation can be solved to yield changes
in the state. This mechanism permits users to pull on
points and have the object respond.

2.1 Sensitivity Matrices

The problem with using equation (1) directly is that
the resulting behavior depends on an arbitrary choice
of scale factors for the parameters. Without account­
ing for scaling, varying sensitivities in the parameters
would determine the proportion of the motion accounted
for by each parameter, the choice of units determining
the bchavior. Consider manipulating a line segment of
fixed length. Pulling on an end would cause it to re­
spond by rotating and translating. Without accounting
for sensitivities, the programmer's choice to use radi­
ans or degrees would determine the way the motion is
divided.

To correct this problem, we scale the generalized force
to control how the motion is apportioned among the pa­
rameters. We normalize each parameter by dividing
the corresponding element of the generalized force by
the sensitivity of the object to that parameter. A natu­
ral criterion for normalization is that equal changes in
parameters should induce equal changes in the RMS dis­
placement of the object. The sensitivity of an object to a
parameter j can then be found by summing the distance

1 There is evidence that first order physics is actually more intuitive
to many people [Nor90).

Graphics Interface '91

that each of a set of point samples 'P on the object moves
due to a differential change in j ,

""" 8xp 8xp
Sj = L...J mpB-' B-'

pEP J J

where x p (q) is the function which determines the posi­
tion of sample p, and mp is the weighting of sample p .
The sensitivities can be written as the diagonal elements
of a matrix whose inverse is multiplied by the general­
ized force to compute the derivative of the state. We call
this matrix the sensitivity matrix M.

Specifically, this diagonal matrix approximates the
mass matrix for an object with uniformly distributed
mass. In omitting the off-diagonal terms, we neglect the
interdependence among parameters. In return we have
a matrix that is trivial to invert. The full mass matrix is
given by

M = L mpi;;Jp,
pEP

where Jp is the Jacobian of the relationship between
sample p and the parameters. See [WW90) for further
discussion.

2.2 Using Simulation for Manipulation

The user manipulates objects by applying forces to
them, requiring differential manipulation programs to
have force-based interaction techniques. One method
we have found successful is to couple the object to the
mouse with a spring of zero rest length. The point force
can be computed by merely scaling the displacement
between the mouse and the point being pulled. It has
the advantage that the further an object is from its goal,
the faster it moves. This allows for precise positioning
without slowing down coarse movement. Spring con­
nection also provides a reasonable behavior when the
object is not free to move closer to the mouse.

Numerical stability and processor speed place limits
on how quickly objects can move on the screen; as a
result, it may happen that the user moves the mouse
more quickly than an object can keep up. We find spring
coupling preferable to the alternative, keeping the mouse
in contact with the object with a reduced display rate.
Control techniques, as in [WW90), can be used to better
track the mouse, but we still must place limits on how
fast objects can move.

Since forces can be summed, it is easy to pull on
shapes at more than one point. This provides the oppor­
tunity to develop novel ways to sculpt objects such as
allowing a user to stretch an object by holding one side
and pulling another.

63

We are not limited to pulling points on shapes. We
could control other interesting aspects of geometry, such
as area, or even non-geometric entities. The techniques
of differential manipulation permit us to control the out­
put of any function of a number of variables that has a
derivative. All that is required is a method for rapidly
displaying the relevant output and receiving the user's
desire for the direction of change in that output. We
have experimented with an application that connects the
outputs of mathematical functions, such as an economic
model, to sliders [WGW90, GW91).

2.3 Implementing Differential Manipula­
tion

Implementing differential manipulation involves inte­
grating the differential equations of motion in time and
periodically displaying the results to the user. These
equations are most conveniently expressed in terms of
the inverse of the mass matrix,

q=Wg, (2)

where W = M-I and g is the generalized force.
Like physics, differential manipulation is a continuous

process. We can only directly control the motion of an
object, not its absolute position. Therefore, we can only
move towards the goal, not jump to it. The continuous
process, however, gives us an opportunity to place the
user in the loop, controlling the object as it moves.

Equation (2) must be solved numerically[pFrV86],
simulating the continuous process by taking finite steps.
For each step, we compute the forces on the objects,
convert them to generalized forces, compute the mass
matrix, invert it, and use it to find the derivative. If
we update the display rapidly enough, we achieve the
illusion of continuous motion and continuous control.
This tight feedback loop is important for giving users a
good feel for the object's motion.

Given the function which maps the parameters to the
output point, everything else necessary for controlling a
specific class of objects can be computed. The Jacobian
can be determined by symbolic differentiation or by nu­
merical techniques. A mass matrix can be computed
from the Jacobian. When the objects have a regular
structure, such as parameterized curves, all of the meth­
ods required of an object class, such as drawing and
picking, can also be coded automatically, as we will
show in the next section.

2.4 Parametric Curves

An important advantage to the differential approach
is its regularity, permitting new types of objects to be

Graphics Interface '91

incorporated into a system without designing interfaces
for each. In this section we describe how parametric
curves are handled in a differential manipulation system
to show by example how easily new shapes can be added
to a geometric model er.

Parametric curves can be defined by characteristic
functions of the form

(x , y) = f(q,u) ,

for u E [0 , 1]. The free parameter u selects points along
the curve, while the configuration vector q determines
the curve's attributes. Different shapes such as circles,
ellipses, line segments and splines, are created by differ­
ent parametric functions. Each different type of curve
has its own set of configuration parameters which control
its attributes.

Differential manipulation provides a single interface
for a wide variety of curves: users can grab and pull
objects which respond by changing their configurations.
The technique permits this diversity of shapes to be sup­
ported without resorting to hand-crafting interfaces for
each type or limiting the way curves can vary. This is
possible because different varieties of curves are mathe­
matically the same, except for their characteristic func­
tions.

In order to allow the user to manipulate an object, a
modeling program must be able to perform a few basic
operations with it. The program must be able to draw
the object, permit the user to grab a point on it, apply a
force to its parameters, and compute a sensitivity or mass
matrix for it. Given the ability to evaluate a parametric
curve's characteristic function and its derivatives, these
capabilities can be provided by structure common to all
types of parametric curves.

Given the function defining a curve, the curve can be
drawn by sampling at various u values and connecting
the dots. When the user grabs an object to drag, the
place on the curve closest to the pointing device can be
approximated by sampling u and selecting the closest
sample or can be found more precisely by root finding.

Once the point p is picked and its corresponding up

is found , the process of dragging the point towards the
target position can begin. For each iteration, the current
position of p = f(q , up) is computed and compared to
the position of the target to find a point force to apply to
p , which is then translated to a generalized force on the
parameters of the curve by multiplying by the transpose
of the point's Jacobian,

_ (Of(q ,UP))T f g - oq a ·

We can approximate the sensitivity matrix for the
curve by choosing n samples and summing the effects

64

of the parameters on these points,

M =.!. L: (Of(q, U r)) T of(q, ur),

n oq oq
urE[O,I]

which allows us to update the parameters of the curves
as

it = M-1g.

The same procedure applies to any parametric curve.
To define a new one, we need only provide routines to
evaluate f and of / oq. The creation of this code can be
automated using symbolic differentiation so a new vari­
ety of curve can be added to a system by merely speci­
fying the expression for its characteristic function. We
have implemented automatic code generation systems
which allow users to enter mathematical expressions
which define parametric curves and have them added to
our geometric modeling programs.

3 Constraints

Constraints provide a powerful mechanism for re­
stricting how objects change, which is important in dif­
ferential manipulation: pulling on an object can affect
all attributes of the object, which is often not what the
user wants. Constraints also provide a mechanism for
building compound objects by specifying how the com­
ponents are related. Differential manipulation includes
constraints in a natural way: just as geometric objects
can be viewed as physical entities, geometric constraints
can be viewed as mechanical interactions.

Constraints can be written as relations on the state. If
we start in an unknown state, the constraints might be vi­
olated, requiring the solution of the constraint equations.
Since there are no good general methods for solving sys­
tems of nonlinear equations[PFfV86], most constraint
solving systems limit the class of equations they admit.

Instead of relying on nonlinear system solving, we
approach the constraint problem differentially. Rather
than solving the constraints, we maintain them as the
systcm moves. We call this approach constrained dy­
namics since it simulates the behavior of a constrained
physical system.

To visualize the difference between constraint solv­
ing and constrained dynamics, imagine doing geometric
design by placing two pieces of string on a table and
pulling them around. Suppose we would like to have
the constraint that the ends of the two strings touch.
A constraint solver, if it succeeds, will re-arrange the
strings on the table so that the constraints are met. After
the solver does its work, if we move a string the con­
straints will be violated again. In contrast, constrained

Graphics Interface '91

dynamics ties the ends of the strings together so that
pulling on a string reshapes the whole system without
violating the constraint.

In a constrained dynamics application, the constraints
must still be solved because the system must initially get
to a feasible state. However, this only needs to happen
incrementally when a new constraint is applied.

Placing the user in the solving loop by making the
constraints gradually come together has several advan­
tages as well. The system does not jump to a new state,
which may surprise the user. The user can help guide the
solution away from incorrect solutions and past places
where the solving process gets stuck.

3.1 Techniques for Constrained Dynamics

The techniques for implementing constrained dynam­
ics in physical simulations have been presented else­
where [WGW90, GW91, Pla89] . The presentation here
follows that of [WGW90], except with an emphasis on
first order physics and the demands of differential ma­
nipulation. We consider here equality constraints, which
can be written as f(q) = 0 , noting that the techniques
extend to inequalities.

A simple way to implement constraints is to use
springs to enforce them approximately. This approach
is called the penalty method because it uses the springs
as a penalty for the system's violation of the constraints.
This method has the advantage that if the constraints are
not met, the spring can pull the object together. Un­
fortunately, it has the problem that the constraints will
not be maintained precisely. Making the springs stiffer
reduces the amount that things pull apart, but also makes
the differential equations more difficult to integrate.

Our formulation for constrained dynamics removes
the part of the applied force fa which would cause the
system to move in a way which would violate the con­
straints. We do this by computing a constraint force fe
which counteracts this component of the applied force.

To see how the method works, consider constraining
a point to lie on a circle, and suppose that the constraint
is met, as in Figure 1. We know that if the point moves,
it must move in a way that will not violate the constraint:
its motion must be tangent to the circle. Since it will
move in the direction of net force, the force must be
tangent to the circle2• If the applied force is not in this
direction, the constraint must provide a force to cancel
out the illegal component.

We write the constraints as a function of state e =
2This is exactly true in the first order case. The second order case

is slightly more complicated. See the derivation in [WGW901 for
details .

65

Figure 1: A point is constrained to a circle. When
a force f. is applied, a constraint force fe is computed
to ensure that the net force g lies in a legal direction,
tangent to the circle.

f(q) . Assume that, at the present instant, all of the con­
straints are met (e = 0). In order for the constraints to
be maintained, e must be unchanging, so C (and higher
derivatives) must equal zero. From the chain rule,

. oe.
e = oq q.

Denoting the constraint J acobian by J = g~ , we obtain

q=JWg=O

by substitution with the equations of motion (2). Since
net force is the sum of the applied and constraint forces,
g = fa + fe, we get

JWfe = -JWfa , (3)

which is a system of linear equations with only the con­
straint force vector fe unknown.

In words, equation (3) just says that the constraint
force, added into the applied force, must cause the first
time derivative of the constraints to be zero. This con­
dition is generally too weak: if the system is under­
constrained, as is usually the case (otherwise nothing
can move at all!) we have fewer equations than un­
knowns, and there exist many values for fe that satisfy
equation (3). One way to handle this ambiguity is to
modify the applied force as little as possible, computing
the least squares solution to the linear system. Some
linear system solvers, such as conjugate gradient-based
approaches[PFTV86], have this property.

Alternatively, we can remove the ambiguity in a more
physically correct manner by requiring that the system

Graphics Interface '91

obey D' Alembert's Principle of Virtual Work[Lan86j
which requires that the constraints do not change the
energy in the system. For this to occur, the constraint
forces must lie in the null space complement of the Ja­
cobian, so that fc = .U for some vector A. Wc write the
equation as

JWJT A = -JWfa ,

and solve for A, the vector of Lagrange multipliers.
Computing the constraint forces requires solving a

linear system, even though the constraints may be non­
linear. The linear equations can be solved efficiently by
exploiting the sparsity of the matrix.

The constraint formulation assumes that the con­
straints are met. In order to allow for numerical drift
and initial conditions which violate the constraints, we
use feedback to pull the system back into a legal state.
This is implemented by adding a force in the direction
of the constraint Jacobian proportional to the deviation
of the constraint,

q = W(fa + fc) - kcJT
,

effectively using a spring to pull the system together.
Like the objects they connect, constraints have a very

regular structure. Given the function which defines the
constraint, the Jacobian can be computed. The constraint
function will be a composition of some functions of
the objects and the function particular to the type of
constraint. This makes it very useful to have tools, such
as [GW91], for composing function and evaluating them
and their derivatives.

4 An Example Application

As an example of how differential manipulation pro­
vides a direct interface to a wide variety of geometric
objects without having the programmer develop object­
specific interaction techniques, we will describe our pro­
totype two dimensional geometric model er, shown in
Figure 2.

The two dimensional modeler lets the user create a
wide variety of parametric curves, grab them, and pull
on them. Each type of object is manipulated in exactly
the same way: the user can grab any point on it and
pull it. Splines are manipulated freely, without regard to
their control points, and all of the degrees of freedom of
ellipses can be controlled. The program also provides a
reasonable interface to many more unusual objects, such
as spirals.

The set of geometric entities which the user can put in
a drawing is easily extended. The parametric function
defining a curve, along with some auxiliary information

66

.

RK4 Solver :
Da""ing - o.~
Gravity - 0.0 :
AritllOtie Physjcs

· C~a;e
: \.~....M:lIon

M: HooIi A: Create

Figure 2: Our 2D geometric modeler allows the user to
manipulate a wide variety of shapes and connect them
together with constraints.

such as the name to put on the menu, is given to a
program which automatically creates the required code
and extends the geometric modeler. No code needs
to be manually modified to add a new object to the
system, and no thought needs to be given to designing an
object-specific interface. We could have implemented
this process dynamically, allowing the user to add new
varieties of objects.

Constraints, such as connecting objects or making
them parallel or equidistant, can be easily specified, al­
lowing the user to create compound objects with non­
trivial behaviors. Implementing a new variety of con­
straint is also simple; most of a constraint's implemen­
tation is created by a code generation program. How­
ever, in our present implementation addition of new
constraint types is not yet fully automated; the devel­
oper must hand-code the user interface for specifying
the constraints as well as some utility methods.

The ease of extending this system is made possible by
an object-oriented decomposition of the problem spec­
ifying a well defined set of operations which classes of
constraints and objects must provide [WGW90, GW91).

5 Other Applications

Differential manipulation appears to have applica­
bility in a wide range of domains. In our group
we have explored applications including geometric de-

Graphics Interface '91

sign in two and three dimensions [WGW90, GW91),
animation[WW90), and motion tracking [RW91). The
techniques of differential manipulation are not limited
to geometry. We can use the paradigm to manipulate
any mathematical model in which a user is interested in
outputs which are differentiable functions of state.

Differential manipulation attempts to mimic interac­
tions with physical objects in the real world. Since all
of us have substantial experience in dealing with the
physical world, programs with physical interfaces can
potentially draw on our skills and intuitions[Smi87].

By providing a uniform mechanism for interacting
with a wide class of geometry, differential manipula­
tion provides a useful extension to direct manipulation.
Users can manipulate all objects the same way: by grab­
bing them and pulling on them. Developers need not
design object-specific interfaces and are freed to use ob­
jects and representations for which no direct mapping of
parameters to user controls is available. Implemented by
a simplified physical simulation, the paradigm includes
constraints gracefully.

[Cor88)

References

Claris Corp. Macdraw 11, 1988. Computer
program.

[GW91) Michael Gleicher and Andrew Witkin. Snap
together mathematics. In Edwin Blake and
Peter Weisskirchen, editors, Advances in
Object Oriented Graphics 1 : Proceedings of
the 1990 Eurographics Workshop on Object
Oriented Graphics. Springer Verlag, 1991.
Also appears as CMU School of Computer
Science Technical Report CMU -CS-90-164.

[Lan86] Cornelius Lancoz. The Variational Prin­
ciples of Mechanics. Dover Publications,
1986.

[LV89) Mark Linton and John Vlissides. Idraw.
Computer program, 1989.

[Nor90) Donald Norman. The Design of Everyday
Things. Doubleday, 1990.

[PFfV86] William Press, Brian Flannery, Saul Teukol­
sky, and William Vetterling. Numerical
Recipes in C. Cambridge University Press,
Cambridge, England, 1986.

[Pla89) John Platt. Constraint Methods for Neu­
ral Networks and Computer Graphics. PhD
thesis, California Institute of Technology,
1989.

67

[RW91] James Rehg and Andrew Witkin. Visual
tracking with deformation models. In Pro­
ceedings of the IEEE International Con­
ference on Robotics and Automation, April
1991.

[Shn83) Ben Shneiderman. Direct manipulation:
A step beyond programming languages.
IEEE Computer Graphics and Applications,
16(8):57-69, August 1983.

[Smi87) Randall Smith. Experiences with the alter­
nate reality kit: An example of the tension
between literalism and magic. In Proceed­
ings CHI + GI87, pages 61-67, 1987.

[WGW90) Andrew Wi tkin , Michael Gleicher, and
William Welch. Interactive dynamics.
Computer Graphics, 24(2):11-21, March
1990. Proceedings 1990 Symposium on In­
teractive 3d Graphics.

[WW90] Andrew Witkin and William Welch. Fast
animation and control of non-rigid struc­
tures. Computer Graphics, 24(4):243-252,
August 1990. Proceedings SigGraph '90.

Graphics Interface '91

