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Abstract 
Direct manipulation has proven to be an excellent 
method for interacting with geometric objects. Unfor­
tunately, traditional approaches for implementing direct 
manipulation suffer from a lack of generality, requiring 
the system designer to hand craft interfaces to different 
types of objects. In this paper we present differential 
manipulation, a new paradigm for direct manipulation 
of geometric objects. By interpreting graphical entities 
as physical objects, we obtain a uniform interface to 
a wide variety of geometric objects, making it simple 
to add new types of complicated or compound objects. 
Geometric constraints fit neatly into the paradigm. 

Resume 
La manipulation directe est une excellente methode 
pour le traitement interactif des objets geometriques. 
Malheureusement, les approches traditionelles pour 
l'implementation de la manipulation directe manquent 
de generalite en necessitant que differentes interfaces 
soient associees a differents types d'objets. Dans cet ar­
ticle nous presentons un nouveau paradigme, la manipu­
lation differentielle, pour la manipulation directe des ob­
jets geometriques. En interpretant les entites graphiques 
comme des objets physiques, nous obtenons une seule 
interface pouvant etre utilisee pour une grande variete 
d'objets geomctriques, facilitant ainsi l'addition de nou­
veaux types d'objets complexes ou composes. Les con­
traintes geometriques peuvent etre proprement incluses 
avec ce paradigme. 
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1 Introduction 

Direct manipulation interfaces have proven to be su­
perior in a wide variety of tasks[Shn83] and are an 
appealing method for manipulating shapes. Such in­
terfaces couple the motion of a graphical object to the 
motion of the pointing device. For example, in a direct 
manipulation drawing program, such as [LV89, Cor88], 
we can grab a rectangle by its corner and have it move 
to follow the mouse or pull a spline by a control point 
and have it bend in the direction moved. 

Unfortunately, direct manipulation can be difficult to 
extend because each shape has its own degrees of free­
dom. The coupling between these parameters and the 
user's control is traditionally designed by hand. The 
diversity of attributes creates a lack of uniformity which 
makes it difficult to automate the process of adding 
shapes to a system. 

In this paper we present differential manipulation. a 
new scheme for providing direct manipulation interfaces 
to geometric objects. Users are permitted to pick points 
on objects and drag them. Objects respond by changing 
all of their relevant parameters, allowing control of all 
aspects of an object's shape through this single interface. 

The interface we implement allows the user to manip­
ulate objects by controlling points on them. However, 
it is not possible to specify an absolute target position 
for a point on an object in a general way. Instead, we 
treat the problem of controlling the position of a point on 
an object differentially: rather than specifying the target 
position of the point, we specify, from moment to mo­
ment, how we would like it to move. To do this requires 
the derivatives of the function defining the object, not the 
function's inverse. Derivatives are easy and inexpensive 
to compute, and, combined with the techniques in this 
paper, make it possible to provide a general method for 
grab-and-pull interfaces. 

With differential manipulation, we can use a single, 
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uniform interface for a wide variety of objects. Adding 
a new type of object is made much simpler, requiring the 
addition of only a few well-defined routines. For many 
types of objects, these routines can even be automatically 
generated from mathematical definitions of the shape. 

Geometric constraints are handled gracefully by dif­
ferential manipulation. By maintaining constraints dif­
ferentially instead of solving them, non linear constraints 
are handled by solving systems of linear equations. 

Differential manipulation resembles physical interac­
tions with real-world objects. To move or shape an ob­
ject we grab it and pull on it. Because we are interested 
in manipulation, not the quantitative prediction of real 
physical behavior, we are able to simplify the physical 
model, making objects easier to control and simulate. 

2 Differential Manipulation 

In this section we develop a method that allows a user 
to drag points on arbitrary geometric objects. Objects 
respond by changing their attributes to cause the dragged 
point to move towards the pointing device. 

The configuration of an object can be described by 
vector of parameters q. For example, a circle might 
be described by a vector of length three containing the 
position of its center and its radius. For each point p 
on an object, there is a function which determines the 
point's position as a function of the vector of the object's 
parameters 

p = xp(q) . 

To specify the position of the point directly would require 
the inverse of xp . Not only is it difficult to automate 
finding inverses, but few of the functions have unique 
inverses. 

Instead of specifying the position of a point directly, 
differential control allows users to control the motion of 
the point. This goal is achieved using simplified physical 
simulation. Point forces on the object are translated into 
generalized forces on the parameters and then integrated 
in time to provide changes in the object's state. 

To implement differential manipulation, we consider 
geometric objects as physical entities and simulate their 
responses to user applied forces. However, since we 
are interested not in accurate quantitative prediction, but 
in manipulating objects, we can simplify the physical 
model. Since most of the objects which exist in our 
simulation have no real-world counterparts, there is no 
expected behavior to duplicate. 

Differential manipulation implements a model of 
physics whose equations of motion are first order dif­
ferential equations, effectively replacing f = ma by 
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f = mv. This first order formulation approximates sit­
uations in which frictional effects dominate inertial ef­
fects, such as moving heavy objects around on a table.1 

The lack of inertia is good for manipulation because 
objects remain where they are placed. 

The methods of generalized coordinates [Lan86] per­
mit the use of an arbitrary representation for objects and 
provide a method for computing the effects of forces on 
these parameters. Given a force on a point, the general­
ized force can be obtained by multiplying the point force 
by the transpose of the Jacobian of the point's position 
function, 

g = (~~) T f, 

where f is the applied point force, g is the generalized 
force, and the point is related to the parameters by the 
function p = xp (q). 

The generalized force governs the rate of change of 
the state. We can even connect it directly, letting 

q= g . (1) 

This differential equation can be solved to yield changes 
in the state. This mechanism permits users to pull on 
points and have the object respond. 

2.1 Sensitivity Matrices 

The problem with using equation (1) directly is that 
the resulting behavior depends on an arbitrary choice 
of scale factors for the parameters. Without account­
ing for scaling, varying sensitivities in the parameters 
would determine the proportion of the motion accounted 
for by each parameter, the choice of units determining 
the bchavior. Consider manipulating a line segment of 
fixed length. Pulling on an end would cause it to re­
spond by rotating and translating. Without accounting 
for sensitivities, the programmer's choice to use radi­
ans or degrees would determine the way the motion is 
divided. 

To correct this problem, we scale the generalized force 
to control how the motion is apportioned among the pa­
rameters. We normalize each parameter by dividing 
the corresponding element of the generalized force by 
the sensitivity of the object to that parameter. A natu­
ral criterion for normalization is that equal changes in 
parameters should induce equal changes in the RMS dis­
placement of the object. The sensitivity of an object to a 
parameter j can then be found by summing the distance 

1 There is evidence that first order physics is actually more intuitive 
to many people [Nor90). 
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that each of a set of point samples 'P on the object moves 
due to a differential change in j , 

""" 8xp 8xp 
Sj = L...J mpB-' B-' 

pEP J J 

where x p ( q) is the function which determines the posi­
tion of sample p, and mp is the weighting of sample p . 
The sensitivities can be written as the diagonal elements 
of a matrix whose inverse is multiplied by the general­
ized force to compute the derivative of the state. We call 
this matrix the sensitivity matrix M. 

Specifically, this diagonal matrix approximates the 
mass matrix for an object with uniformly distributed 
mass. In omitting the off-diagonal terms, we neglect the 
interdependence among parameters. In return we have 
a matrix that is trivial to invert. The full mass matrix is 
given by 

M = L mpi;;Jp, 
pEP 

where Jp is the Jacobian of the relationship between 
sample p and the parameters. See [WW90) for further 
discussion. 

2.2 Using Simulation for Manipulation 

The user manipulates objects by applying forces to 
them, requiring differential manipulation programs to 
have force-based interaction techniques. One method 
we have found successful is to couple the object to the 
mouse with a spring of zero rest length. The point force 
can be computed by merely scaling the displacement 
between the mouse and the point being pulled. It has 
the advantage that the further an object is from its goal, 
the faster it moves. This allows for precise positioning 
without slowing down coarse movement. Spring con­
nection also provides a reasonable behavior when the 
object is not free to move closer to the mouse. 

Numerical stability and processor speed place limits 
on how quickly objects can move on the screen; as a 
result, it may happen that the user moves the mouse 
more quickly than an object can keep up. We find spring 
coupling preferable to the alternative, keeping the mouse 
in contact with the object with a reduced display rate. 
Control techniques, as in [WW90), can be used to better 
track the mouse, but we still must place limits on how 
fast objects can move. 

Since forces can be summed, it is easy to pull on 
shapes at more than one point. This provides the oppor­
tunity to develop novel ways to sculpt objects such as 
allowing a user to stretch an object by holding one side 
and pulling another. 
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We are not limited to pulling points on shapes. We 
could control other interesting aspects of geometry, such 
as area, or even non-geometric entities. The techniques 
of differential manipulation permit us to control the out­
put of any function of a number of variables that has a 
derivative. All that is required is a method for rapidly 
displaying the relevant output and receiving the user's 
desire for the direction of change in that output. We 
have experimented with an application that connects the 
outputs of mathematical functions, such as an economic 
model, to sliders [WGW90, GW91). 

2.3 Implementing Differential Manipula­
tion 

Implementing differential manipulation involves inte­
grating the differential equations of motion in time and 
periodically displaying the results to the user. These 
equations are most conveniently expressed in terms of 
the inverse of the mass matrix, 

q=Wg, (2) 

where W = M-I and g is the generalized force. 
Like physics, differential manipulation is a continuous 

process. We can only directly control the motion of an 
object, not its absolute position. Therefore, we can only 
move towards the goal, not jump to it. The continuous 
process, however, gives us an opportunity to place the 
user in the loop, controlling the object as it moves. 

Equation (2) must be solved numerically[pFrV86], 
simulating the continuous process by taking finite steps. 
For each step, we compute the forces on the objects, 
convert them to generalized forces, compute the mass 
matrix, invert it, and use it to find the derivative. If 
we update the display rapidly enough, we achieve the 
illusion of continuous motion and continuous control. 
This tight feedback loop is important for giving users a 
good feel for the object's motion. 

Given the function which maps the parameters to the 
output point, everything else necessary for controlling a 
specific class of objects can be computed. The Jacobian 
can be determined by symbolic differentiation or by nu­
merical techniques. A mass matrix can be computed 
from the Jacobian. When the objects have a regular 
structure, such as parameterized curves, all of the meth­
ods required of an object class, such as drawing and 
picking, can also be coded automatically, as we will 
show in the next section. 

2.4 Parametric Curves 

An important advantage to the differential approach 
is its regularity, permitting new types of objects to be 
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incorporated into a system without designing interfaces 
for each. In this section we describe how parametric 
curves are handled in a differential manipulation system 
to show by example how easily new shapes can be added 
to a geometric model er. 

Parametric curves can be defined by characteristic 
functions of the form 

(x , y) = f(q,u) , 

for u E [0 , 1]. The free parameter u selects points along 
the curve, while the configuration vector q determines 
the curve's attributes. Different shapes such as circles, 
ellipses, line segments and splines, are created by differ­
ent parametric functions. Each different type of curve 
has its own set of configuration parameters which control 
its attributes. 

Differential manipulation provides a single interface 
for a wide variety of curves: users can grab and pull 
objects which respond by changing their configurations. 
The technique permits this diversity of shapes to be sup­
ported without resorting to hand-crafting interfaces for 
each type or limiting the way curves can vary. This is 
possible because different varieties of curves are mathe­
matically the same, except for their characteristic func­
tions. 

In order to allow the user to manipulate an object, a 
modeling program must be able to perform a few basic 
operations with it. The program must be able to draw 
the object, permit the user to grab a point on it, apply a 
force to its parameters, and compute a sensitivity or mass 
matrix for it. Given the ability to evaluate a parametric 
curve's characteristic function and its derivatives, these 
capabilities can be provided by structure common to all 
types of parametric curves. 

Given the function defining a curve, the curve can be 
drawn by sampling at various u values and connecting 
the dots. When the user grabs an object to drag, the 
place on the curve closest to the pointing device can be 
approximated by sampling u and selecting the closest 
sample or can be found more precisely by root finding. 

Once the point p is picked and its corresponding up 

is found , the process of dragging the point towards the 
target position can begin. For each iteration, the current 
position of p = f( q , up) is computed and compared to 
the position of the target to find a point force to apply to 
p , which is then translated to a generalized force on the 
parameters of the curve by multiplying by the transpose 
of the point's Jacobian, 

_ ( Of(q ,UP))T f g - oq a · 

We can approximate the sensitivity matrix for the 
curve by choosing n samples and summing the effects 
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of the parameters on these points, 

M =.!. L: (Of(q, U r )) T of(q, ur ), 

n oq oq 
urE[O,I] 

which allows us to update the parameters of the curves 
as 

it = M-1g. 

The same procedure applies to any parametric curve. 
To define a new one, we need only provide routines to 
evaluate f and of / oq. The creation of this code can be 
automated using symbolic differentiation so a new vari­
ety of curve can be added to a system by merely speci­
fying the expression for its characteristic function. We 
have implemented automatic code generation systems 
which allow users to enter mathematical expressions 
which define parametric curves and have them added to 
our geometric modeling programs. 

3 Constraints 

Constraints provide a powerful mechanism for re­
stricting how objects change, which is important in dif­
ferential manipulation: pulling on an object can affect 
all attributes of the object, which is often not what the 
user wants. Constraints also provide a mechanism for 
building compound objects by specifying how the com­
ponents are related. Differential manipulation includes 
constraints in a natural way: just as geometric objects 
can be viewed as physical entities, geometric constraints 
can be viewed as mechanical interactions. 

Constraints can be written as relations on the state. If 
we start in an unknown state, the constraints might be vi­
olated, requiring the solution of the constraint equations. 
Since there are no good general methods for solving sys­
tems of nonlinear equations[PFfV86], most constraint 
solving systems limit the class of equations they admit. 

Instead of relying on nonlinear system solving, we 
approach the constraint problem differentially. Rather 
than solving the constraints, we maintain them as the 
systcm moves. We call this approach constrained dy­
namics since it simulates the behavior of a constrained 
physical system. 

To visualize the difference between constraint solv­
ing and constrained dynamics, imagine doing geometric 
design by placing two pieces of string on a table and 
pulling them around. Suppose we would like to have 
the constraint that the ends of the two strings touch. 
A constraint solver, if it succeeds, will re-arrange the 
strings on the table so that the constraints are met. After 
the solver does its work, if we move a string the con­
straints will be violated again. In contrast, constrained 
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dynamics ties the ends of the strings together so that 
pulling on a string reshapes the whole system without 
violating the constraint. 

In a constrained dynamics application, the constraints 
must still be solved because the system must initially get 
to a feasible state. However, this only needs to happen 
incrementally when a new constraint is applied. 

Placing the user in the solving loop by making the 
constraints gradually come together has several advan­
tages as well. The system does not jump to a new state, 
which may surprise the user. The user can help guide the 
solution away from incorrect solutions and past places 
where the solving process gets stuck. 

3.1 Techniques for Constrained Dynamics 

The techniques for implementing constrained dynam­
ics in physical simulations have been presented else­
where [WGW90, GW91, Pla89] . The presentation here 
follows that of [WGW90], except with an emphasis on 
first order physics and the demands of differential ma­
nipulation. We consider here equality constraints, which 
can be written as f(q) = 0 , noting that the techniques 
extend to inequalities. 

A simple way to implement constraints is to use 
springs to enforce them approximately. This approach 
is called the penalty method because it uses the springs 
as a penalty for the system's violation of the constraints. 
This method has the advantage that if the constraints are 
not met, the spring can pull the object together. Un­
fortunately, it has the problem that the constraints will 
not be maintained precisely. Making the springs stiffer 
reduces the amount that things pull apart, but also makes 
the differential equations more difficult to integrate. 

Our formulation for constrained dynamics removes 
the part of the applied force fa which would cause the 
system to move in a way which would violate the con­
straints. We do this by computing a constraint force fe 
which counteracts this component of the applied force. 

To see how the method works, consider constraining 
a point to lie on a circle, and suppose that the constraint 
is met, as in Figure 1. We know that if the point moves, 
it must move in a way that will not violate the constraint: 
its motion must be tangent to the circle. Since it will 
move in the direction of net force, the force must be 
tangent to the circle2• If the applied force is not in this 
direction, the constraint must provide a force to cancel 
out the illegal component. 

We write the constraints as a function of state e = 
2This is exactly true in the first order case. The second order case 

is slightly more complicated. See the derivation in [WGW901 for 
details . 
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Figure 1: A point is constrained to a circle. When 
a force f. is applied, a constraint force fe is computed 
to ensure that the net force g lies in a legal direction, 
tangent to the circle. 

f( q) . Assume that, at the present instant, all of the con­
straints are met (e = 0). In order for the constraints to 
be maintained, e must be unchanging, so C (and higher 
derivatives) must equal zero. From the chain rule, 

. oe. 
e = oq q. 

Denoting the constraint J acobian by J = g~ , we obtain 

q=JWg=O 

by substitution with the equations of motion (2). Since 
net force is the sum of the applied and constraint forces, 
g = fa + fe, we get 

JWfe = -JWfa , (3) 

which is a system of linear equations with only the con­
straint force vector fe unknown. 

In words, equation (3) just says that the constraint 
force, added into the applied force, must cause the first 
time derivative of the constraints to be zero. This con­
dition is generally too weak: if the system is under­
constrained, as is usually the case (otherwise nothing 
can move at all!) we have fewer equations than un­
knowns, and there exist many values for fe that satisfy 
equation (3). One way to handle this ambiguity is to 
modify the applied force as little as possible, computing 
the least squares solution to the linear system. Some 
linear system solvers, such as conjugate gradient-based 
approaches[PFTV86], have this property. 

Alternatively, we can remove the ambiguity in a more 
physically correct manner by requiring that the system 
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obey D' Alembert's Principle of Virtual Work[Lan86j 
which requires that the constraints do not change the 
energy in the system. For this to occur, the constraint 
forces must lie in the null space complement of the Ja­
cobian, so that fc = .U for some vector A. Wc write the 
equation as 

JWJT A = -JWfa , 

and solve for A, the vector of Lagrange multipliers. 
Computing the constraint forces requires solving a 

linear system, even though the constraints may be non­
linear. The linear equations can be solved efficiently by 
exploiting the sparsity of the matrix. 

The constraint formulation assumes that the con­
straints are met. In order to allow for numerical drift 
and initial conditions which violate the constraints, we 
use feedback to pull the system back into a legal state. 
This is implemented by adding a force in the direction 
of the constraint Jacobian proportional to the deviation 
of the constraint, 

q = W(fa + fc) - kcJT
, 

effectively using a spring to pull the system together. 
Like the objects they connect, constraints have a very 

regular structure. Given the function which defines the 
constraint, the Jacobian can be computed. The constraint 
function will be a composition of some functions of 
the objects and the function particular to the type of 
constraint. This makes it very useful to have tools, such 
as [GW91], for composing function and evaluating them 
and their derivatives. 

4 An Example Application 

As an example of how differential manipulation pro­
vides a direct interface to a wide variety of geometric 
objects without having the programmer develop object­
specific interaction techniques, we will describe our pro­
totype two dimensional geometric model er, shown in 
Figure 2. 

The two dimensional modeler lets the user create a 
wide variety of parametric curves, grab them, and pull 
on them. Each type of object is manipulated in exactly 
the same way: the user can grab any point on it and 
pull it. Splines are manipulated freely, without regard to 
their control points, and all of the degrees of freedom of 
ellipses can be controlled. The program also provides a 
reasonable interface to many more unusual objects, such 
as spirals. 

The set of geometric entities which the user can put in 
a drawing is easily extended. The parametric function 
defining a curve, along with some auxiliary information 
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Figure 2: Our 2D geometric modeler allows the user to 
manipulate a wide variety of shapes and connect them 
together with constraints. 

such as the name to put on the menu, is given to a 
program which automatically creates the required code 
and extends the geometric modeler. No code needs 
to be manually modified to add a new object to the 
system, and no thought needs to be given to designing an 
object-specific interface. We could have implemented 
this process dynamically, allowing the user to add new 
varieties of objects. 

Constraints, such as connecting objects or making 
them parallel or equidistant, can be easily specified, al­
lowing the user to create compound objects with non­
trivial behaviors. Implementing a new variety of con­
straint is also simple; most of a constraint's implemen­
tation is created by a code generation program. How­
ever, in our present implementation addition of new 
constraint types is not yet fully automated; the devel­
oper must hand-code the user interface for specifying 
the constraints as well as some utility methods. 

The ease of extending this system is made possible by 
an object-oriented decomposition of the problem spec­
ifying a well defined set of operations which classes of 
constraints and objects must provide [WGW90, GW91). 

5 Other Applications 

Differential manipulation appears to have applica­
bility in a wide range of domains. In our group 
we have explored applications including geometric de-
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sign in two and three dimensions [WGW90, GW91), 
animation[WW90), and motion tracking [RW91). The 
techniques of differential manipulation are not limited 
to geometry. We can use the paradigm to manipulate 
any mathematical model in which a user is interested in 
outputs which are differentiable functions of state. 

Differential manipulation attempts to mimic interac­
tions with physical objects in the real world. Since all 
of us have substantial experience in dealing with the 
physical world, programs with physical interfaces can 
potentially draw on our skills and intuitions[Smi87]. 

By providing a uniform mechanism for interacting 
with a wide class of geometry, differential manipula­
tion provides a useful extension to direct manipulation. 
Users can manipulate all objects the same way: by grab­
bing them and pulling on them. Developers need not 
design object-specific interfaces and are freed to use ob­
jects and representations for which no direct mapping of 
parameters to user controls is available. Implemented by 
a simplified physical simulation, the paradigm includes 
constraints gracefully. 

[Cor88) 
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