
106

Performing In-place Affine Transformations in Constant Space

Ken Fishkin
Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94034 USA

Abstract

Affine transfonnations of 2-D frame buffer images are a
common computer graphics operation. Such
transfonnations take a rectangular raster of image
memory, perfonn some affine transformation (e.g. scale,
shift, shear, rotate) upon it, and write the result into some
other rectangular raster of image memory.

If the source and destination share the same memory, the
operation is termed in -place. Previous in-place affine
transformation algorithms on an m by n region required
O(max(m,n)) space for internal buffers. The algorithm
presented here requires 0(1) (constant) space: this allows
in-place affine transfonnations to be perfonned on large
images on processors with small memory.

Keywords: affine transformations, Catmull-Smith, frame
buffer algorithms.

1. Introduction

An affine transformation is a transformation of the fonn

x' = Ax + By + C,

y ' = Dx + £y + F,

for arbitrary real values A,B,C,D,£, and F.

Rotations, scales, shifts, and shears are all affine
transformations. A computer graphics image is
commonly considered as a rectangle whose contents are
an array of pixels. An affine transformation can therefore
be defined upon an image by performing the
transformation upon the rectangle and then resampling
[Catm ull 80].

source image

transform

, ,
"

source map

destination image

written

clipped

cleared

Figure I: An affine transformation

2. Previous Work

2.1 The naive algorithm

A general affine transfonnation can be most easily
implemented by creating a temporary image the same size
as the source, and computing the value at each
destination pixel in this temporary buffer. After all values
have been computed. the temporary image over-writes
the source image and is then freed. This approach
requires O(m n) space when presented with an m by n
source, and is on ly presented for comparison: it is not
used in practice.

2.2 The Catmull-Smith algorithm

The popular Catmull-Smith algorithm [Catrnu1l80j works

Graphics Interface ' 92

by decomposing the affine transfonnation into two
perpendicular shears. In the first shear the x' are
computed, while the y coordinates are left untouched. In
the second shear, the y' values are computed. To
minimize artifacts the order of the two passes may be
reversed, and transpositions or reflections may be
required.
Each shear can be perfonned a scan line at a time, as y is
unchanged by the x shear and x is unchanged by the y
shear. Therefore, to transfonn an m by n image, a
temporary scanline buffer of size O(max(m,n» is
required.

3. Motivation for the New Algorithm

The Catmull-Smith algorithm has become a fundamental
and accepted part of computer graphics software
environments, with only minor extensions [Fraser85,
Smith87] in the twelve years since its original publication.
Of what interest is a new algorithm based upon it? There
are both theoretical and practical motivations for the new
algorithm.

Theoretical: Just as the Catmull-Smith algorithm
was motivated by the inability to process an entire
image in-core, this paper presents an algorithm
which is motivated by the inability to process an
entire scan line in-core. An extension to a common
O(n) algorithm which uses 0(1) space may be of
some theoretical interest.
Practical: As computer graphics matures, it has
begun to tackle more sophisticated problem areas
with less specialized processors. These new
problem areas, such as pre-press and satellite
imaging, often have images with thousands or tens
of thousands of pixels per line, and with tens or
hundreds of bits per pixel. Further, the
applications which manipulate these images often
must run on processors with limited address space,
such as the IBM PC [Microsoft87], the Macintosh
[Apple85]. or the Pixar Image Computer
[Levinthal84]. In such environments, an algorithm
such as the one presented is a necessity, not a
luxury.

If both the image and the calculation buffer are stored in
core, than an 0(1) algorithm is only of interest in the rare
case where memory is just barely big enough to fit one
image. An 0(1) algorithm is of more use when the image
is kept in secondary storage (disk, frame buffer. etc.) and
only the calculation buffer is stored in-core. In that case,
the difference between an O(n) and 0(1) buffer can be
signi fican t.

3.1 Software Architecture

The new algorithm analyzes the transfonnation and
decomposes it into a series of calls to the Catmull-Smith

107

algorithm. This allows the new algorithm to be
incorporated as a extension to an existing library: no
change in base software is necessary. Furthennore, any
efficiencies or optumzations encoded into
implementations of the Catmull-Smith algorithm can still
be called upon : the wheel need not be re-invented. This
does require, however. that the new algorithm issue
"requests" for affine transfonnations which always
transfonn rectangular sources into rectangular
destinations, as this is the common fonnat expected by
software libraries.
The algorithm presented in sections 6-11, therefore,
satisfies two constraints besides the 0(1) constraint. First,
that the Catmull-Smith code is sacrosanct, and may not
be changed or modified. This may be the case if that
algorithm is provided in finnware, is written in micro
code, or is directly supported in hardware. Secondly, that
the overhead involved in invoking that code is sufficiently
significant that the number of calls to it should be
minimized. If neither of those two constraints apply, then
the simple and general algorithm presented in section 11
is sufficient.

4. Notation

The source image is the rectangular array of pixels
comprising the picture which is to be transfonned. The
destination image is the rectangular array of pixels which
is to receive the transfonnation. An in-place
transfonnation is one in which the source image equals
the destination image. The source map is the
parallelogram which is defined by the map of the affine
transfonnation over the source image. The source map
and destination image will often be quite different. Pixels
may be in the image but not in the map, in which case
they are to be cleared to some background value. Pixels
may be in the map but not in the image, in which case
they are clipped. See figure 1.

Without loss of generality, we focus on the work to be
performed by the x shear, where the shear acts on the x
coordinates of the image without displacing it vertically .
Let iwand ih be the width and height. respectively, of the
source image. Let dw and dh be the width and height,
respecti vely, of the destination image.

In the equation x' = Ax + By + C, we will rename A as
scale, B as tilt, and C as offset, yielding x' = scale * x +
till * Y + offset.

Define dst(x.y) as the x component in destination space of
the image under the affine transfonnation of the given x,y
coordinate in source space. Similarly, let src(x',y) be
defined as the x component in source space of the pre
image of the given x',y' coordinate in destination space.
Note that src(dst(x,y),y) = x. Both the ds/ and src

Graphics Interface '92 ~

functions return a single x value, with no y value; they
both map from R 2 to R 1.

For example, a transformation which scales the input
image up by 10% and shifts it left by y pixels on the y·th
scan line would have

x' = dst(x,y) = 1.1x - y, and

x = src(x:y) = (x ' + y) / 1.1

We also assume the function bbox(), which computes the
bounding box in source space of the pre-image of the
current destination rectangle, adding the appropriate
amount at each end for filtering. Further, let M be the
maximum size of a scanline in core, and let f be the
amount which must be added to each end of a source
scanline in order for a destination scanline to be
calculated. The value of fis a function of the filter width,
the particular filtering algorithm used, and the scale.
When resampling, each source pixel influences source
space for fpixels to the left and the right, yielding a total
"penumbra" of 2f + 1 pixels in reconstructed source
space. When scaling down (scale < 1), this penumbra is
spread over a great many destination pixels. Therefore,
to ensure that at least 1 pixel can always be written, we
require that

M >= (2f + 1) / MIN(scale,l)

iw source image width

ih source image height

dw destination width

dh destination height

off x' = off + x ·scale + y • tilt

bbox() bounding box

dst() map from source to destination space

srcO map from destination to source space

M pixel bandwidth limit

f source padding due to filtering

Table 1: Notation

108

5. Why is this hard? The feedback problem

What makes an 0(1) solution difficult? If no more than
M pixels can be read or written at a time, one might
imagine calling the Catmull-Smith algorithm on each M
sized chunk of the input scanline, writing the results out a
piece at a time. The problem with this approach is that
when an output piece is written, it may well overwrite a
future input piece. This problem. on a grander scale, was
exactly why the Catmull-Smith algorithm took pains to
ensure that y is unchanging in the x pass, and why the
naive algorithm allocated a huge buffer: dst(x,y) may be
less than x, equal to x, or greater than x, and this relation
may vary even within a scanline. The problem is
exacerbated by the fact that anti-aliasing requires that an
entire neighborhood of source pixels be readable when
computing a single destination pixel.

Inefficiency is a further limitation of a per-line approach.
The new algorithm will work by means of calls to the
Catmull-Smith algorithm, which works on rectangular
regions. It is a waste of inter-line coherence to call it on
scanlines (or worse yet, parts of scanlines) only: we wish
to call it as few times as possible, on regions as large as
possible.

The problem is therefore to divide the original region,
which is too large to transform all at once, into a set of
regions, such that no pixel in any source region is over
written before it is no longer needed, and the number of
regions is as few as possible.

6. An outline of the algorithm

It is advantageous to deal with affine transformations in
what we define as standard form:

scale)= tilt, and scale> 0

This form can be obtained by transposition (to satisfy the
first clause) and reflection (to satisfy the second).
Standard form allows a few more invariant assumptions:
that increasing x increases x: and that vertical inter
scan line coherence is greater than horizontal inter-pixel
coherence.

The algorithm consists of a series of transformation
algorithms, with a case analysis to decide which
transformation algorithm to perform. The transformation
algorithms employed are more and more general and take
more and more time: the case analysis finds the least
general (and hence quickest) transformation algorithm
appropriate for the particular transformation. The case
analysis begins by dividing the source image into between
1 and 3 sub-images, depending on the characteristics of
the transform. This process is described in section 8. At
most one of these sub-images will require further case
analysis, described in section 9. Some of that sub-images
sub-images may require even further case analysis,

Graphics Interface '92

described in sections lO and 11. This completes all cases.
This case analysis is performed purely for optimization
reasons: increasingly more difficult cases are processed by
increasingly more general (but slow) algorithms. One
could avoid all case analysis by using only the algorithm
of section 11, but that could be far slower.
The case analysis routines all assume a subroutine
termed Helper, which performs an affine transformatio~
on an arbitrarily large source and destination image,
given the maximum internal scanline width M, and an
evaluation order: left-to-right vs. right-to-left, and
bottom-to-top vs. top-to-bottom. Before describing the
case analysis in detail, we first describe 'Helper', the
foundation of the system.

7. The Helper subroutine

The Helper subroutine is used to perform a piece-wise
affine transformation from a given source image into a
given destination image. It assumes that it need not
worry about feedback. The Helper subroutine is solely
concerned with slicing up the transformation into
manageable chunks.
The obvious way to perform the Helper subroutine is to
march along the source, transforming rectangles in the
source into parallelograms which would then be written
into the destination. This method was not chosen because,
as Catrnulll [Catrnu1l80] says, "[n]ot only is this
inconvenient, it is also difficult to prevent aliasing errors" .
Instead, the Helper subroutines marches along in
destination space: each destination rectangle is inverse
transformed to obtain a parallelogram in source space.
That parallelogram is then rounded out into a rectangular
bounding box (padding by f for filtering), and the
Catmull-Smith algorithm is called. Since the source
bounding box may be significantly larger than the source
parallelogram, the shear may try to write a set of pixels
which lie outside the current destination rectangle.
However, since the destination rectangle lies along exact
pixel boundaries, simple clipping will reject these extra
pixels. See Figure 2.

Take a rectangle from the destination: inverse· map to the source rn ---7 ~

~ wu~
Bound and pad by f ~ Transform with clipping

, \ ---7 ' I [JJ, fIIJ'
\ ' I '

109

Figure 2: the Helper subroutine

What should be the dimensions of the destination
rectangle? We wish to make it as large as possible without
exceeding the M-pixel wide bottleneck.
Suppose we decide on a destination rectangle of size dx
by dy. Then the constructed source rectangle will have
width

sx = «dx + (dy - 1) I tiltl)/ scale) + 2f

Either dx or sx will be bounded by M. When dx> M, let
dx = M and dy = dh. When sx > M , there are more
pixels to read than to write,

dx (sx,
dx < «dx + (dy - 1) Itiltl)/ scale) + 2f

We wish to minimize the number of destination
rectangles, and therefore maximize the area of each. The
problem is now to maximize dx • dy, where

1 (= dx(= M
scale «dx + (dy -l)ltilti)/(dx-2j)
«dx + (dy - 1)ltilti)/ scale) (= M

This is a quadratic programming problem. We
approximate it by maximizing dy (setting it to dh) , and
then solving for a putative dx. If dx < dy and dx < dw, then
the putative rectangle is tall and skinny. To process an
area closer to a square (this is desirable since Catrnull
Smith has a per-scanline overhead), we recursively
subdivide the rectangle by splitting it in two in y.

8. The first level of analysis

~. --- RIGH
/

T

• I I • BOTH • I I • • I

• • LEFT 1 __

Figure 3: Different types of shear

The source image is subdivided into between one and
three source sub-images, such that the map of the shear
within each sub-image either:

1) overlaps it on the left on every line (type LEFf).

2) overlaps it on the right on every line (type RIGHT).

3) overlaps it on both the left and the right on every
line (type BOTH).

4) overlaps it on neither the left or the right on every
line (type NEITHER).

The dashed lines in figure 3 show the subdivision lines for
that shear: the top region is of type RIGHT, the middle
region is of type BOTH, and the bottom region is of type

Graphics Interface '92 ~

LEFf.

8.1 Type LEFT

This case is easily processed. The Helper subroutine can
be called on this region with an evaluation order of left
to-right.

8.2 Type RJGHT

The Helper subroutine can be called on this region with
an evaluation order of right-to-left.

8.3 Type NEITHER

In this case, the transfonnation is scaling the source image
down, and there is not a very pronounced tilt However,
evaluation order is still not clear: if offset (the translation
component) is sufficiently large, then the first source
pixels lie in the middle of the scanline: either right-to-Ieft
or left-to-right evaluations can fail. Therefore, this case is
processed by decomposition into two shears:

1) The Helper subroutine is called to perfonn the
scale component of the shear. Without any
translation, dst(x,y) < x for all x. and so the
algorithm should proceed left-to-right

2) The Helper subroutine is called again to perfonn
the non-scale component. If offset < = O. then
dst(x.y) < x. and so the algorithm should proceed
left-to-right. Otherwise. it should proceed right
to-left

8.4 Type BOTH

This case is complex and treated in detail in the next
section.

9. The second level of analysis: type BOTH

Using the case analysis of section 8, 3 of the 4 possible
shear configurations could be processed. This section
focuses on the fourth. most difficult case, when the source
map overflows the destination image on both sides. This
case is more difficult because every pixel in the
destination must be written. and hence every pixel in the
source is at risk of being over-written before it is read.
Checks are first made to see if the shear falls into one of
two special cases:

9.1 small-source

Suppose that the shear is a large scale-up, with little or no
translation/tilt component. In this case. only a small part
of the source is necessary. The algorithm can "cut out"
that portion, and use the other portions as it wishes. The
area of the source needed is considered "small" if and
only if

bbox() (= dw

110

This means that the area of the source needed to compute
the destination (bbox(» fits entirely within the destination
(width dW). See Figure 4 for an example.

Figllre
d

4: small-source: only the 'R' part of the source is
neede

9.Z small-dest

Conversely, suppose that the shear is a large scale-down.
Regardless of the translation/tilt component, in this case
only a small number of destination pixels are truly
"derived": the others will be set to a certain background
calor. In this case the algorithm can compute that portion
and then shift/shear it into place. The area of the
destination needed is considered "small' if and only if

iw· scale (= dw

This means that the width of the scaled source image (iw
• scale) fits entirely within the destination. See Figure 5
for an example.

Fi!JJre 5: small-dest: only a small part of the destination is
defived

9.3 if either succeeds

If either condition "small-source" or "small-desC holds,
then the affine can be implemented as follows (see figure
6):

1) Copy the needed portion of the source. left
aligned, into the destination.

2) Perform the scale component of the
transfonnation using the Helper su broutine.
Perform this right-to-Ieft if scale> 1, and left-to
right otherwise.

3) Recursively perform an affine transformation.
using only the other components of the original
affine transformation.

Graphics Interface '92

~ copy only []

~ scale only B1
~ shearonly B

Figure 6: processing small·source

10. The third level of case analysis

Neither of the above special cases may hold. In that case,
further analysis is required.

Consider a given (x,y) pixel in the destination. There are
three cases for that pixel: it may be far to the left of its
source pixel pre-image, it may be far to the right of it, or
it may be neither. It is "far to the left" if

x ' < = src(x·,y)· f

and "far to the right" if

x')= src(x',y) + f

Define the boolean predicate left(x',y) to be true if and
only if a destination pixel is far to the left, and the
boo lean predicate right(x',y) to be true if and only if a
destination pixel is far to the right. Since the
transformation is in standard form, left(x',y) implies
left(x'-l,y) and right(x',y) implies right(x'+ 1,y).

Due to the tilt in the shear, the rightmost left() pixel and
the leftmost right() pixel may be at a different place on
each line. Therefore. we define the function LEFT() as
the greatest x'such that left(w' ,y) for all w' <= x', for all 0
< = y < = dw. RIGHT() is similarly defined as the least x'
such that all pixels to the right of it have the right()
property. Figure 8 shows a sample set of LEFT() and
RIGHT() regions.

Intuitively, the left() and right() predicates detect those
destination pixels which are "thrown clear" of their

111

source pixels. The LEFT() and RIGHTO regions are the
largest rectangles contained within the parallelogram
shaped left() and right() regions.

,.- -0 --------, ,
~ ~ , LEFTO RIGHTO ~'

~ , ,
~ ~ , ,

,,------- - - --~

Figure 8: The LEFTO and RIGHTO regions

If LEFT() or RIGHT() regions exist, then the Helper
algorithm is performed on the destination/source regions
defined by them, and the problem is trimmed
accordingly. However, not all source pixels are freed by
this operation: without further help, this operation would
quickly grind to a halt.
Therefore. the remaining source image is now split in two
along y, and those affine transformations are now
recursively analyzed. Splitting the image in this manner
reduces the effect of the tilt in the shear, and may create
LEFT() and RIGHT() regions in the sub-images which
could not be formed in the originals. In Figure 9. for
example, there are no LEFT() or RIGHT() regions
originally, but subdivision creates 4 such regions.

leftO/rightO pixels are shaded

Figure 9: Creating LEFTO/RIGHTO by subdivision.

11. The fourth level of case analysis

It is possible that the shear fits into none of the above
categories. This happens when the source image is being
very slightly scaled-up and there is little or no shift.

In this case, we have no recourse but to buffer the affine
transformation with saves/restores of selected areas of
image memory, "stitching" the borders between the
panels. Specifically. we now need two buffers B1 and B2.
of fpixels each. On each scanline:
1) Find the fixed point F. the pixel such that src(F,y) =
F.
2) Read the pixels from [F-LF] into Bl. These pixels will
be written when the left half of the scanline is processed.

Graphics Interface '92 ~~

but their original values are still needed to process the
right half.
3) call the Helper algorithm to evaluate the scanline from
[O .. F], left-to-right.
4) Read the pixels from [F-LF] into B2, and then write
them with Bl.
5) call the Helper algorithm to evaluate the scanline from
F onwards, right-to-left.
6) Write the pixels from[F-LF] from B2.
This algorithm can be performed in all cases, but it is very
slow: it calls the Helper algorithm twice per scanline, and
also must perform 4 buffer I/O operations. If, however,
the algorithm is to replace the Catmull-Smith code, then
these objections no longer hold, and the algorithm above
yields a slower but more general replacement.

12. Summary

An algorithm has been presented to perform in-place
affine transformations in constant space. The algorithm
subdivides the transformation into a series of smaller
transformations. Each smaller transformation is then
performed using the Catmull-Smith algorithm. In this
way, the new algorithm provides an additional level of
capability to a graphics software library, which is
particularly appropriate in environments where image
sizes are huge and/or processor memory size is limited.
The algorithm works by case analysis, chipping away at
the problem by gradually imposing slower and more
general algorithms on more difficult portions of the affine
transformation: Figure 10 provides a summary.

A summary of the algorithm:
/0 split the source into between
° one and three sub-regions .
° calls to 'Helper' are of the form
° He1per(source,dest,

eva1 order, special notes) ;

dir2 = (offset (= 0 . 0) ?LtoR : RtoL;
foreach subregion S do

switch (type) {
case LEFT:

/0 section 8.1 0/

He1per(S,S . LtoR);
break;

case RIGHT:
/0 section 8.2 0/

He1per(S , S,RtoL) ;
break ;

case NEITHER :
/ 0 section 8 . 3 0 /

He1per(s,s,LtoR,sca1e) ;
He1per(s , s.dir2 , non-scale) ;
break;

112

case BOTH:

}

if small-source or sma11 - dest {
/0 see figures 4 , 5 , and 6,

sections 9 . 1 - 9 . 3 0 /

Copy(needed - part(S) ,
1eft-part(S) , 1eft-a1 igned) ;

dirl = (scale (= 1. 0) ?LtoR : RtoL;
He1per(left-part(S) , S,

dirl.sca1e) ;
He1per(S , S , dir2 . non-sca1e) ;

} else {

}

/0 section 10. figure 8 0/

if LEFT region exists {
He1per(S , LEFT , LtoR) ;
S = pruned-parteS);

}

if RIGHT region exists {
He1per(S , RIGHT,LtoR);
S = pruned - parteS) ;

}

/0 figure 9 0/

if (height(S)) 1) {
Recurse(top-ha1f(S» ;
Recurse(bottom-ha1f(S»;

} else {

}

/ 0 section 11 0/

stitch

break ;

Figure 10: Summary of the Algorithm

13. Extensions and modifications

The algorithm may be extended to handle cases when the
source image is a proper subset of the destination image.
That case has not been discussed here for presentation
purposes. For a discussion of that extension and other
implementation issues, the interested reader is referred to
[Fishkin89].

14. Acknowledgements

The author wishes to thank Don Con way and David De
Francesco (Pixar) for their help with the screen shots, and
Andrew Glassner (Xerox PARC) and Tony De Rose (the
University of Washington) for their many helpful
comments on the organization of the paper.

Graphics Interface '92

15. References
[Apple85] Apple Computer, "Inside Macintosh" ,

Addison-Wesley, volume 2, 1985.
[Catmu1l80] Catmull, Edwin, and Smith, Alvy Ray, "3-D

Transformations of Images in Scanline Order" ,
Computer Graphics 14(3), July 1980, pp. 279-285.

[Fishkin89] Fishkin, Ken, "Performing piece-wise in'
place affine transformations", Pixar Technical
Memo #188, February 1989.

[Fraser85] Fraser, Donald. Schowengerdt, Robert A., and
Briggs, Ian, "Rectification of M ultichannelImages
in Mass Storage Using Image Transposition",
Computer Vision, Graphics, and image Processing,
29(1), pp. 23-26, January 1985.

[LevinthaI84] Levinthal, Adam, and Porter, Thomas,
"Chap - a SIMD Graphics Processor", Computer
Graphics 18(3), July 1984, pp. 77-82.

[Microsoft87] Microsoft Corporation , "Microsoft C
Optimizing Compiler: User's Guide", 1987,
Chapter 6.

[Porter84] Porter, Thomas, and Duff, Tom,
"Compositing Digital Images", Computer Graphics
18(3), July 1984, pp. 253-259.

[Smith87] Smith, Alvy Ray, "Planar 2-Pass Texture
Mapping and Warping", Computer Graphics 21(4),
July 1987, pp. 263-272.

113

Graphics Interface '92 ~1i)

114

Appendix: An Example

These pictures show an in-place affine transformation of
a 1024 by 768 image, when no more than 256 pixels may
be read or written at any time. The image is rotated by 10
degrees and also scaled up by 10%. The dark lines delimit
the LEFT, BOTH, and RIGHT regions. The light lines delimit
the individual regions passed to Catmull-Smith.

Figure A.l: The Original Image

Fieure A.2: In the middle of the first pa&s. The algorithm
IS fransformmg the area around the mouth.

Figure A.3: The First Pass -

Figure A.4: The Second Pass

D

Figure A.5: The Final Image

Graphic s Interface '92

