
130

CSCW - WCSC:
Computer-Supported Cooperative Work -

What Changes for the Science of Computing

Marilyn M . Mantei

Dynamic Graphics Project
Computer Systems Research Institute and

Department of Computer Science
University of Toronto
6 Kings College Road

Toronto. Ontario. Canada M5S lA4
416-978-5512 FAX: 416-978-4765 E-mail: mantei@dgp.utoronto.ca

Abstract

Computer-supported cooperative work environments
change some of the underlying beliefs about solutions that
have been built for distributed computing. Electronic mail
and file transfers have worked efficiently and effectively by
breaking the information to be transferred into packets and
reassembling the packets at the destination. This is not a
viable solution for handling shared real time drawing or
writing. Integrity has been maintained by locking out
portions of a database until an update is completed. Such
lockout is not always suitable in a groupware interface.
Other solutions are necessary for resolving conflicts.
Client-server architectures have worked well for managing
distributed processing but replicated architectures. coupled
with their fragility and synchronization problems are
needed for groupware products in order to preserve
acceptable local response time. The addition of multi-media
to the environment complicates the problem more. Control
of analog video requires a client-server environment which
can build in intolerable delays as distances between
communicating parties increase. This paper approaches
design criteria for shared software from the human side and
points out profound architectural problems that need to be
solved if multi-media cooperative work environments are
to function effectively.

Resume

Les environments de taches cooperatives mediatises par
ordinateur changent certaines des croyances sur les
solutions qui ont ete mise en oeuvre pour l'informatique
distribuee. Le courrier electronique et le transfert de fichiers
ont fonctionnes avec succes et efficacite en separant
l'information en paquets qui sont reassembles a' l'arrivee.
Cette solution n'est pas viable pour traiter la composition
cooperative de textes ou de dessins en temps reel.
L'integrite a ete maintenue en bloquant l'acces de portions
de base de donnees jusqu'a la fin de leurs mise a jour. De tel
bloc ages ne toujours conviennent pas pour une interface de
informatique de groupe. Des solutions nouvelles sont
necessaires pour resoudre ces conflits. Les architectures
client-serveur fonctionnent bien pour gerer des processus
distribues . Mais des architectures repliques. avec leurs
fragilite et leurs problemes de synchronisation. sont

necessaires aux produits groupware afin de preserver les
temps de reponse locaux acceptables. L'addition de multi­
media complique encore le probleme. Le controle de la
video analogique demande un environement client-serveur
qui cree des delais intolerables lorsque les distances entre
interlocuteurs augmentent. Cet article presente des criteres
de conception de informatique de groupe d'un point de vue
utilisateur et fait apparaitre des problemes architecturaux
profonds qui doivent etre Tt!solus si ron veut permettre aux
environements cooperatifs multi-media de fonctionner de
maniere efficace.

Introduction

The 1980's were the decade of the personal workstation.
The 2DOO's will be the decade of computer-supported
co()perative work (CSCW). in which shared windows will
open on mUltiple workstations across hallways and even
across continents (Baecker. 1991). Video images of co­
workers in both real and delayed time will c()mplement the
shared windows. Shared work environments and multi­
gigabyte fiber transmissions will be commonplace. Audio
cOlUlections are moving to the airwaves (cellular
telephones) while more intensive data transfer (video
conferencing and shared work) is taking ()ver the high
bandwidth networks (Dertouzos. 1991). As exciting and
imminent as these changes are. implementing CSCW
environments requires an essential rethinking of
workstation hardware. distributed systems. networks and
data transfer to support the new environments .

People are real time systems. Much of today's distributed
processing solutions have been built on the assumptions
that delays do not matter and that packet switching and
asynchronous tranfer of information is acceptable
(Tanenbaum. 1992). When the distributed human processor
is added to the system. these assumptions are no longer
valid. With individual interfaces. certain tolerances of
delays and non-synchronicity of events were accepted
because the work being accomplished was private. In
c()operative environments. work is performed jointly and
interaction requires each individual to exhibit a range of
subtle behaviours for negotiation. teambuilding.
expressing doubt. etc. What worked before won't work
now: the social cost is far too great.

Graphics In terface '92

The above paragraph characterizes the nature of the
constraints facing the builders of cooperative work
environments . The constraints are what I call "deep"
system problems, i.e., their solutions are based on the very
architecture and hardware on which the system is built. The
constraints are also human interface problems, i.e., they
are brought on by the needs of the human user.

A common misconception in computer science is that the
user interface design can be separated from the working part
of a system. This misconception has led to the
development of user interface toolkits and user interface
management systems for supporting the design process .
Although these tools have been effective in making some
aspects of designing interfaces easier, they can blind the
designer from perceiving more functionally based
difficulties with the interface design. In CSCW, it is clear
that these tools are not enough and that more fundamental
changes to the underlying system are necessary if the
interface is to work. Thus, the basic premise of this paper
is that CSCW is one human interface area that needs to
reach deep into the computer science field for support.
Tools for manipulating screen objects and handling input
devices no longer suffice.

Why is the design of cooperative work interfaces so
challenging? Humans are social animals and have very
finely tuned skills for handling social contact. If the tool
they use affects their ability to project themselves or to
maneuver comfortably in the environment created by the
tools, the entire tool will be rejected. In contrast to
individual interfaces, where the very privacy of working at
the interface protects the person learning the interface from
ridicule, the public nature of shared interfaces makes users
extraordinarily sensitive to small problems.

The sections which follow in this paper take a human­
centred point of view in examining the design issues in
building CSCW systems . Human needs are stated and
explained. What these needs translate to in terms of
underlying system design is then discussed along with a
presentation of various solutions that have been tried and
the problems that have been encountered. A major
difficulty with constructing an architecture that fulfills one
human need of a CSCW system is that the architecture then
violates another need. Often all current design solutions are
found inadequate and in need of new research to make the
cooperative system work appropriately.

A major focus throughout the discussion is the assumption
that thousands of users will someday be working with the
system so that scalability, flexibility, robustness, and
support for workstation heterogeneity are important issues
(Arango, et aI., 1992). Many solutions for today's
prototype systems, which manage 15 to 100 connections,
are not viable for interoffice connections of most major
corporations or government organizations which may
involve thousands of simultaneous connections.

For my discussion I select two representative CSCW
technologies. I begin with desktop video conferencing
systems (also called media spaces), which represent those
technologies designed to allow people to meet visually
while still remaining a long distance from each other. This

131

technology is invariably connected to computing
technology which supports the video and audio
connections but also provides some form of shared
software. The interface needs for supporting shared
software are treated in the next section.

There are many aspects of CSCW that I do not discuss. They
include such items as shared calendars, hypertext systems,
office coordination systems, video mail, group decision
support systems, etc. Each of these applications is either
asynchronous - and therefore does not make the demands on
the distributed processing that synchronous linkage entails
- or poses problems that are the same as those arising from
the desktop video conferencing and shared software.

This paper is a discussion of problems not solutions, but it
is one with a hopeful note. It provides a new set of
constraints that help to focus the design process and
suggests rethinking the mechanisms that are used to handle
distributed processing and video network traffic. It
suggests that solutions can be found and often points to
potential paths to take especially in the real time systems
area.

Desktop VIdeo Conferencing

Desktop video conferencing involves the interconnection
of offices which can be relatively far apart (e.g ., in
different cities) by a complete video and audio hookup
(Watabe, et aI., 1990; Crowley, et. al. , 1990). It has some
similarities to a videophone, in which the two parties in a
long-distance conversation have a visual picture of each
other in addition to audio . It is also more than a
videophone because it supports more services, e.g .,
meetings, browsing, shared common areas, etc. Desktop
video conferencing systems are designed to support the
ubiquitous visual contact that facilitates collaboration in
day-to-day communication (Kraut, Egido & Galegher,
1988). History has demonstrated a very poor market for
videophone calls and video conferencing (Egido, 1988),
but current research with media spaces (Goodman & Abel,
1986; Buxton & Moran, 1990) has indicated effective
casual communication uses that the visual channel
supports. Figure 1 illustrates a typical configuration of the
type of network infrastructure that supports desktop video
conferencing.

Today's desktop video conferencing architectures assume
different channels of communication for the different
media. The video is shipped via coaxial cable or fiber and
the audio is sent either by normal telephone connections or
by separately mixed audio. The computer controls switch
boxes which make the connections. Tomorrow's A/V
communication will be digital but still shipped by physical
connections, e.g ., dark fiber. This makes the soft
switching of the connections an easier problem, but each
type of communication must still be handled uniquely (Vin

et aI., 1991). This is inherent in the nature of the
information being shipped. Audio for multi-person
contacts needs to be mixed separately to filter out noise
from each site. Video requires compression to ship.
Effective compression strategies are hybrids of techniques

Graphics Interface '92

132

I Serial

TCP/IP I A/V switching

Serial
Central : r Server

/1 CommumcatlOn 1
Session Manager ~X

~ I Session N I RS 232

I Session 1 I MIDI Interface

I
Local Area Networlc I I

I I 11 VCR 11 I VCR N I
I WorIcstation 1 I Input I Worlcstation N j

1 11 11

1

1
Camera 1 1 Microphone I 11

Camera 1 1 Microphonel

I A{V h/w switches
11 Monitor J I Speaker Monitor 1 1

11 11
11

Speaker

I
Output

Client Client N
1

Legend:

.... ~ Internal control

AN devices and signals lines

Control devices and data lines

Figure 1 Typical configuration of current desktop video conferencing configurations. The video and audio are shipped by
analog and a local area network passes the control informaton to a central server which is manageing the
switching ..

based on changes in the visual scene over time and
information present in the visual scene (Fox. 1991).
Thus.scenes from the different sites in the multi-person
conversation will be compressed and managed differently.
Exchanges of computer messages handling the shared
workspaces will form the third channel. In addition to
managing shared computer workspaces. the computer
signals on this channel will also be used to manage the
transmission of the audio and video channels. e.g.
authorizing an additional person to enter into a video
meeting.

Current desktop video conferencing installations ship the
audio and video over analog channels and use a client­
server architecture to manage the switching (Buxton &
Moran. 1990; Arango et al. 1992). The client computer is
located close to the switching centre and maintains a
database of connection states to manage the A/V
switching. Digitized video and audio transmission need not
be controlled by a centralized switching arrangement
opening up other possible control architectures.

In the discussions of the user interface to desktop video
conferencing which follow. digitization of all signals is
assumed. This opens the possibility of comparing client­
server versus distributed A/V controls from the standpoint
of user needs for this environment. This also opens up the
issue of packaging the different varieties of digitized
information that are to shipped plus a much larger issue.
that of shipping the very large amounts of data arising
from digital video . Current network solutions have not
been designed for this type of traffic. The list of user issues
associated with video conferencing is endless. Below. I
discuss six important ones to illustrate the major impact of
network architecture on the desktop video conferencing
interface.

Modality Synchronicity

Humans communicate by many modes. They talk. they
gesture. they point. they look at things with their eyes .
What they are relatively unaware of is how synchronized
these activities are. Gestures end at the end of a clause.
eyes change direction at sentence end. Not having this
synchronicity is symptomatic of underlying brain
disorders. The problem is a variation of motor aphasia. and

Graphics Interface '92

it is very disturbing for others to engage in communication
with a motor aphasic person. Despite a feeling of deep
uneasiness, the recipient of the asynchronous
communication cannot describe what is wrong with the
conversation. An example that most of us are familiar with
is the TV character, Max Headroom.

When voice and video signals are captured and shipped
separately, it is likely that they will arrive slightly out of
synch. Such loss of synchronization is worse than a badly
dubbed movie because it destroys all the redundant cues the
listener relies on for understanding the conversation. If, in
addition, the individual is heard to be typing or seen to be
drawing in the video picture, and the screen update
information arrives late or early, the flow of discussion
proceeds haltingly as each person waits for corroboration
that all information has arrived. Early video conferencing
systems often used a speaker phone to send the audio
portion of the signal, but quickly found this setup to be
inadequate. Human speech is highly overlapping (Buxton
~ Sellen, 1992), but speaker phone technology does not
permit this overlapping. Without the visual channel,
attempts to speak are not apparent. With the visual
channel, the limitations of the speaker phone are all too
visible.

Desktop video conferencing systems can be designed to
pack and ship all signals as one packet, but this leads to
other problems. Audio is very different from video and
demands different handling characteristics. Although both
are continuous signals, the sampling rates can be very
different. Screen events will also have different closure
times than either video or audio signals. A series of mouse
selections taking 500 milliseconds or more may occur
before it is possible to send a valid user event. Whether the
audio, video and user event information is sent digitally
down a single channel to be unpacked by the receiving
workstation or down separate channels, synchronous
display of all channels of information is essential for the
success of the system.

Entering and Leaving Sessions

Unlike telephone contact, visual contact is rarely restricted
to two people in an active workplace. Sighting other
individuals working together in an office is often an
invitation for a third and possibly fourth person to join the
conversation (Root, 1988). Video sessions need to support
similar behaviour . This implies a video conferencing
capability in which participants can scan all video
conversations and ask to join those which interest them. It
also implies an environment in which people can leave a
video conversation and new people can join maintaining a
continuous thread of connected people even after both
originators of the conversation have left.

A variety of mechanisms exist for handling multiple
individuals in a video meeting . Most arrangements mix the
video signal at a centralized source and ship the merged
version down a single video channel to each recipient.
Compressing the video signal makes mixing more
difficult. Nevertheless, this can be done at a
communications bridge which unpacks each signal, mixes
it and then compresses it again for shipping. An inherent

133

disadvantage is incurred in having to unpack the video
signal twice. Mixing the video at a centralized site makes
it easier to build interfaces that allow others to peer into
meetings that are going on but centralized mixing is an
architecture that does not scale up very well. Centralized
video mixing also means that a software bridge is needed
for each meeting that is taking place, even for two person
meetings because of the potential for adding more
participants to these meetings.

Video signals can alternatively be sent directly to each
workstation and mixed there, but this implies that each
workstation have the ability to handle that level of input
traffic. Since digitized video signals already require high
bandwidth to ship, this is currently not a feasible
arrangement.

Figure 2 A user is seated in front of three Hydra units. In
the photo, the Hydra units sit on the table in front
of the chairs that would otherwise be occupied by
three remote participants. Each Hydra unit
contains a video monitor, camera, and
loudspeaker. A single microphone conveys audio
to the remote participants. (From Buxton &
Sellen, 1992)

Hydra is an example of video meetings that are not mixed at
a central site (Buxton, 1991). It is one of the more
innovative interfaces that solves the problem of audio and
positional location in video conferences. Hydra provides a
video image, camera, speaker and microphone in a small
desktop unit for each person engaged in the meeting. If four
people are meeting, a Hydra user would have three units on
the desktop, each one representing a virtual person in the
meeting. Figure 2 contains a diagram of one of the Hydra
units. Hydra currently works by shipping video signals
down separate channels. This type of transmission uses an
enormous bandwidth. Hydra also has no mechanism for
displaying a visual picture of the meeting taking place to
others who might want to join the meeting. Although
Hydra solves important social considerations for meetings,

Graphics Interface '92 ~

its implementation in a large scale communication system
would be very difficult

Maintaining Continuous Sessions

Our research at the University of Toronto has shown that
one of the very viable modes of a desktop video
conferencing environment is an open channel (Li &
Mantei, 1992). A visual channel is maintained
continuously between one or more offices to support ad hoc
information exchange by people working closely together.
These connections are maintainable with the architecture
shown in Figure 1 but do not handle a private video call. A
private call is different from a meeting. The caller wants to
talk to one person only. Such a setup is equivalent to
having a two-party line, but the line needs to support the
visual contact for both parties yet not connect all other
parties into a video conference. The setup also needs the
capability of connecting the parties into a video
conference, if at some point, the caller wants to join the
larger group. Thus, the underlying connection architecture
needs to be able to switch the caller to the software bridge
which is maintaining the other connections

Privacy Considerations

Up until now, we have only discussed the problems of
making different multiple connections and have not
addressed the issue of preventing users of the system from
making visual contact. It is believed that being able to

view co-workers at work provides useful opportunities for
communication which co-workers take advantage of (Kraut
et aI., 1988). Limiting the video channel to a meeting or a
video call prevents these visual opportunities yet keeping
an open visual channel infringes on individual privacy.
What is needed is a system that is both designed to permit
large amounts of visual browsing but that also allows
participants to limit browsing intrusions by giving
browsing rights to a subset of people. The underlying
design issue is where to keep the privacy informaiton.
locally or in a centralized database.

Privacy settings can be kept at each desktop node. but if
people are browsing meetings. then the privacy
considerations of each person in the meeting need to be
handled. Such privacy screening can cause long delays for
larger meetings where nodes in many different cities require
checking. A faster way is to manage meetings at a
centralized location with privacy being the lowest common
denominator of the assembled group.

Soft Communication Failures

A common problem with long distance communication
technology is one of providing alternatives to
communication failures. The basic failure is one of not
reaching the individual called. Voice mail and the
telephone answering machine are solutions to these
problems. When direct contact fails. there is a backup
storage device for leaving an audio message. This works
well for voice communications, but video contact because
of its much larger bandwidth and cost of storage may not be
amenable to the same solutions. Currently, voice mail

134

storage is centralized. Callers record their message and
have options of replaying it and re-recording it if it sounds
unsatisfactory. Users can then call the central storage and
access their calls. This setup works reasonably well for
voice messaging. How would it work for video messaging?

A caller would send a video message to a centralized site.
This would be digital video involving a very large amount
of storage. If the caller wanted to play back the message,
the digital video would be sent back to the caller. This is a
large volume of network traffic which can be avoided by
local playback and shipping when the message is
completed. However. local playback requires local storage
which is currently expensive for digital video. This
problem can be cheaply bypassed by storing analog video
which can be digitized when the message is finally ready to
transmit. Local video storage is also prone to failure which
implies additional backup strategies that use (1) other local
storage devices or (2) a centralized device when all else
fails. The underlying argument is that mechanisms for
supporting transitions to video mail cannot be handled by
using the current storage solutions for telephony.

Support for Multiple Contacts

Video wears two hats in the office. It is a broadcast medium
and a meeting tool. This implies support for both functions
in the desktop video conferencing environment. It also
implies the capability to move between either function
with little difficulty. Broadcast video involves a multipoint
setup that distributes a single video image to many sites
but does not necessarily receive video images from these
sites. Broadcast connections are often sent to interrupt
other connections such as the audio landing notifications
on airplanes which interrupt music channels, but
broadcasts can often be secondary information that users
would like to see interruptible by video phone calls. A
network which manages broadcasts is configured
differently than a network which handles point to point
contacts. In a desktop video conferencing environment,
both activities need support.

Activity Sharing Software

Activity sharing applications are programs in which
multiple individuals working on separate workstations can
simultaneously be viewing and updating the same work.
These workstations can be a few metres or hundreds of
kilometres apart. Messages sent along networks joining
the workstations update the screens with each users input.
A variety of such programs exist for different workstation
platforms and some are commercially available such as
Aspects tm (Group Technologies. 1991). Shared activity
applications primarily support shared writing and shared
drawing tasks (Fish. et al.. 1988; Tang & Minneman,
1990, Greenberg & Bohnet. 1990). but prototypes also
exist for supporting programming (Brothers.
Sembugamoorthy & Muller. 1990) and database design
work (Hayne & Ram, 1990). Most software has been
written as application specific. e.g., for wordprocessing
only. but some work has been done to build an underlying
operating system or window system that will support a
wide variety of single user applications (Lauwers & Lantz.
1990; Lauwers et aI., 1990).

Graphics Interface '92

Two main types of architecture support the shared activity
sessions. The first is a client-server architecture in which
the application resides on a designated workstation and all
other workstations send messages to update the data
structure residing in the application (University of
Michigan, 1990). The application, in turn, sends out
messages to update the screens on each workstation. The
second is a replicated architecture. (Replicated architectures
are also called serverless or peer-to-peer architectures.) In
the replicated architecture, an application resides on each
workstation and exchanges messages with all other
workstations, accepting input generated by other users and
sending input to update the screens of the other users
(Crowley et aI., 1990). Replicated architectures have
serious fragility problems (Ahuja, Ensor & Lucco, 1990)
because of difficulties with synchronization and
heterogeneity in workstations whereas client-server
architecture generate a large amount of message traffic and
have to maintain states of all workstations. Hybrids of
partially replicated and part client-server architectures also
exist (Mawby, 1991; Lu, 1992) which bring the advantages
and disadvantages of both solutions.

From the human perspective, either solution has problems
in supporting collaboration. Instead of either extreme, the
hybrid between the client-server and replicated architecture
needs to be tuned very carefully to meet the user constraints
listed in the sections that follow. The shared architectures
need to be concerned with maintaining adequate system
response time, adding latecomers to a work session, not
disrupting the flow of work with lockout procedures,
synchronizing the work between collaborators, etc.

Response Time

A user who is developing drawings using a mouse or a
stylUS interface needs to have the immediate feedback on
the results of their motor behaviour displayed on the screen
if they are to use their finely tuned hand-eye coordination
capabilities. Lags in displaying figures on the screen are
unacceptable and make the drawing task extraordinarily
difficult. Current client-server arrangements which send the
user input to the server and then back to the client are far
too slow for this microsecond coordination.

Users also need to see the drawing behaviour of their
collaborator in real time. If their collaborator is drawing a
box or circle or selecting text to delete, the size and
placement of of the figure or the span of text selected show
up on the screen as feedback to the user before a key is
released or other action taken to indicate acceptance of the
sizing, placement or text selection outlined on the screen.
If these events are not shown in real time to the
collaborator it is difficult for the collaborator to comment
on the work being done (Lu & Mantei, 1992). A client­
server architecture could synchronize these times better
than replicated architectures especially if distances between
sites were large, but both architectures will have problems
with synchronizing this continuous event traffic. This is a
real time concern.

Hand-eye coordination is important to support In shared
wordprocessors as well as shared drawing tools. Text that
is delineated by a mouse controlled cursor is a variation of

135

drawing behaviour. Gesturing and pointing on text require
similar hand-eye coordination and thus, real time support.

Adding Latecomers

Meetings rarely begin or end with all people present.
Attendees join sessions late and others leave early. This
requires updating the newcomer to what has transpired in
the meeting and making sure that the early leaver has a
fmal document of all the decisions made at a meeting.

In a shared activity session, the problem of updating the
workstation of a latecomer is a different task depending on
whether a client-server or a replicated architecture is used
for managing the shared session (Chung, 1991). With a
client-server architecture, the problem is one of setting the
window parameters of the newcomer and updating the
shared session information of the other participants. With
a replicated architecture, the problem is one of transferring
a copy of the work to the newcomer's workstation. On the
social behaviour side of the issue, the problem is one of
integrating the newcomer into the meeting with little
disruption. The newcomer needs to obtain a copy of the
current state without interrupting the flow of changes and
additions that are being made to the work product.
Currently, most replicated architectures lock out all work
until the newcomer's workstation is updated. Others
simply do not permit latecomers. Client-server
architectures such as Rendezvous (Patterson et al., 1990)
can support a more graceful entry but run into problems in
providing an accurate replication of other user's
workstation environments. This problem becomes
particularly acute in heterogenous workstation
environments. Although the client-server architecture is
much better at handling the latecomer problem, the effects
of a client-server architecture on response time latency
strongly support a replicated solution.

Lockout and Concurrency Issues

Up until recently, users have not had the capability to work
in the same space at the same time. Shared writing, drawing
and spreadsheet software give us this functionality but not
without integrity concerns. If one user deletes a sentence at
the same time another user is modifying it, what is the end
result? One solution is to prevent modification access to
any object that is already in use by another user (Ellis &
Gibbs, 1988), but this creates new problems. To be locked
out, text or figures need to inform all workstations of their
modification status. Both the informing process and the
interrogation process take time. Users neither like waiting
for access to a screen object (e.g., a word) before they can
use it or being denied access seconds after they have
attempted to modify the screen object. The denial of access
is a particularly acute problem because users have already
begun their cognitive work plan when they attempt to
select the object (Card, Moran & Newell, 1983). Users
want to know in advance when text or figures are locked out
to avoid unproductive mental effort.

In most writing tasks, concurrency is not an issue. Lockout
is usually at the character level as is seen in such shared
editor systems as Aspects (Group Technologies, 1991),
ShrEdit (University of Michigan, 1990), and

Graphics Interface '92

SASE.(Mawby, 1991). With such a fine resolution for
lockout, the probability of concurrent access is low.
Writing is such a complex cognitive process, that people
composing text prefer to do it on their own (Posner &
Baecker, 1991). However, one of the major times when
users are likely to collide occurs frequently . When one
participant in a shared session is typing an idea and others
are observing its generation, typing or spelling errors
occur which other users jump in to fix . They cannot
perform these correction because this text is locked during
creation.

Ellis, Gibbs and Rein (1988) give a good presentation of
alternate solutions to lockout which support a more
flexible participant environment. One of their suggestions
is that of allowing individual work to diverge and putting
the onus of the repair on the participants . Another
possibility, especially for drawing tasks, is to ignore
concurrency and to throwaway messages that request
changes to objects that no longer exist. This is done in
CaveDraw (Lu, 1992) where one user can delete the very
layer another user is drawing on. Collision events are
assumed to be relatively infrequent and negotiable by the
other multi-media support available. For other shared
software tasks, similar optional concurrency control
measures can be in place. This implies that the software
which controls concurrency issues will need to be smarter
and know when and where concurrency will be problematic.

View Synchronicity

Users of collaborative tools often do not use them in a
collaborative fashion. There are collaborative tasks that
people perform that are so complex, e.g., writing or
programming, that interacting with others inhibits the
performance of the task (Neuwirth, 1990). Often
collaborative work sessions are a combination of people
working together, parceling out the work to be done and
then working individually on the work. The advantage of a
collaborative work environment is that it allows co­
workers to smoothly move into and out of collaborative
mode. This type of observed movement between
collaborative and non-collaborative states is common in
computer supported meeting rooms (Mantei, 1988).

The underlying application support for allowing both
types of work patterns in a collaborating group will permit
participants to have different views of the work product. It
also will have a functionality for synchronizing
participant's views. Synchronized views work in tandem.
When one participant scrolls to a new place in the text, the
other participants see their windows scroll as well. To
synchronize views, the software needs to maintain
information on the screen states of each of the
participating workstations. Since individual users may
have differing window sizes, use different fonts and even
have different objects occluded, synchronization requires a
large amount of mapping operations between each
workstation.

Since a sequence of user events at one workstation is often
necessary to determine the synchronization at the other
workstation, arbitrarily breaking up the events into
message packets can destroy this context. For example, a

136

user can scroll to a position and then select the visible
text. The workstation that is synchronized with the fIrst
workstation can scroll to an approximate location, but if
text is selected in a part of the window on the first
workstation that is occluded on the second workstation, the
second workstation will have to execute a second scroll and
then show the text selection. This type of synchronization
looks jumpy and awkward to the participants, not to
mention the concern that both participants are still not
seeing the same text.

Occlusion in many window systems may be difficult to
detect because one of the fundamental premises of window
systems is that applications should be able to write into
windows without concern for what portions of the window
are occluded (Scheifler, Gettys & Newman, 1988). Without
control of occlusion, view synchronization becomes a
diffIcult problem.

Synchronization is also one case where concurrency
control is necessary. Once screens are synchronized, scroll
bar usage can lead to "scroll wars" as can other global
events which update the screen (StefIk et aI., 1987). So,
although synchronization is very much at the interface
level, mechanisms that pass the streams of user behaviour
between the synchronized workstations also have to
examine these event streams and either require
homogeneity in the resources used by the participants or
interpret the streams to best represent a synchronized
environment.

Gesture Support

When people work together, they use their hands to point,
circle,or motion in a wide variety of ways about the
information that is being created (Tang, 1989). Support for
gesturing in shared activity software comes in the form of a
telepointer, that is, a cursor which is seen on everyone's
screen that is controlled by the owner of the telepointer.
Each participant in a shared work session has a personal
telepointer, usually uniquely identifIed by shape or colour.
Each participant also has their own cursor for moving
around their workscreen.

Workstations therefore need to support multiple cursors,
i.e., the cursor of the person at the workstation and the
cursors of any of the participants that are in telepointer
mode. Since cursor functioning is done at low levels in
systems software and since most workstations are rarely
equipped to handle more than one mouse input, this support
suggests fundamental changes in workstation and/or
operating system design . Workstations will need to
support multiple cursors, and if necessary, to change the
shape and form of the cursors as they move over the
windows (Greenberg, 1991).

Version Conlrol

In a replicated architecture, which workstation has the most
recent version? Is it the one that left the session last, the
one with the latest time stamp, or the one that has been
designated to hold the latest version? If an individual
works alone on the work product after the session, is the
update automatically transferred to each of the other

Graphics Interface '92

workstations? What happens if two people work on the
file separately but at the same time? Storage mechanisms
need to be put in place that allow multiple users to maintain
version control of the work product. This is not a hard
technological problem. What is necessary is that the
solution be incorporated in the basic architecture of the
system rather than at the application level. Otherwise the
latest version might reside on a workstation that is not in
operation or connected to the next joint work session.
Humans are notoriously bad at version control. It is best to
leave this task to the system.

Conclusion

In this paper I have discussed a set of requirements that need
to be met if the social nuances of collaboration are to be
supported by cooperative work tools. What is important
about these requirements is that the ability to meet them
lies in solutions at the very heart of the underlying system
architectures and communication structures that support
CSCW. Small adjustments at the interface level will not fix
the problems. In some cases, only redesign of the
computer workstation and/or its operating system will
make the problem solutions doable Some of the most
viable fixes for one requirement contradict the most viable
solution for another. Some of the solutions violate current
ways of thinking about the world, i.e., we don't need to
guard against concurrency. I haven't presented solutions to
these problems. I am not the systems guru. However,
demonstrating a problem's existence is always the first
step in its solution.

Acknowledgements

For research support the author is indebted to the Natural
Sciences and Engineering Council of Canada (NSERC), the
Information Technology Research Centre of Ontario
(lTRC), Apple Computer, Inc., Rank Xerox EuroPARC,
Digital Equipment Corporation, IBM Canada's Laboratory
Centre for Advanced Studies and Alias Research. I also
wish to thank Catherine Plaisant for translating the
abstract into French, Kevin Schlueter for his many
insightful comments on the manuscript and Jin Li and
Gifford Louie for their artwork.

References

Ahuja, S. R., Ensor, J. R., and Lucco, S. E. (1990) A
Comparison of Application Sharing Mechanisms in
Real-Time Desktop Conferencing Systems.
Proceedings of COIS'90 Conference on Office
Information Systems, Cambridge, MA, April 25-27,
1990, pp. 238 - 248. New York: ACM Press .

Arango, M., Bates, P., Fish, R., Gopal, G., Griffeth, N.,
Herman, G., Hickey, T., Leland, W., Lowery, C., Mak,
V., Patterson, J., Ruston, L., Segal, M., Vecchi, M.,
Weinrib, A. and Wuu, S. (1992) Touring Machine: A
Software Platform for Distributed Multimedia
Applications, Proceedings of 1992 IFlP International
Conference on Upper Layer Protocols, Architectures
and Applications, Vancouver, BC, Canada, May 1992.

137

Baecker, R. (1991) New Paradigms for Computing in the
Nineties. Proceedings of Graphics Interface'91.
Calgary, AB, Canada, June 1991, pp. 224 - 229.

Brothers, L., Sembugamoorthy, V. and Muller, M. (1990)
ICICLE: Groupware for Code Inspection. Proceedings
of CSCW'90 Conference on Computer Supported
Cooperative Work, Los Angeles, CA, October 7 - 10,
1990, pp. 169 - 181, New York: ACM Press.

Buxton, W. A. (1991). Telepresence: Integrating Shared
Task and Personal Spaces. Proceedings of
Groupware'91, Amsterdam, Holland, October 1991.

Buxton, W . A. and Moran, T . P. (1990) EuroPARC's
Integrated Interactive Intermedia Facility (iiif): Early
Experience. Proceedings of the IFlP WG 8.4
Conference on Multi-user Interfaces and Applications,
Heraklion, Crete, pp. 11 - 34. In S.Gibbs and A. A.
Verrijin,-Stuart (Eds.) Multi-User Interfaces and
Applications. Amsterdam: North-Holland.

Buxton, W. A. and Sellen, A. J. (1992) . Interfaces for
Multiparty Video Conferences. Proceedings of CHI'92
Conference on Human Factors in Computing Systems,
Monterey, CA, May 3-5, 1992. New York: ACM
Press .

Card, S. K., Moran, T. P., and Newell, A. (1983). The
Psychology of Human-Computer Interaction .
Hillsdale, NJ: Lawrence Erlbaum.

Chung, G. (1991). Accomodating Latecomers in a System
for Synchronous Collaboration. Unpublished masters
dissertation, Department of Computer Science,
University of North Carolina, Chapel Hill, North
Carolina, August 1991. Available as report no. TR91 -
038.

Crowley, T., Milazzo, P., Baker, E., Forsdick, H. and
Tomlinson, R. (1990). MMConf: An Infrastructure for
Building Shared Multimedia Applications .
Proceedings of CSCW'90 Conference on Computer
Supported Cooperative Work , Los Angeles, CA,
October 7 - 10, 1990, pp. 329 - 342, New York: ACM
Press .

Dertouzos, M. L. (1991). Communications, Computers and
Networks. Scientific American 265(3), September
1991, pp. 62 - 69.

Egido, C. (1990). Video Conferencing as a Technology to
Support Group Work: A Review of its Failures.
Proceedings of CSCW'90 Conference on Computer
Supported Cooperative Work , Los Angeles, CA,
October 7 - 10, 1990, pp. 13 - 25, New York: ACM
Press .

Ellis, C. A., Gibbs, S. J. and Rein, G. L. (1988) .
Groupware: The Research and Development Issues .
MCC Technical Report Number STP-414-88, Austin,
TX.

Graphics Interface '92 ~

Ellis, C. A. and Gibbs, S. J. (1988). Concurrency Control
in Groupware Systems. MCC Technical Report Number
STP-417-88, Austin, TX.

Fish, R., Kraut, R., Leland, M. and Cohen, M. (1988).
Quilt: A Collaborative Tool for Cooperative Writing.
Proceedings of COIS'89 Conference on Office
Information Systems, Palo Alto, CA, March 23-25,
1988, pp. 30 - 37. New York: ACM Press.

Fox, E. A. (1991). Advances in Interactive Digital
Multimedia Systems. IEEE Computer 24(10), October
1991, pp. 9 - 21.

Goodman, G. and Abel, M. (1986) Collaboration Research
in SCL. Proceedings of CSCW'86 Conference on
Computer Supported Cooperative Work, Austin, TX,
December 3 - 5, 1990, pp. 246 - 252, New York: ACM
Press.

Greenberg, S. (1990). Sharing Views and Interactions with
Single-User Applications. Proceedings of COIS'91
Conference on Office Information Systems,
Cambridge, MA, April 25-27, 1990, pp. 227-237.
New York: ACM Press.

Greenberg, S. and Bohnet, R. (1991). GroupSketch: A
Multi-User Sketchpad for Geographically Distributed
Small Groups. Proceedings of Graphics Interface'91 ,
Calgary, Alberta, June 5 - 7, 1991.

Group Technologies (1991). Aspects: The First
Simultaneous Conference Software for the Macintosh,
Version 1. Manual, Group Technologies, Inc .,
Arlington, V A.

Hayne, S. and Ram, S. (1990) Multi-user View Integration
System: An Expert System for View Integration.
Proceedings of the IEEE International Conference on
Data Engineering, Los Angeles, CA, pp. 402-409.

Kraut, R., Egido, C. and Galegher, 1. (1988). Patterns of
Contact and Communication in Scientific Research
Collaboration. Proceedings of the Conference on
Computer-Supported Cooperative Work, Portland, OR,
September 26-28, 1988, pp. 1 - 12. New York: ACM
Press.

Lantz, K. A. (1986). An Experiment in Integrated
Multimedia Conferencing. Proceedings of CSCW'86
Conference on Computer-Supported Cooperative
Work, Austin, TX, December 1986, pp. 267 - 275.
New York: ACM Press.

Lauwers, J. C. and Lantz, K. A. (1990). Collaboration
Awareness in Support of Collaboration Transparency:
Requirements for the Next Generation of Shared
Window Systems. Proceedings of CHJ'90 Conference
on Human Factors in Computing Systems, Seattle,
WA, April 1990, pp. 303 - 312. New York: ACM
Press.

Lauwers, J. C., Joseph, T. A., Lantz, K. A. and Romanow,
A. L. (1990). Replicated Architectures for Shared

138

Window Systems: A Critique. Proceedings of COIS'90
Conference on Office Information Systems,
Cambridge, MA, April 25-27, 1990, pp. 249 - 260.
New York: ACM Press.

Li, J. and Mantei, M. (1992). Working Together, Virtually.
Proceedings of Graphics Interface, 92, Vancouver, BC,
Canada, May 13-15, 1992.

Lu, I. M. (1992). Supporting Idea Managef1ll!l'Il in a Shnred
Drawing Tool. Unpublished Masters dissertation,
Department of Computer Science, University of
Toronto, Toronto, ON, Canada, January 1992.

Lu, I. and Mantei, M. (1992). Managing Design Ideas with
a Shared Drawing Tool . Unpublished Manuscript,
Department of Computer Science, University of
Toronto, January, 1992.

Mantei, M. M., Baecker, R. M., Sellen, A.J., Buxton, W.
A., Milligan, T. and Wellman, B. (1991). Experiences
in the Use of a Media Space. Proceedings of CHJ'9I
Donference on Human Factors in Computing Systems,
New Orleans, LA, April 28 - May 4, 1991, pp. 203 -
208. New York: ACM Press.

Mantei, M. (1988). Capturing the Capture Lab Concepts: A
Case Study in the Design of Computer Supported
Meeting Environments. Proceedings of CSCW'88
Conference on Computer Supported Cooperative
Work, Portland, OR, September 26-28, 1988, pp. 257
- 270. New York: ACM Press.

Mawby, K. L. (1991). Designing Collaborative Writing
Tools. Unpublished Masters dissertation, Department
of Computer Science, University of Toronto, Toronto,
ON, Canada, September 1991.

Neuwirth, C. M., Kaufer, D. S., Chandhok, R. and Morris,
1. H. (1990). Issues in the Design of Computer
Support for Co-authoring and Commenting.
Proceedings of CSCW'90 Conference on Computer
Supported Cooperative Work , Los Angeles, CA,
October 7 - 10, 1990, pp. 183 - 195. New York: ACM
Press.

Patterson,1. F., Hill, R. D., Rohall, S. L. and Meeks, W. S.
(1990). Rendezvous: An Architecture for Synchronous
Multi-user Applications . Proceedings of CSCW'90
Conference on Computer Supported Cooperative Work
, Los Angeles, CA, October 7 - 10, 1990, pp. 317 -
328. New York: ACM Press.

Posner,l. R. and Baecker, R. M. (1991). How People Write
Together. Proceedings of the 25th Annual Hawaii
International Conference on Systems Science, Vol W
Kauai, HI, January 7 - 10, 1992, pp. 127 - 138.

Root, R. W. Design of a Multi-Media Vehicle for Social
Browsing. Proceedings of CSCW'88 Conference on
Computer Supported Cooperative Work, Portland,
OR, September 26 - 28, 1988, pp. 25 - 38. New York:
ACM Press.

Graphics Interface '92

Scheifler. R. W .• Gettys. J. and Newman. R. (1988) X
Window System. Burlington. MA: Digital Press.

Stefile. M .• Foster. G .• Bobrow. D. G .• Kahn. K.. Lanning.
S. and Suchman. L. (1987). Beyond the Chalkboard:
Computer Support for Collaboration and Problem
Solving in Meetings. Communications of the ACM
30(1). January 1987. pp 32 - 47.

Tang. J. C. (1989) Listing. Drawing and Gesturing in
Design: A Study of the Use of Shared Workspaces by
Design Teams. Unpublished Ph.D. Dissertation.
Stanford University. April 1989. Also available
asXerox Technical Report SSL-89-3 .• Xerox PARCo
Palo Alto. CA.

Tang. J. C. and Minneman. S. L. (1990). VideoDraw: A
Video Interface for Collaborative Drawing.
Proceedings of CH /'90 Conference on Human Factors
in Computing Systems. Seattle. W A. April 1990. pp.
313 - 320. New York: ACM Press.

University of Michigan. (1990) ShrEdit 1.0: A Shared
Editor for the Apple Macintosh -- User's Guide and
Technical Description. June 1990. Cognitive Science
and Machine Intelligence Laboratory. University of
Michigan. Ann Arbor. MI.

Vino H. M .• Zellweger. P. T .• Swinehart. D. C. and Rangan.
P.V. (1991). Multimedia Conferencing in the
Etherphone Environment. IEEE Computer 24(10).
October 1991. pp. 69 - 79.

139

Watabe. K .• Sakata. S .• Maeno. K .• Fukuoka. H. and
Ohmori. T. (1990). Distributed Multiparty Desktop
Conferencing System: MERMAID. Proceedings of
CSCW'90 Conference on Computer Supported
Cooperative Work. Los Angeles. CA. October 7 - 10.
1990. pp. 27 - 38. New York: ACM Press.

Graphics Interface '92 ~~

