
167

A Data Parallel Algorithm for Ray tracing of Heterogeneous
Databases

Peter Schroder* Steven M. Drucker t

Thinking Machines Corporation
245 First St.

Cambridge, MA 02142-1214

Abstract

We describe a new data parallel algorithm for raytrac­
ing. Load balancing is achieved through the use of pro­
cessor allocation, which continually remaps available re­
sources . In this manner heterogeneous data bases are
handled without the usual problems of low resource us­
age. The proposed approach adapts well to both ex­
tremes: a small number of rays and a large database;
a large number of rays and a small database. The algo­
rithm scales linearly-over a wide range-in the number
of rays and available processors. We present an imple­
mentation on the Connection Machine CM2 system and
provide timings .

Cet article presente un nouvel algorithme paralleIe pour
le lancer de rayons. L' allocation des processeurs, qui
distribue la tache aux resources disponibles, permet de
garder une charge bien repartie. Ainsi evitons nous les
problemes usuels dus aux ressources de bas niveau tout
en manipulant des structures de donnees heterogenes.
N otre approche s'applique aussi bien a un faible nombre
de rayons et des donnees importantes qu'a un nombre
important de lancer de rayons sur des donnees de taille
limitee. L'algorithme fonctionne en temps lim\aire en le
nombre de rayons et de processeurs disponibles. Nous
presentons une implementation sur le systeme Connec­
tion Machine CM2 et don nons des temps de calcul.

Keywords: Massively parallel, SIMD , ray tracing.

Introduction

With the advent of massively parallel computers, many
algorithms which require large computing resources have
been developed to take advantage of these new ma­
chines [2; 20). While the use of parallel computers, like
the Connection Machine CM2 system, has become almost
common place in computational fluid dynamics and QCD
theories (6), only relatively few graphics algorithms for

* Author's current address: Department of Computer
Science, 35 Olden St ., Princeton University, Princeton,
N J 08544-2087, e-mail: ps@cs.princeton.edu

t Author 's current address: Media Laboratory 20
Ames S~ .; Massachusetts Institute of Technology, t)am­
bridge, MA 02142, e-mail: smd@media.mit .edu

general purpose parallel computers have been published.
We hypothesize that this is due in large measure to the
extraordinary success and availability of cheap special
purpose graphics hardware.

Most of the work on this hardware (see for example [14;
25; 1; 22; 27)) has focused on polygon scanline render­
ing. At the same time, the development in rendering
algorithms has been towards more sophisticated global
shading models. Unfortunately, these can only make lim­
ited use of commonly available graphics hardware (e.g.
the use of z-buffers for radiosity and ray tracing accelera­
tion [9 ; 31)). There has also been some interest in the use
of distributed processing and multi-processing, to accel­
erate radiosity computations [28; 3), and ray tracing [16;
26; 12). As the computational needs of sophisticated
global illumination models continue to increase and the
size of data sets continues to grow (e.g. volume render­
ing) the importance of algorithms for scalable, general
purpose computers will continue to increase.
Applications such as volume rendering, ray tracing, and
radiosity have computational needs large enough to take
advantage of highly parallel architectures. While, for ex­
ample, ray tracing appears to parallelize trivially, the
published research shows otherwise (see below) . Many of
the published algorithms struggle with the load balanc­
ing issue which becomes worse with increasing numbers
of processors. There are also examples-from volume
ray tracing-where two different algorithms, which are
equivalent on serial machines, can have radically different
run times on parallel architectures (30) . The Achilles heel
of most graphics algorithms on parallel architectures is
their high demand for general, versus regular, communi­
cation. As the following review of previous work shows,
the main focus in this area of research is on minimizing
general communication.

In the next section we discuss in detail previous work
in parallel ray tracing . Following that we describe our
new algorithm and present timing results, finishing off
with conclusions. The details of the implementation are
described in the appendix.

Previous work in parallel ray tracing

Most previous work concerns the mapping of ray tracing
onto MIMD hypercubes. Carter and Teague (8) discuss a
simple scheme of replicating the entire database at every

Graphics Interface '92

168

node of an iPSC/2 computer. The speedup factor gained
by the use of many processors is almost exactly the num­
ber of processors in the system. The only issue is the
assignment of pixels to processors. For this Carter and
Teague use the obvious "pixel mod number of processors"
comb assignment (this same approach was also chosen
by [24] for a ray tracer on the Pixel machine). Salmon
and Goldsmith [29] consider this scheme as well. They
go on to consider the more general case of databases that
are too large to be replicated at every node. They use
a bounding hierarchy data structure for their database
and replicate only the top n levels of this structure at ev­
ery node. In this way the more frequent intersection tests
against the top of the hierarchy can be performed locally.
The sub trees of level k > n are distributed across the
nodes. Considering the statistics of intersection of rays
against subtree nodes of the bounding hierarchy, they de­
velop a procedure to determine the height of the subtrees
which are deposited across processors.
Another decomposition scheme using a bounding hier­
archy was explored in Carter and Teague [7] . The en­
tire bounding hierarchy tree, except for the leaf nodes,
is replicated in all processors. The leaf nodes are dis­
tributed across the processors. An LRU cache is used
to maintain a set of primitives at each processor. Using
a blocking scheme to distribute pixels across processors
they naturally take advantage of the implied spatial co­
herence. Load balancing is achieved by a master process
which allocates pixel blocks to idle processors.

A different set of algorithms uses SI MD architectures,
such as the Connection Machine CM2 system, for data
parallel ray tracing. While some of the design issues are
similar, for example keeping global communication to a
minimum, others are quite different . In data parallel
algorithms, there is only one thread of execution, and
load balancing takes on a new meaning. Instead of dis­
tributing possibly different parts of the algorithm across
processors, load balancing aims to keep the set of active
processors as large as possible for every part of the algo­
rithm.

Delany [11] considers the case of a bounding hierarchy
and its efficient traversal. The tree structure is mapped
onto processors using the numbering of a preorder traver­
sal of the tree [4]. Assuming that the bounding volumes
are the same as the objects to be ray traced, nodes and
leaves are of the same type. As is the case, for example,
in sphere databases . The algorithm assigns each ray to
a processor and at every iteration uses general commu­
nication to fetch the next bounding volume as the rays
traverse the tree. Using the Euler tour numbering it be­
comes simple for each ray to find the processor address
of the next tree node to intersect with.

Delany has also described a ray tracer based on a space
subdivision scheme [10] . In this algorithm all objects and
rays receive a tag, indicating which leaf node in a uni­
form octree partitioning of space they currently reside in.
The least significant bit of the tag is used to differentiate
between rays and objects. The algorithm proceeds by
sorting rays and objects based on their tags. As a conse­
quence, rays end up immediately adjacent (in processor

space) to objects that they need to intersect with . Using
the scan communication primitives! object data can be
efficiently propagated to all rays which occupy the same
voxel as the given object. By doing backward and for­
ward scans on the bits of the tags in the sorted list of rays
and objects, it is possible for a ray to compute the next
non-empty voxel along its direction to within a power of
2. In this way rays are advanced to the next parent voxel
in the octree that contains another object and the clos­
est intersection can be found in logarithmic time in the
length of the ray.

Discussion

The MIMD hypercube algorithms are generally charac­
terized hy their difficulties with load balancing. For ex­
ample Carter and Teague [8] replicate the entire database
at every node. This leaves the distribution of rays to even
out the load. For large numbers of rays- small numbers
of processors in the system-the simple comb assignment
does well. As the number of rays per processor decreases,
though, the load imbalance goes up markedly. Further­
more we do not consider the replication of the entire
database at every node feasible as this limits the size of
databases and leads to ever increasing waste of memory
as the number of processors increases. Salmon and Gold­
smith [29] distribute their database across the processors
and use a static analysis to determine how best to achieve
this. The actual performance numbers they give indi­
cate even higher load imbalance for increasing numbers
of processors (almost 40%). This is not surprising since
the work estimates, on which the decomposition is based,
exhibit large variance for small numbers of rays per pro­
cessor ; as would be the case with increasing numbers of
processors. These concerns also apply to the different
distribution scheme of Carter and Teague in [7]. Since
their distribution approach adjusts dynamically, through
the use of an LRU cache, it exhibits somewhat better
load balancing behavior. Both approaches assume that
communication is very expensive and explicitly maintain
multiple processes at each node to mask the idle time
associated with communication. Since these algorithms
exist in a MIMD message passing context they easily deal
with databases containing arbitrary mixtures of object
types.

The concerns of the SIMD algorithms are typically cen­
tered around the fact that all processors need to execute
in lockstep. While this simplifies program development
greatly, it leaves these algorithms very vulnerable to low
resource usage in the face of multiple object types. In
particular, Delany's algorithm [11] is even more restric­
tive in that the bounding objects must be of the same
type as the primitive objects themselves . Some flexi­
bility in the object types is afforded by using a class
of objects for which ray/object intersections can be ex-

1 Briefly, scan operations execute an o~erator such as
sum across an ordered set of elements. These could be
in a vector with a vector processor executing the instruc­
tion along the length of the vector, or an ordered set of
processors with each element in its own processor. In the
latter case the scan instructions execute in logarithmic
time in the length of the set [4] .

Graphics Interface '92

169

pressed in terms of a common meta type (e.g. quadric
primitives, with planes as degenerate quadrics, etc.). In
this algorithm the top of the tree is, at least initially, a
communications bottleneck. During the initial steps of
the algorithm all rays attempt to fetch data from the
processor which holds the root node. This causes high
congestion in the router and results in slow execution
of the general communication step. As the algorithm
progresses this problem is alleviated since the rays start
distributing themselves across all nodes of the hierar­
chy and new rays are added at different times. Notice
that in algorithms of this kind coherence can actually
be disadvantageous as it implies high congestion in gen­
eral communication patterns. A more serious problem
with Delany's algorithm is the fact that regardless of the
object types, terminal and non-terminal intersections re­
quire different treatment. Some processors, for example,
may need to evaluate the shading model, while others
need to execute further intersection tests with the hier­
archy. Delany addresses this with the use of a finite state
automaton which always goes to the state with the most
processors waiting. Klietz [23] describes the use of these
ideas in a framework allowing multiple object types-all
of which are sub types of a common meta type- and the
automatic object hierarchy construction as described by
Goldsmith and Salmon [17]. Klietz reports linear scaling
of the algorithm in the number of objects in the hierar­
chy up to approximately 10000 (on a 32k processor CM2
system), beyond which the performance of the general
communication falls off markedly.
The other algorithm proposed by Delany [10] exploits the
ability of the CM2 to sort very fast [5]. It however also
requires a finite state automaton for load balancing the
states, e.g. need to intersect, need to advance, etc . At each
step the algorithm enters into that state which has the
most processors waiting. For multiple object types the
number of states and the po·tential for each state having
only a few active processors in it increases, potentially
resulting in low resource usage overall.

The above analysis shows that it is imperative to con­
sider load balancing from the onset and assure that it
scales with increasing numbers of processors. The goal of
our work was to develop an algorithm which scales with
the available resources-number of processors- as well
as the problem size. In particular given that there are
typically at least hundreds of thousands of rays it should
be possible to take advantage of very large numbers of
processors. All the MIMD algorithms discussed above
assume small numbers of processors « 1 024). While
this is not explicit in the design, it can be seen from the
analyses. As the number of processors goes up the load
imbalance increases. The data parallel ray tracing algo­
rithms scale much better with the number of processors,
but suffer-as do the MIMD-algorithms from unwieldy
load balancing procedures. Even though load balancing
is addressed load imbalance can still be very high [29] .
These issues are furthermore exacerbated in the SIMD
case with the use of different object primitives.

In our algorithm we address the load balancing issue, as
well as the issues connected with varying object types

in the same database through the use of processor al­
location. The basic observation is that even for small
numbers of objects-say, a few triangles among many
spheres in the same database- there are typically more
rays potentially intersecting these few objects, than there
are processors in the machine. Hence we can keep the
available resources busy if we simply loop over the object
types. This requires the algorithm to continually remap
the resource usage. To be sure, this remapping requires
general communication, but if the amount of computa­
tion between remapping steps is significant, the cost of
the general communication steps can be amortized. In
the performance section below we will argue that the cur­
rent algorithm achieves this.

A new data parallel ray tracing algorithm

A simple and straightforward method of data parallel
ray /object intersection would intersect every object with
every ray in a single intersection step and then extract
the closest intersection. This is not only very wasteful
but also impractical since it amounts to computing the
full cross product of all rays and objects. For a database
of 213 objects, and 256x256 pixels/rays we would require
229 processors each executing one ray/object intersection
in parallel. The algorithm we propose takes advantage of
the fact that this cross product can be made sparse by
observing that most rays can only potentially intersect a
small fraction of the entire object database. The raytrac­
ing literature is full of algorithms which use, for example,
bounding hierarchies, to exploit this sparsity.

The main task then is to develop an effective strategy to
derive small lists of candidate objects for each ray and
only intersect each ray with the objects on the respective
list. Ideally this list contains only those objects which are
actually along the ray. In order to find the list of candi­
date objects for every ray we use a coarse space subdi­
vision of the object database. Specifically we divide the
world into equal sized voxels which are coordinate axes
aligned. In a preprocessing phase [15], we find all objects
that overlap a given voxel and maintain a list of these for
each voxel. During the ray casting step all voxels that
a given ray pierces are enumerated and used to access
the per-voxellists of objects. All objects retrieved in this
way are candidates and are intersected in parallel with
the given ray. A downward min scan on the computed
intersection distance gives the closest object intersected
by a given ray.

Our technique of generating candidate sets is not unlike
the shaft culling technique introduced recently by Haines
and Wallace [19]. They consider ray casting in the con­
text of radiosity form factor estimation. Candidate lists
are comprised of all objects overlapping the the convex
hull of an origin and destination object. This technique
requires that for each ray an origin and destination object
is known, as is the case in radiosity. For ray tracing this
does not generally hold . Our technique, while coarser,
does not depend on knowing such objects and thus also
works for general ray tracing. Since we only use flat lists
for each voxel our case corresponds to their open always
strategy.

Graphics Interface '92

alloc_size

4 9 0 3 0 4

addr = sum_scan (alloc_size)

0 I 4 I 13 I 13 I 14 I 17 I 17

/ ,
~" '\,/

segment bit - I _ I I

Figure 1: Each box corresponds to a processor in a 1
dimensional processor set. The parallel variable (pvar)
al1oc-Bize holds the number of processors to allocate.
The address of each allocated segment is given by the
sum-scan of a11oc-Bize. The segment_bit pvar delin­
eates the actual segments.

The details of the SIMD implementation of the algorithm
can be found in Appendix. However, since processor al­
location is at the heart of most steps in the algorithm
we will give a brief description of this data parallel pro­
gramming idiom (see also [4]). It is through the use of
processor allocation that we achieve the desired load bal­
ancing.

Processor allocation

Just as serial algorithms use memory allocation to man­
age dynamically changing demands, data parallel algo­
rithms use processor allocation for the same ends. Con­
sider, for example, a ray which is to be intersected against
a candidate list of objects. Each ray, which is stored in its
own processor, typically needs to be intersected against
different numbers of candidate objects. In order to ex­
ploit ray/object parallelism each ray-processor allocates
a number of object-processors. This is accomplished by
allocating a new processor set with enough processors to
hold the sum total of requested processors. This new pro­
cessor set is segmented so that each segment consists of
as many processors as the associated requesting processor
required (see figure 1). The allocating processors receive
a pointer (processor address) to the segment allocated to
them, which can be used to move data between the al­
locating and allocated processors. The segment_bit can
be used in segmented-scan operations to execute instruc­
tions on a per segment basis. For example, propagating
(segmented-copy-scan) ray data to all objects which need
to be intersected with the given ray. Another typical use
in our framework is the segmented-downward-min-scan
which finds the minimum element of a given pvar on a
per-segment basis. The result of this scan is left in the
first processor of each segment, whence it can be retrieved
easily.

The processor allocation paradigm provides a general
way to implement algorithms which dynamically require
new resources of uneven length. Another attendant ad­
vantage of this approach is the implied load balancing.

170

Since each processor allocates as many new processors as
it needs there are no idle processors in the new processor
set 2.

Load balancing

When ray tracing in parallel, load balancing is important
in two places. First the amount of work necessary to in­
tersect a given ray with the database varies from ray to
ray and second the recursion depth of a given ray tree
varies based on geometry-rays leaving the scene-and
object properties-highly specular versus purely diffuse
objects. We use processor allocation as described above
to address both of these requirements. For a given set
of rays we allocate enough processors per ray to hold the
candidate objects from the voxels along the ray. In this
way rays that, for example, leave the database will con­
sume less resources than those which are going through
an area with many objects. Similarly for each recursion
level only those rays which need to be followed further
allocate child rays.

This approach is only feasible however , if the router
performance is high enough to support the continuous
remapping of resources during allocation. On vector com­
puters this corresponds to their ability to perform scat­
ter/gather operations efficiently.

Performance

We use processor allocation extensively throughout the
algorithm. Since this involves general communication
we need to be sensitive to the underlying communica­
tion patterns. Semi-regularity in the routing pattern can
lead to very high congestion rates since some form of
regularity often implies that many messages need to go
through only a few nodes in the communication network.
In practice, it has been observed that some of the slowest
general communication patterns are very regular, while
random patterns tend to yield high throughput. In our
case this implies that coherence, which is usually welcome
and exploited, can be very disadvantageous. The loading
of scene descriptions illustrates this point well. When
reading in a database the ordering in the file often cor­
relates with spatial coherence in the database. We have
found in those cases that placing the objects into a lin­
ear processor set in the order read in, yielded a running
time higher then when assigning objects to bit reversed
processor addresses. This effect depends on the actual
database loaded. For the sphere flake with 7381 spheres
and 1 quadrilateral (see [18]) we found the following rep­
resentative times at a voxel scale of 803

:

bit rev.

load

170.8 S

98 .3 S

The granularity of the database voxelization exerts a
much larger influence on the runtime. Two forces need to

2There can of course be idle processors if the total
number of processors requested is not some integer mul­
tiple of the number of physical processors .

Graphics Interface '92

150
~

'1:1 = 100 Cl

~
50

, , .. - • - 7381 spheres ,
-- 820 spheres , , - --e __ • _____ • ___

10 20 30 40 50 60 70 80 90

voxel scale

171

Figure 2: Timings for various voxelization scales. A
bounding box for the entire data base is cut into 103

to 903 voxels. Machine size was 16k processors with an
image size of 1282 pixels.

1000

100

-+- 16k processors

- • - 32k processors
.. e- · 64k processors

.... - - .. _ -e - - • ___

10 20 30 40 50 60 70 80 90

voxel scale

Figure 3: Timings for different machine sizes. All
databases are 7381 spheres at an image size of 2562

•

be balanced here. If the voxelization of the world is very
fine the candidate lists per ray are fairly small since only
those objects overlapping a small neighborhood of the ray
will be listed in the object fetch lists . On the other hand
a fine voxelization of the world drives up the memory con­
sumption of the system and forces us to subdivide any
given ray into many and much smaller pieces. Figure 2
shows timings for two different sphere flake data bases
(see [18]) with 820 and 7381 spheres respectively. These
databases are good test cases since they contain both very
small and very large objects. They also contain a single
quadrilateral. The timings include 3 recursive reflection
levels and shading via 3 light sources (shadow feelers to
all light sources at all intersections). All tests were timed
on a CM2 running at 7MHz .

The observed behavior with respect to voxelization scale
remains for different machine sizes as well. In figure 3 we
see data for the 7381 sphere database for an image size
of 2562 pixels for different machine sizes. When consid­
ering larger images with all other parameters the same
the runtime scales linearly in the number of rays.

Considerable speedups can be gained from subdividing
coarsely along the view direction and finely in the viewing

plane. The following table gives one such example for the
same scene as above on a 32k processor machine at an
image resolution of 2562

Voxel Time Voxel Time

scale in S scale in S

1602 x 30 95.6 1802 x 20 101.6

1602 x 20 90.6 1602 x 20 90.6

1602 x 10 97.7 1402 x 20 95.7

Using our algorithm on various scenes we have found that
there always existed an optimal (in the sense of runtime)
subdivision granularity. Due to memory constraints this
subdivision can not always be attained. Since in most
scenes the large majority of rays are view rays it is advis­
able to transform the database such that the view plane
is orthogonal to one of the coordinate axes. By subdivid­
ing along that coordinate axis coarsely the incidence of
a ray being intersected multiple times with the same ob­
ject is reduced. At the same time a tight fit- and a small
candidate object list- is achieved through the fine sub­
division in the image plane. This holds across different
machine sizes as well (see figure 4).

Conclusions and future work

We have developed a data parallel ray/object intersec­
tion algorithm which scales in the number of processors
as well as in the number of rays and objects over several
binary orders of magnitude. Through the use of proces­
sor allocation every stage of the algorithm is efficiently
mapped onto the available resources without requiring
explicit load balancing steps. Since the algorithm uses a
large amount of general communication, parameters such
as subdivision size and ordering of objects in processor
space need to be tuned to achieve maximum performance.
In particular we observe that the voxelization should be
coarse along the view rays and fine parallel to the image
plane. The algorithm has been incorporated successfully
into a massively parallel radiosity algorithm [13] .
In the current implementation the performance is limited ,
since we do not take advantage of any coherence along the

1000

~
'1:1 = 100 Cl

~ -.
10

4096 8192 16384 32768 65536

number of processors

Figure 4 : Runtimes for different, weighted voxelization
scales. The image size is 2562 and subdivision in Z is 20
for all runs while the subdivisions in X and Y are 40/40
and 160/160 respectively. The database was the same as
in the other examples.

Graphics Interface '92

172

ray. When an object overlaps several voxels along a given
ray, the ray will be intersected with it multiple times.
Many unnecessary intersection tests also occur because
rays are intersected in parallel with all the objects along
the ray's length. This implies that there is no notion of
stopping as soon as the first intersection is found. Cus­
tomary acceleration techniques like shadow hit caches,
are not currently incorporated into our approach. These
shortcomings cannot trivially be addressed in a strict
SIMD framework as it is provided by the CM2 Connec­
tion Machine System but would be straightforward in
a data parallel MIMD framework as given by the CM5
computer, or other MIMD machines. In particular the
intersection tests should progress through the candidate
lists of each individual voxel in parametric order along
the ray and finish as soon as an intersection is found.
The problem of a ray intersecting itself multiple times
with the same object is not as easy to address. The usual
technique of depositing a tag with the object consumes
too much memory in our case since all rays are traced
in parallel and a possibly very large number of rays can
attempt to deposit a tag.

The absolute performance of the current implementation
is comparable to the best algorithms on the fastest work­
stations. This is mostly due to the lack of optimizations
in our current implementation. As mentioned above some
of these could be added, while others would require the
more flexible framework of a MIMD computer. The al­
gorithm also requires a large amount of general commu­
nication during load balancing. Current communications
networks do not provide enough bandwidth to keep this
part of the algorithm from consuming disproportional
amounts of time. We expect this to change as commu­
nication networks become faster relative to CPU speed.
The main feature of our algorithm remains its ability to
scale over a wide range of resources and demands.

Acknowledgments

The authors would like to thank Thinking Machines for
providing the framework and resources for this work.
In particular we would like to acknowledge Lew Tucker,
Gary Oberbrunner, Matt Fitzgibbon, Karl Sims, and Jim
Salem for many discussions about algorithm design for
massively parallel SIMD architectures. Some of the tim­
ings in this paper were made on the Los Alamos Ad­
vanced Computing Laboratory 64k Connection Machine
CM2 computer with the help of Robert Kares.

References

[1] AKELY, K., AND JERMOLUK, T. High-Performance
Polygon Rendering. Computer Graphics 22, 4 (Au­
gust 1988), 239-246.

[2] BAILEY, J. Implementing Fine-grained Scientific
Algorithms on the Connection Machine Supercom­
puter. Technical Report TR89-1, Thinking Ma­
chines Corporation, Cambridge, MA 02142, USA,
1990.

[3] BAUM, D . R., AND WINGET, J. M. Real Time
Radiosity through Parallel Processing and Hard-

ware Acceleration. Computer Graphics 24, 2 (March
1990), 67-75.

[4) BLELLOCH, G. Vector Models for Data Parallel
Computing. Artificial Intelligence Series. MIT Press,
Cambridge, MA, 1990.

[5] BLELLOCH, G. E., LEISERSON, C . E., MAGGs,
B. M., PLAXTON, C. G., SMITH, S. J., AND ZA­
GHA, M. A Comparison of Sorting Algorithms for
the Connection Machine CM-2. In Proceedings Sym­
posium on Parallel Algorithms and Architedures
(Hilton Head, SC, July 1991), pp. 3-16 .

[6] BOGHOSIAN, B. M. Computational Physics on the
Connection Machine. Computers in Physics 4, 1
(January/February 1990), 14-33.

[7] CARTER, M. B., AND TEAGUE, K . A. Dis-
tributed Object Database Ray Tracing on the In­
tel iPSC/2 Hypercube. In Proceedings of the 5th
Distributed Memory Computing Conference (1990),
D. W. Walker and Q. F . Stout, Eds. , vol. 1, IEEE,
pp. 217-222.

[8] CARTER, M. B., AND TEAGUE, K. A. The Hy­
percube Ray Tracer . In Proceedin9s of the 5th
Distributed Memory Computing Conference (1990),
D. W. Walker and Q. F . Stout, Eds. , vol. 1, IEEE,
pp. 212-216.

[9) COHEN, M . F., AND GREENBERG, D . P . The Hemi
Cube: A Radiosity Solution for Complex Environ­
ments. Computer Graphics 19,3 (July 1985),31- 40.

[10) DELANY, H. C . Ray Tracing on a Connection Ma­
chine. In Proceedings of the 1988 ACM/INRIA
International Conference on Supercornputing (July
1988), pp. 659-667.

[11] DELANY, H. C. A Simple Hierarchical Ray Trac­
ing Program for the Connection Machine System.
Tech. Rep. VZ 88-4, Thinking Machines Corpora­
tion, Cambridge, MA, December 1988.

[12] DIPPE, M., AND SWENSEN, J. An Adaptive Subdi­
vision Algorithm and Parallel Architecture for Re­
alistic Image Synthesis. Computer Graphics 18, 3
(July 1984) , 149-158.

[13) DRUCKER, S. M ., AND SCHRODER, P. A Data
Parallel Algorithm for Radiosity. In Proceedings of
Third Eurographics Workshop on Rendering (May
1992), Eurographics. to appear.

[14) FUCHS, H. , POULTON, J ., EYLES , J . , GREER, T .,
GOLDFEATHER, J . , ELLS WORTH, D ., MOLNAR, S. ,
TURK, G., TEBBs, B ., AND ISRAEL, L. Pixel­
Planes 5: A Heterogeneous Multiprocessor Graphics
System Using Processor-Enhanced Memories. Com­
puter Graphics 23,3 (July 1989), 79- 88.

[15) FUJIMOTO , A., TANAKA, T . , AND IWATA, K.
ARTS: Accelerated Ray-Tracing System. IEEE
Computer Graphics and Applications 6, 4 (April
1986), 16-26.

[16) GAUDET, S ., HOBsoN, R., CHILKA, P., AND
CALVERT, T. Multiprocessor Experiments for High-

Graphics Interface '92

173

Speed Ray Tracing. A CM Transactions on Graphics
7,3 (July 1988), 151-179.

[17] GOLDSMITH, J . , AND SALMON, J. Automatic Cre­
ation of Object Hierarchies for Ray tracing. IEEE
Computer Graphics and Applications 7, 5 (May
1987), 14-20.

[18] HAINEs, E . A Proposal for Standard Graphics En­
vironments. IEEE Computer Graphics and Applica­
tions 7, 11 (November 1987), 3-5.

[19] HAINEs, E. A., AND WALLACE, J. R. Shaft Culling
for Efficient Ray-Traced Radiosity. In Proceed­
ings of Second Eurographics Workshop on Render­
ing (Barcelona, Spain, May 1991), Eurographics,
Springer Verlag. Also published in Siggraph 91
course notes: Frontiers of Rendering.

[20] HILLIS, D. W. The Connection Machine. MIT
Press, 1985.

[21] KAUFMAN, A. Efficient Algorithms for 3D Scan­
Conversion of Parametric Curves, Surfaces, and Vol­
umes. Computer Graphics 21, 3 (July 1987) , 171-
179.

[22] KAUFMAN, A., AND BAKALASH, R. Memory and
Processing Architecture for 3D Voxel-Based Im­
agery. IEEE Computer Graphics and Applications
8,11 (November 1988), 10-23.

[23] KLIETZ, A . Personal communication. e-mail ad­
dress: alan@msc.edu.

[24] MITCHELL , D. P. Personal communication.

[25] NADER GHARACHORLOO, E. A. Subnanosecond
Pixel Rendering with Million Transistor Chips.
Computer Graphics 22, 4 (August 1988), 41- 49.

[26] NISHIMURA, H., OHNO, H., KAWATA, T., SHI­
RAKAWA, I. , AND OMURA, K. LINKS-I : A Par­
allel Pipelined Multimicrocomputer System for Im­
age Creation. In Proceedings of the 10th Symposium
on Computer Architecture (New York, 1983), ACM,
pp. 387-394.

[27] POTMESIL, M., AND HOFFERT, E . M. The Pixel
Machine: A Parallel Image Computer . Computer
Graphics 23, 3 (July 1989), 69- 78.

[28] RECKER, R. J ., GEORGE, D. W., AND GREEN­
BERG, D. P. Acceleration Techniques for Progres­
sive Refinement Radiosity. Computer Graphics 24,
2 (March 1990), 59-66.

[29] SALMON, J., AND GOLDSMITH, J. A Hypercube
Ray tracer. In Proceedings of HCCA3 (March 1988),
pp. 1194-1206.

[30) SCHRODER, P . , AND SALEM, J. B. Fast Rota­
tion of Volume Data on Data Parallel Architectures.
In Proceedings of Visualization 91 (October 1991),
IEEE, IEEE Computer Society Press, pp. 50- 57.

[31] WEGHORST, H. , HooPER, G. , AND GREENBERG ,
D. P. Improved Computational Methods for Ray
Tracing. ACM Transaction on Graphics 3, 1 (Jan­
uary 1984) , 52-59.

Implementation details

Building the voxel overlap lists

When a database is initially loaded into the system the
first step is to build the lists which, for a given voxel,
hold all the names of objects intersecting that voxel. For
each object type in turn each object allocates enough
processors to hold all the voxels that its bounding box
overlaps (see figure 5) . Call these cand_voxels. Using

20

13

6

A

objects I
B I

9 5 I I I I I

I _____ allocation

o 1 1 I 2 1 7 1 8 1 9 1141151161 1 1 2 1 3 I 4 1 5

I objects I
AIAIAIAIAIAIAIAIAIBIBIBIBIB

inte rsection I

Figure 5: A 2D example of objects on a voxel grid and
the voxels their bounding boxes overlap. These voxels are
tested against the objects themselves. Only those that
actually do intersect with the object, generate an entry
in the object..:fetch_list.

Graphics Interface '92 ~

· · ·

rays

A B

. .
: : : : : : :

o '1 '2 '3 '4 .5 '6 : ______ ~ _______ ~ ______ ~ _______ ~ ______ J _______ ~ ______ _

4

I

BO:

7 I I I
allocation

. .
I I I I I --r------,-------r------,------ -r------, . .

I I I I • I I I , _______ L ______ J _______ L ______ J _______ L ______ J _______ I

extent in-y I

.
BOO: BIO

I I : I

--r------~-------~------~-------~-----_i
I I I I

L ______ ~ _______ ~ ______ ~ _______ ~ ______ j _______ ~ ______ J

Figure 6: A 2D example of "chopping" lines to the voxel
grid along the two dimensions in turn.

the forward pointers, the object data is sent to the be­
ginning processor in each candidate segment. With a
segmented-copy-scan this data can be propagated to ev­
ery processor in its segment. At this point we properly
intersect the candidate voxels with the respective object.
Every processor that finds an actual intersection sends
a "1" to the objects_per_voxel accumulator. After the
intersection step each voxel holds the length of its ob­
ject list in objects-per_voxel. In a second processor

174

allocation step these numbers are used to allocate pro­
cessors for each voxel to hold the actual lists of object
ids. Call this the object-.ietch...list. Next we find a
ranking of the voxel names in candsoxels. Notice that
only those processors for which intersection == TRUE
participate in this ranking. Using the rank as an ad­
dress we can send the object tags to the proper places in
the object-.ietch...list, which concludes the setup. The
object-.ietch...list consists of segments, each of which
corresponds to a particular voxel, that contain ids for
those objects which actually intersect a given voxel. Each
voxel now holds the address of the beginning of its seg­
ment in the object-.ietch..list as well as the length of
that segment. We will use these two pieces of data to
build the candidate lists for each ray.

Generating ray/object candidate lists

Given a set of rays we can now build the candidate object
lists. In order to do this we need to generate a list of
voxels that every ray pierces . Once we have this list , it is
an easy matter to use the object_fetch...list to get the
objects themselves for the ray/object intersection test.
One way to generate the voxel lists for each ray, would
be to use 3D voxel conversion of the rays with 26 neighbor
connectivity (see [21]) . This method however is not well
suited since the rays are in general of different lengths ,
leaving many processors idle, while the longest rays are
still being voxel converted. Instead we use a nested set
of 3 processor allocations, in turn "chopping" the rays to
voxel boundaries along each of the 3 axes (see figure 6 for
the 2D case) . Notice that all children of rays A and B
are contiguous and ordered along the ray in the final pvar
(choppecLin..x_and_y-xays). When this step is completed
each chopped ray simply considers its endpoints to find
the address of the voxel it crosses

Using the address in voxels_crossed we can
retrieve the number of objects per voxel
obj ects_insoxeLcrossed

now
into

and also where these can be found In the
object_fetch_list

Graphics Interface '92

175

objects_in_voxeLcrossed indicates how many intersec­
tion processors need to be allocated. After this alloca­
tion, the segment addresses and the ray names are prop­
agated into the allocated segments

AlO BlO I Bll I B20 I
Using the segment bit the addresses of all the objects in
a given segment can be generated by incrementing the
segment addresses through the length of each segment
and the ray data is filled in with a segmented-copy-scan

address_in_object_fetch_list

10

AOO

Ray jobject intersection

With all the variables from the generation of the candi­
date list in hand we now only need an indirection through
the object_fetch...list to pair up each ray with its can­
didate objects

10

objects

Since the computed ray/object intersections are ordered
within their respective segments in the parameter value

along the ray we can execute a downward-min-reduce on
the computed parameter value of the actual intersections
to find the closest (if any) intersection

I A

objects

A B A A A

0.1 0.2

0.1 I 0.01 I

A I I A I I I I
At this point the algorithm returns with the intersected
object and the parameter along the ray where the inter­
section occurred.

Graphics Interface '92 ~

