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Abstract 

We describe a new data parallel algorithm for raytrac­
ing. Load balancing is achieved through the use of pro­
cessor allocation, which continually remaps available re­
sources . In this manner heterogeneous data bases are 
handled without the usual problems of low resource us­
age. The proposed approach adapts well to both ex­
tremes: a small number of rays and a large database; 
a large number of rays and a small database. The algo­
rithm scales linearly-over a wide range-in the number 
of rays and available processors. We present an imple­
mentation on the Connection Machine CM2 system and 
provide timings . 

Cet article presente un nouvel algorithme paralleIe pour 
le lancer de rayons. L' allocation des processeurs, qui 
distribue la tache aux resources disponibles, permet de 
garder une charge bien repartie. Ainsi evitons nous les 
problemes usuels dus aux ressources de bas niveau tout 
en manipulant des structures de donnees heterogenes. 
N otre approche s'applique aussi bien a un faible nombre 
de rayons et des donnees importantes qu'a un nombre 
important de lancer de rayons sur des donnees de taille 
limitee. L'algorithme fonctionne en temps lim\aire en le 
nombre de rayons et de processeurs disponibles. Nous 
presentons une implementation sur le systeme Connec­
tion Machine CM2 et don nons des temps de calcul. 
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Introduction 

With the advent of massively parallel computers, many 
algorithms which require large computing resources have 
been developed to take advantage of these new ma­
chines [2; 20). While the use of parallel computers, like 
the Connection Machine CM2 system, has become almost 
common place in computational fluid dynamics and QCD 
theories (6), only relatively few graphics algorithms for 
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general purpose parallel computers have been published. 
We hypothesize that this is due in large measure to the 
extraordinary success and availability of cheap special 
purpose graphics hardware. 

Most of the work on this hardware (see for example [14; 
25; 1; 22; 27)) has focused on polygon scanline render­
ing. At the same time, the development in rendering 
algorithms has been towards more sophisticated global 
shading models. Unfortunately, these can only make lim­
ited use of commonly available graphics hardware (e.g. 
the use of z-buffers for radiosity and ray tracing accelera­
tion [9 ; 31)). There has also been some interest in the use 
of distributed processing and multi-processing, to accel­
erate radiosity computations [28; 3), and ray tracing [16; 
26; 12). As the computational needs of sophisticated 
global illumination models continue to increase and the 
size of data sets continues to grow (e.g. volume render­
ing) the importance of algorithms for scalable, general 
purpose computers will continue to increase. 
Applications such as volume rendering, ray tracing, and 
radiosity have computational needs large enough to take 
advantage of highly parallel architectures. While, for ex­
ample, ray tracing appears to parallelize trivially, the 
published research shows otherwise (see below) . Many of 
the published algorithms struggle with the load balanc­
ing issue which becomes worse with increasing numbers 
of processors. There are also examples-from volume 
ray tracing-where two different algorithms, which are 
equivalent on serial machines, can have radically different 
run times on parallel architectures (30) . The Achilles heel 
of most graphics algorithms on parallel architectures is 
their high demand for general, versus regular, communi­
cation. As the following review of previous work shows, 
the main focus in this area of research is on minimizing 
general communication. 

In the next section we discuss in detail previous work 
in parallel ray tracing . Following that we describe our 
new algorithm and present timing results, finishing off 
with conclusions. The details of the implementation are 
described in the appendix. 

Previous work in parallel ray tracing 

Most previous work concerns the mapping of ray tracing 
onto MIMD hypercubes. Carter and Teague (8) discuss a 
simple scheme of replicating the entire database at every 
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node of an iPSC/2 computer. The speedup factor gained 
by the use of many processors is almost exactly the num­
ber of processors in the system. The only issue is the 
assignment of pixels to processors. For this Carter and 
Teague use the obvious "pixel mod number of processors" 
comb assignment (this same approach was also chosen 
by [24] for a ray tracer on the Pixel machine). Salmon 
and Goldsmith [29] consider this scheme as well. They 
go on to consider the more general case of databases that 
are too large to be replicated at every node. They use 
a bounding hierarchy data structure for their database 
and replicate only the top n levels of this structure at ev­
ery node. In this way the more frequent intersection tests 
against the top of the hierarchy can be performed locally. 
The sub trees of level k > n are distributed across the 
nodes. Considering the statistics of intersection of rays 
against subtree nodes of the bounding hierarchy, they de­
velop a procedure to determine the height of the subtrees 
which are deposited across processors. 
Another decomposition scheme using a bounding hier­
archy was explored in Carter and Teague [7] . The en­
tire bounding hierarchy tree, except for the leaf nodes, 
is replicated in all processors. The leaf nodes are dis­
tributed across the processors. An LRU cache is used 
to maintain a set of primitives at each processor. Using 
a blocking scheme to distribute pixels across processors 
they naturally take advantage of the implied spatial co­
herence. Load balancing is achieved by a master process 
which allocates pixel blocks to idle processors. 

A different set of algorithms uses SI MD architectures, 
such as the Connection Machine CM2 system, for data 
parallel ray tracing. While some of the design issues are 
similar, for example keeping global communication to a 
minimum, others are quite different . In data parallel 
algorithms, there is only one thread of execution, and 
load balancing takes on a new meaning. Instead of dis­
tributing possibly different parts of the algorithm across 
processors, load balancing aims to keep the set of active 
processors as large as possible for every part of the algo­
rithm. 

Delany [11] considers the case of a bounding hierarchy 
and its efficient traversal. The tree structure is mapped 
onto processors using the numbering of a preorder traver­
sal of the tree [4]. Assuming that the bounding volumes 
are the same as the objects to be ray traced, nodes and 
leaves are of the same type. As is the case, for example, 
in sphere databases . The algorithm assigns each ray to 
a processor and at every iteration uses general commu­
nication to fetch the next bounding volume as the rays 
traverse the tree. Using the Euler tour numbering it be­
comes simple for each ray to find the processor address 
of the next tree node to intersect with. 

Delany has also described a ray tracer based on a space 
subdivision scheme [10] . In this algorithm all objects and 
rays receive a tag, indicating which leaf node in a uni­
form octree partitioning of space they currently reside in. 
The least significant bit of the tag is used to differentiate 
between rays and objects. The algorithm proceeds by 
sorting rays and objects based on their tags. As a conse­
quence, rays end up immediately adjacent (in processor 

space) to objects that they need to intersect with . Using 
the scan communication primitives! object data can be 
efficiently propagated to all rays which occupy the same 
voxel as the given object. By doing backward and for­
ward scans on the bits of the tags in the sorted list of rays 
and objects, it is possible for a ray to compute the next 
non-empty voxel along its direction to within a power of 
2. In this way rays are advanced to the next parent voxel 
in the octree that contains another object and the clos­
est intersection can be found in logarithmic time in the 
length of the ray. 

Discussion 

The MIMD hypercube algorithms are generally charac­
terized hy their difficulties with load balancing. For ex­
ample Carter and Teague [8] replicate the entire database 
at every node. This leaves the distribution of rays to even 
out the load. For large numbers of rays- small numbers 
of processors in the system-the simple comb assignment 
does well. As the number of rays per processor decreases, 
though, the load imbalance goes up markedly. Further­
more we do not consider the replication of the entire 
database at every node feasible as this limits the size of 
databases and leads to ever increasing waste of memory 
as the number of processors increases. Salmon and Gold­
smith [29] distribute their database across the processors 
and use a static analysis to determine how best to achieve 
this. The actual performance numbers they give indi­
cate even higher load imbalance for increasing numbers 
of processors (almost 40%). This is not surprising since 
the work estimates, on which the decomposition is based, 
exhibit large variance for small numbers of rays per pro­
cessor ; as would be the case with increasing numbers of 
processors. These concerns also apply to the different 
distribution scheme of Carter and Teague in [7]. Since 
their distribution approach adjusts dynamically, through 
the use of an LRU cache, it exhibits somewhat better 
load balancing behavior. Both approaches assume that 
communication is very expensive and explicitly maintain 
multiple processes at each node to mask the idle time 
associated with communication. Since these algorithms 
exist in a MIMD message passing context they easily deal 
with databases containing arbitrary mixtures of object 
types. 

The concerns of the SIMD algorithms are typically cen­
tered around the fact that all processors need to execute 
in lockstep. While this simplifies program development 
greatly, it leaves these algorithms very vulnerable to low 
resource usage in the face of multiple object types. In 
particular, Delany's algorithm [11] is even more restric­
tive in that the bounding objects must be of the same 
type as the primitive objects themselves . Some flexi­
bility in the object types is afforded by using a class 
of objects for which ray/object intersections can be ex-

1 Briefly, scan operations execute an o~erator such as 
sum across an ordered set of elements. These could be 
in a vector with a vector processor executing the instruc­
tion along the length of the vector, or an ordered set of 
processors with each element in its own processor. In the 
latter case the scan instructions execute in logarithmic 
time in the length of the set [4] . 
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pressed in terms of a common meta type (e.g. quadric 
primitives, with planes as degenerate quadrics, etc.). In 
this algorithm the top of the tree is, at least initially, a 
communications bottleneck. During the initial steps of 
the algorithm all rays attempt to fetch data from the 
processor which holds the root node. This causes high 
congestion in the router and results in slow execution 
of the general communication step. As the algorithm 
progresses this problem is alleviated since the rays start 
distributing themselves across all nodes of the hierar­
chy and new rays are added at different times. Notice 
that in algorithms of this kind coherence can actually 
be disadvantageous as it implies high congestion in gen­
eral communication patterns. A more serious problem 
with Delany's algorithm is the fact that regardless of the 
object types, terminal and non-terminal intersections re­
quire different treatment. Some processors, for example, 
may need to evaluate the shading model, while others 
need to execute further intersection tests with the hier­
archy. Delany addresses this with the use of a finite state 
automaton which always goes to the state with the most 
processors waiting. Klietz [23] describes the use of these 
ideas in a framework allowing multiple object types-all 
of which are sub types of a common meta type- and the 
automatic object hierarchy construction as described by 
Goldsmith and Salmon [17]. Klietz reports linear scaling 
of the algorithm in the number of objects in the hierar­
chy up to approximately 10000 (on a 32k processor CM2 
system), beyond which the performance of the general 
communication falls off markedly. 
The other algorithm proposed by Delany [10] exploits the 
ability of the CM2 to sort very fast [5]. It however also 
requires a finite state automaton for load balancing the 
states, e.g. need to intersect, need to advance, etc . At each 
step the algorithm enters into that state which has the 
most processors waiting. For multiple object types the 
number of states and the po·tential for each state having 
only a few active processors in it increases, potentially 
resulting in low resource usage overall. 

The above analysis shows that it is imperative to con­
sider load balancing from the onset and assure that it 
scales with increasing numbers of processors. The goal of 
our work was to develop an algorithm which scales with 
the available resources-number of processors- as well 
as the problem size. In particular given that there are 
typically at least hundreds of thousands of rays it should 
be possible to take advantage of very large numbers of 
processors. All the MIMD algorithms discussed above 
assume small numbers of processors « 1 024). While 
this is not explicit in the design, it can be seen from the 
analyses. As the number of processors goes up the load 
imbalance increases. The data parallel ray tracing algo­
rithms scale much better with the number of processors, 
but suffer-as do the MIMD-algorithms from unwieldy 
load balancing procedures. Even though load balancing 
is addressed load imbalance can still be very high [29] . 
These issues are furthermore exacerbated in the SIMD 
case with the use of different object primitives. 

In our algorithm we address the load balancing issue, as 
well as the issues connected with varying object types 

in the same database through the use of processor al­
location. The basic observation is that even for small 
numbers of objects-say, a few triangles among many 
spheres in the same database- there are typically more 
rays potentially intersecting these few objects, than there 
are processors in the machine. Hence we can keep the 
available resources busy if we simply loop over the object 
types. This requires the algorithm to continually remap 
the resource usage. To be sure, this remapping requires 
general communication, but if the amount of computa­
tion between remapping steps is significant, the cost of 
the general communication steps can be amortized. In 
the performance section below we will argue that the cur­
rent algorithm achieves this. 

A new data parallel ray tracing algorithm 

A simple and straightforward method of data parallel 
ray /object intersection would intersect every object with 
every ray in a single intersection step and then extract 
the closest intersection. This is not only very wasteful 
but also impractical since it amounts to computing the 
full cross product of all rays and objects. For a database 
of 213 objects, and 256x256 pixels/rays we would require 
229 processors each executing one ray/object intersection 
in parallel. The algorithm we propose takes advantage of 
the fact that this cross product can be made sparse by 
observing that most rays can only potentially intersect a 
small fraction of the entire object database. The raytrac­
ing literature is full of algorithms which use, for example, 
bounding hierarchies, to exploit this sparsity. 

The main task then is to develop an effective strategy to 
derive small lists of candidate objects for each ray and 
only intersect each ray with the objects on the respective 
list. Ideally this list contains only those objects which are 
actually along the ray. In order to find the list of candi­
date objects for every ray we use a coarse space subdi­
vision of the object database. Specifically we divide the 
world into equal sized voxels which are coordinate axes 
aligned. In a preprocessing phase [15], we find all objects 
that overlap a given voxel and maintain a list of these for 
each voxel. During the ray casting step all voxels that 
a given ray pierces are enumerated and used to access 
the per-voxellists of objects. All objects retrieved in this 
way are candidates and are intersected in parallel with 
the given ray. A downward min scan on the computed 
intersection distance gives the closest object intersected 
by a given ray. 

Our technique of generating candidate sets is not unlike 
the shaft culling technique introduced recently by Haines 
and Wallace [19]. They consider ray casting in the con­
text of radiosity form factor estimation. Candidate lists 
are comprised of all objects overlapping the the convex 
hull of an origin and destination object. This technique 
requires that for each ray an origin and destination object 
is known, as is the case in radiosity. For ray tracing this 
does not generally hold . Our technique, while coarser, 
does not depend on knowing such objects and thus also 
works for general ray tracing. Since we only use flat lists 
for each voxel our case corresponds to their open always 
strategy. 
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Figure 1: Each box corresponds to a processor in a 1 
dimensional processor set. The parallel variable (pvar) 
al1oc-Bize holds the number of processors to allocate. 
The address of each allocated segment is given by the 
sum-scan of a11oc-Bize. The segment_bit pvar delin­
eates the actual segments. 

The details of the SIMD implementation of the algorithm 
can be found in Appendix. However, since processor al­
location is at the heart of most steps in the algorithm 
we will give a brief description of this data parallel pro­
gramming idiom (see also [4]). It is through the use of 
processor allocation that we achieve the desired load bal­
ancing. 

Processor allocation 

Just as serial algorithms use memory allocation to man­
age dynamically changing demands, data parallel algo­
rithms use processor allocation for the same ends. Con­
sider, for example, a ray which is to be intersected against 
a candidate list of objects. Each ray, which is stored in its 
own processor, typically needs to be intersected against 
different numbers of candidate objects. In order to ex­
ploit ray/object parallelism each ray-processor allocates 
a number of object-processors. This is accomplished by 
allocating a new processor set with enough processors to 
hold the sum total of requested processors. This new pro­
cessor set is segmented so that each segment consists of 
as many processors as the associated requesting processor 
required (see figure 1). The allocating processors receive 
a pointer (processor address) to the segment allocated to 
them, which can be used to move data between the al­
locating and allocated processors. The segment_bit can 
be used in segmented-scan operations to execute instruc­
tions on a per segment basis. For example, propagating 
(segmented-copy-scan) ray data to all objects which need 
to be intersected with the given ray. Another typical use 
in our framework is the segmented-downward-min-scan 
which finds the minimum element of a given pvar on a 
per-segment basis. The result of this scan is left in the 
first processor of each segment, whence it can be retrieved 
easily. 

The processor allocation paradigm provides a general 
way to implement algorithms which dynamically require 
new resources of uneven length. Another attendant ad­
vantage of this approach is the implied load balancing. 
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Since each processor allocates as many new processors as 
it needs there are no idle processors in the new processor 
set 2. 

Load balancing 

When ray tracing in parallel, load balancing is important 
in two places. First the amount of work necessary to in­
tersect a given ray with the database varies from ray to 
ray and second the recursion depth of a given ray tree 
varies based on geometry-rays leaving the scene-and 
object properties-highly specular versus purely diffuse 
objects. We use processor allocation as described above 
to address both of these requirements. For a given set 
of rays we allocate enough processors per ray to hold the 
candidate objects from the voxels along the ray. In this 
way rays that, for example, leave the database will con­
sume less resources than those which are going through 
an area with many objects. Similarly for each recursion 
level only those rays which need to be followed further 
allocate child rays. 

This approach is only feasible however , if the router 
performance is high enough to support the continuous 
remapping of resources during allocation. On vector com­
puters this corresponds to their ability to perform scat­
ter/gather operations efficiently. 

Performance 

We use processor allocation extensively throughout the 
algorithm. Since this involves general communication 
we need to be sensitive to the underlying communica­
tion patterns. Semi-regularity in the routing pattern can 
lead to very high congestion rates since some form of 
regularity often implies that many messages need to go 
through only a few nodes in the communication network. 
In practice, it has been observed that some of the slowest 
general communication patterns are very regular, while 
random patterns tend to yield high throughput. In our 
case this implies that coherence, which is usually welcome 
and exploited, can be very disadvantageous. The loading 
of scene descriptions illustrates this point well. When 
reading in a database the ordering in the file often cor­
relates with spatial coherence in the database. We have 
found in those cases that placing the objects into a lin­
ear processor set in the order read in, yielded a running 
time higher then when assigning objects to bit reversed 
processor addresses. This effect depends on the actual 
database loaded. For the sphere flake with 7381 spheres 
and 1 quadrilateral (see [18]) we found the following rep­
resentative times at a voxel scale of 803

: 

bit rev. 

load 

170.8 S 

98 .3 S 

The granularity of the database voxelization exerts a 
much larger influence on the runtime. Two forces need to 

2There can of course be idle processors if the total 
number of processors requested is not some integer mul­
tiple of the number of physical processors . 
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Figure 2: Timings for various voxelization scales. A 
bounding box for the entire data base is cut into 103 

to 903 voxels. Machine size was 16k processors with an 
image size of 1282 pixels. 
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Figure 3: Timings for different machine sizes. All 
databases are 7381 spheres at an image size of 2562

• 

be balanced here. If the voxelization of the world is very 
fine the candidate lists per ray are fairly small since only 
those objects overlapping a small neighborhood of the ray 
will be listed in the object fetch lists . On the other hand 
a fine voxelization of the world drives up the memory con­
sumption of the system and forces us to subdivide any 
given ray into many and much smaller pieces. Figure 2 
shows timings for two different sphere flake data bases 
(see [18]) with 820 and 7381 spheres respectively. These 
databases are good test cases since they contain both very 
small and very large objects. They also contain a single 
quadrilateral. The timings include 3 recursive reflection 
levels and shading via 3 light sources (shadow feelers to 
all light sources at all intersections). All tests were timed 
on a CM2 running at 7MHz . 

The observed behavior with respect to voxelization scale 
remains for different machine sizes as well. In figure 3 we 
see data for the 7381 sphere database for an image size 
of 2562 pixels for different machine sizes. When consid­
ering larger images with all other parameters the same 
the runtime scales linearly in the number of rays. 

Considerable speedups can be gained from subdividing 
coarsely along the view direction and finely in the viewing 

plane. The following table gives one such example for the 
same scene as above on a 32k processor machine at an 
image resolution of 2562 

Voxel Time Voxel Time 

scale in S scale in S 

1602 x 30 95.6 1802 x 20 101.6 

1602 x 20 90.6 1602 x 20 90.6 

1602 x 10 97.7 1402 x 20 95.7 

Using our algorithm on various scenes we have found that 
there always existed an optimal (in the sense of runtime) 
subdivision granularity. Due to memory constraints this 
subdivision can not always be attained. Since in most 
scenes the large majority of rays are view rays it is advis­
able to transform the database such that the view plane 
is orthogonal to one of the coordinate axes. By subdivid­
ing along that coordinate axis coarsely the incidence of 
a ray being intersected multiple times with the same ob­
ject is reduced. At the same time a tight fit- and a small 
candidate object list- is achieved through the fine sub­
division in the image plane. This holds across different 
machine sizes as well (see figure 4). 

Conclusions and future work 

We have developed a data parallel ray/object intersec­
tion algorithm which scales in the number of processors 
as well as in the number of rays and objects over several 
binary orders of magnitude. Through the use of proces­
sor allocation every stage of the algorithm is efficiently 
mapped onto the available resources without requiring 
explicit load balancing steps. Since the algorithm uses a 
large amount of general communication, parameters such 
as subdivision size and ordering of objects in processor 
space need to be tuned to achieve maximum performance. 
In particular we observe that the voxelization should be 
coarse along the view rays and fine parallel to the image 
plane. The algorithm has been incorporated successfully 
into a massively parallel radiosity algorithm [13] . 
In the current implementation the performance is limited , 
since we do not take advantage of any coherence along the 

1000 

~ 
'1:1 = 100 Cl 
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10 

4096 8192 16384 32768 65536 

number of processors 

Figure 4 : Runtimes for different, weighted voxelization 
scales. The image size is 2562 and subdivision in Z is 20 
for all runs while the subdivisions in X and Y are 40/40 
and 160/160 respectively. The database was the same as 
in the other examples. 
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ray. When an object overlaps several voxels along a given 
ray, the ray will be intersected with it multiple times. 
Many unnecessary intersection tests also occur because 
rays are intersected in parallel with all the objects along 
the ray's length. This implies that there is no notion of 
stopping as soon as the first intersection is found. Cus­
tomary acceleration techniques like shadow hit caches, 
are not currently incorporated into our approach. These 
shortcomings cannot trivially be addressed in a strict 
SIMD framework as it is provided by the CM2 Connec­
tion Machine System but would be straightforward in 
a data parallel MIMD framework as given by the CM5 
computer, or other MIMD machines. In particular the 
intersection tests should progress through the candidate 
lists of each individual voxel in parametric order along 
the ray and finish as soon as an intersection is found. 
The problem of a ray intersecting itself multiple times 
with the same object is not as easy to address. The usual 
technique of depositing a tag with the object consumes 
too much memory in our case since all rays are traced 
in parallel and a possibly very large number of rays can 
attempt to deposit a tag. 

The absolute performance of the current implementation 
is comparable to the best algorithms on the fastest work­
stations. This is mostly due to the lack of optimizations 
in our current implementation. As mentioned above some 
of these could be added, while others would require the 
more flexible framework of a MIMD computer. The al­
gorithm also requires a large amount of general commu­
nication during load balancing. Current communications 
networks do not provide enough bandwidth to keep this 
part of the algorithm from consuming disproportional 
amounts of time. We expect this to change as commu­
nication networks become faster relative to CPU speed. 
The main feature of our algorithm remains its ability to 
scale over a wide range of resources and demands. 
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Implementation details 

Building the voxel overlap lists 

When a database is initially loaded into the system the 
first step is to build the lists which, for a given voxel, 
hold all the names of objects intersecting that voxel. For 
each object type in turn each object allocates enough 
processors to hold all the voxels that its bounding box 
overlaps (see figure 5) . Call these cand_voxels. Using 
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Figure 5: A 2D example of objects on a voxel grid and 
the voxels their bounding boxes overlap. These voxels are 
tested against the objects themselves. Only those that 
actually do intersect with the object, generate an entry 
in the object..:fetch_list. 
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Figure 6: A 2D example of "chopping" lines to the voxel 
grid along the two dimensions in turn. 

the forward pointers, the object data is sent to the be­
ginning processor in each candidate segment. With a 
segmented-copy-scan this data can be propagated to ev­
ery processor in its segment. At this point we properly 
intersect the candidate voxels with the respective object. 
Every processor that finds an actual intersection sends 
a "1" to the objects_per_voxel accumulator. After the 
intersection step each voxel holds the length of its ob­
ject list in objects-per_voxel. In a second processor 
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allocation step these numbers are used to allocate pro­
cessors for each voxel to hold the actual lists of object 
ids. Call this the object-.ietch...list. Next we find a 
ranking of the voxel names in candsoxels. Notice that 
only those processors for which intersection == TRUE 
participate in this ranking. Using the rank as an ad­
dress we can send the object tags to the proper places in 
the object-.ietch...list, which concludes the setup. The 
object-.ietch...list consists of segments, each of which 
corresponds to a particular voxel, that contain ids for 
those objects which actually intersect a given voxel. Each 
voxel now holds the address of the beginning of its seg­
ment in the object-.ietch..list as well as the length of 
that segment. We will use these two pieces of data to 
build the candidate lists for each ray. 

Generating ray/object candidate lists 

Given a set of rays we can now build the candidate object 
lists. In order to do this we need to generate a list of 
voxels that every ray pierces . Once we have this list , it is 
an easy matter to use the object_fetch...list to get the 
objects themselves for the ray/object intersection test. 
One way to generate the voxel lists for each ray, would 
be to use 3D voxel conversion of the rays with 26 neighbor 
connectivity (see [21]) . This method however is not well 
suited since the rays are in general of different lengths , 
leaving many processors idle, while the longest rays are 
still being voxel converted. Instead we use a nested set 
of 3 processor allocations, in turn "chopping" the rays to 
voxel boundaries along each of the 3 axes (see figure 6 for 
the 2D case) . Notice that all children of rays A and B 
are contiguous and ordered along the ray in the final pvar 
(choppecLin..x_and_y-xays). When this step is completed 
each chopped ray simply considers its endpoints to find 
the address of the voxel it crosses 

Using the address in voxels_crossed we can 
retrieve the number of objects per voxel 
obj ects_insoxeLcrossed 

now 
into 

and also where these can be found In the 
object_fetch_list 
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objects_in_voxeLcrossed indicates how many intersec­
tion processors need to be allocated. After this alloca­
tion, the segment addresses and the ray names are prop­
agated into the allocated segments 

AlO BlO I Bll I B20 I 
Using the segment bit the addresses of all the objects in 
a given segment can be generated by incrementing the 
segment addresses through the length of each segment 
and the ray data is filled in with a segmented-copy-scan 

address_in_object_fetch_list 

10 

AOO 

Ray jobject intersection 

With all the variables from the generation of the candi­
date list in hand we now only need an indirection through 
the object_fetch...list to pair up each ray with its can­
didate objects 

10 

objects 

Since the computed ray/object intersections are ordered 
within their respective segments in the parameter value 

along the ray we can execute a downward-min-reduce on 
the computed parameter value of the actual intersections 
to find the closest (if any) intersection 

I A 

objects 

A B A A A 

0.1 0.2 

0.1 I 0.01 I 

A I I A I I I I 
At this point the algorithm returns with the intersected 
object and the parameter along the ray where the inter­
section occurred. 
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