
184

Ray Tracing Polygons using Spatial Subdivision

Andrew Woo

Style! Division, Alias Research Inc.
110 Richmond Street East

Toronto, Ontario
MSC lPl

1. Abstract

Ray tracing consumes a lot of computational resources
to render images. This expense usually lies in the ray-surface
intersection tests. If the surfaces were polygonal, then we
should be able to apply more polygon-specific optimizations
to partially cull intersections. Our ray tracer uses a non
memory intensive, voxel traversal intersection culler to assist
in such optimizations.

Keywords: intersection culling, polygon, ray tracing, subdivi
sion, voxel traversal.

2. Introduction

Ray tracing [Appe6S] [Gold71] is widely ack
nowledged as a rendering approach that can produce very
reali stic and beautiful images [WhitSO). It is also widely
known that ray tracing is very expensive computation ally.
Many intersection culling algorithms have been proposed to
reduce this expense . However, such intersection culling algo
rithms do not take into consideration the nature of the primi
tives which they arc culling.

The polygon is one of the most used primitives in
rcndering surfaces - either as a result of tessellation of com
plex surfaces, or as descriptions of truncated planar surfaces .
In this paper, we examine the polygon very carefully, in hopes
of optimizing and rcducing the need for ray-polygon intersec
tions, while keeping the memory requirements down to a
minimum. The intersection culling algorithm used to assist in
such optimizations is uniform voxel traversal [FujiS6]. Our
traversal implementation is taken from [AmanS7] [CIea88]
with ray bounding box checks [Snyd87].

3. Voxel Travet'al and Ray Bounding Boxes

A popular intersection culling algorithm is voxel
traversal [Glas84] [Fuji86] . Space encompassing all polygons
in the scene is divided up into small 3-dimensional boxes,
commonly known as voxels . Each voxel contains a pointer to
polygons that reside in the space occupied by that voxel.
Each ray generated traverses the voxel structure in-order and

tests for intersection only with polygons residing in voxels
that the ray pierces. Thus we hope a small candidate subset of
polygons needs to be tested for intersection.

To further reduce the number of polygons that needs to
be tested for intersection, Snyder and Barr [Snyd87] proposed
the ray bounding box. A ray bounding box in a voxel is
created from the ray segment that resides inside that voxel,
bounded by the tMin and tMax extents/distances throu gh the
voxel. For each polygon in the voxel, if its bounding box
does not cross the ray bounding box, then no intersection test
with that polygon is necessary; see figure 1. If they do cross,
then the ray-polygon intersection test is needed. This box
crossing test requires at most 6 floating point comparisons.

Figure 1.

Voxel

Polygon I

& Box

- -I

jtMax

,
!Ray Box ,
i M' oI....-_~ - - - - ~ t In

Polybon Box does
not cross Ray Box

This ray bounding box optimization has proven to
accelerate the ray tracing culling process by a great deal,
especially for densely populated regions distributed in a non-

Graphics Interface '92

uniform spatial manner, in which the raw unifonn voxel
travcrsal scheme does quite miserably. See table 1 bench
marks for this evidence. However, by using ray bounding
boxes, we are restricted to floating point voxel traversal
schemes [0Ias84] [Aman87] [Snyd87] because the IMin and
tMax values need to be computed, and thus integer-only ver
sions [Fuji86] [Clea88] cannot be used (their increase in com
putational speed is neglible compared to the advantages of the
ray bounding box anyway).

4. Usual Ray-Polygon Intersection Process

The usual ray-polygon intersection test involves the
following steps: (1) intersection against the plane on which
the polygon lies to compute the hit distance I; (2) check that t
is in front of the ray origin (t > 0) and t is not in front of any
already intersected hits (t < tHit) - if either is false, then do
not proceed any further as we have already decided that this
polygon cannot be the closest visible polygon; (3) use the t
value to compute the intersection point; (4) check that the
intersection point lies inside the polygon: this is known as the
inside -outside check.

Of all the above steps, the inside-outside check (4) is
usually the most expensive. So we try to avoid this step as
much as poss ible . One previous attempt to avoid (4) was
illustrated in [Wo090], where after step (3), the intersection
point is checked against the bounding box of the polygon . If
the intersection point lies outside the box, then this polygon
cannot possibly be hit by the ray - this check requires 6 float
ing point comparisons. Furthermore, there is no need to com
pute all the x,y,z intersection points before checking with the
bounding box. Computing the x intersection point followed by
checking with the x extents of the bounding box, then repeat
with the y and;: extents, will be all that much more efficient.
This optimization appears to be very effective for tessellated
polygons.

5. Order of Candidates for Intersection

In step (2), we also make sure that the t value of the
current polygon is not in front of any intersection hits tHie that
have already taken place, i.e., t < tHit. If 1 > tHit, then even
if this ray does intersect the polygon, it will not be the closest
visib le polygon. So why bother with steps (3) and (4)? This
leads us to think that it is advantageous to have the closest
visible polygon tested for intersection near the beginning and
all other candidate polygons can be trivially dismissed from
the t < tHit check (as well as the advantage to be described in
section 6).

5.1. Dynamic Updating of the Database

For each voxel, there exists a linked list of candidate
polygons that occupy the voxel. Ray-polygon intersection
tests occur in-order through the linked list. For our optimiza
tion, when a ray intersects the closest visible polygon inside
the vox el, that polygon is shifted up to the beginning of the
linked list. Future rays that pierce the voxel may have the
same visible polygon but now have the advantage of intersect-

185

ing the visible polygon first (or close to first). Then many
other ray-polygon intersection tests are rejected at step (2).

This optimization should theoretically be quite effec
tive for shadow determination. It is common practice to
assume that what the previous shadow ray hits may be true for
the current shadow ray [Hain86]. In addition, shadow rays
only need to determine if there exists an intersection hit or
not. Thus updating the voxellinked lists might lead to an ear
lier intersection hit for future neighbouring shadow rays. In
addition, this is better than just keeping one polygon pointer
to what was previously intersected [Hain861 , since neighbour
ing shadow rays might intersect polygons A, then B, then A,
then B, etc. in that order. With our optimization, we should
detect intersection within the first few tests of that voxel. In
addition, this optimization would be a nice complement to
another shadow culler [Pear91] in which triangles residing in
the last shadow ray hit voxel are intersected first.

However, we found that the linked list updates for sha
dow rays do not perfonn that well. Perhaps the [Hain86]
[Pear9l] optimizations have already done quite a lot of the
work in our implementation already. And having many
lights, such linked list updates may prove to be quite useless.
Thus, this linked list update is only done for non-shadow rays .

5.2. Almost Hit Cases

In the previous subsection, we only shifted the hit
cases up to the front of the voxel's linked list so that future
rays will hit the visible polygon near the beginning. How
ever, chances for the same visible polygon are not as likely
due to the small tessellated polygons. Thus, we should shift
pointers up to the front of the linked list for nearly hit
polygons as well. Then we will be able to get even better
results on reaching future visible polygons faster.

An almost hit case will be one that returns a no hie
intersection while in step (4) of the ray-polygon process
(inside-outside check), and after the [Wo090] optimization
check. This optimization check is quite reliable because it
eliminates many candidate polygons, except ones that the ray
is close to .

5.3. Using the RayID Effectively

In the previous subsections, we needed to do some
linked list shifting. The ray/D [Aman87] (first proposed to
eliminate multiple intersections with the same object in a
voxel traversal environment) can be used to select better can
didates for intersection without such shifting. For a linked list
of candidate polygons to intersect, a 2-pass walk through of
the list is needed . The first time the linked list is traversed,
only the polygons whose ray ID is quite close to the current
ray's raylD are intersected . Then the second time the list is
traversed, the remainder of the candidate polygons are inter
sected.

We do this optimization because the closer the polygon
raylD is to the current ray's raylD, the indication that previ
ous rays have attempted to intersect with this polygon . Thus
it is more probable that this polygon may be hit by the current

Graphics Interface '92

ray. A polygon's raylD that is very different from the ray's
ray/D indicates that the polygon has not been intersected
lately by previous rays - thus it is likely that the polygon will
not be the visible polygon .

On trying out this optimization, it appeared that the
raylD is not really a good indicator of better candidates, espe
cially when in section 6, dynamic ray boxes are used. Thus,
this optimization was removed from our implementation.

6. Dynamic Ray Bounding Box

For each voxel, Snyder and Barr [Snyd87] suggested a
box-crossing test between the ray bounding box and each
polygon's bounding box. If they do not cross, then we know
that intersection with the polygon must fail without any actual
ray-polygon intersection tests . We can do a little better: once
we get any intersection tHit (not just the closest one) with the
ray, we can also dynamically reduce the size of the ray bound
ing box. In other words, the ray bounding box is bounded by
[IMin, min (tHit,tMax)], instead of [tMin, tMax] t . With the
section 5 optimizations, we hope that the closest visible
polygon with hit tHit will be encountered near the beginning
of the voxel's linked list. As a result of this, the ray bounding
box can be adjusted earlier and more ray-polygon intersection
tests can be avoided from the box-crossing test.

Figure 2
Ray

Voxel

Original
Ray Box

New Ray Box does
not cross other
polygon boxes

t If If/il > IMw:, then the hit intersec tion point resides in a subsequent
voxel. That voxeI. when reached, can be bounded by [IMin, If/il].

186

This new ray bounding box does not require additional
computation, since it is already done in the ray-polygon inter
section hit. In addition, note that this optirnzation does no t
delay intersection, but is a guaranteed culling step; see next
subsection's pseudo code. It can be interpreted as a form of
object coherence, where we base our assumptions of visibility
on a previous neighbouring ray. For example, in figure 2, if
we intersect the visible polygon PI first as a result of the sec
tion 5 optirnizations, then all the other polygons P2, P3, P4,
(which may belong to the same convex surface) residing in
the same voxel can be trivially rejected for intersection due to
the newly adjusted ray box. If the ray bounding box is not
adjusted, then intersections with all those polygons would be
needed.

Note that the starting ray bounding box for a voxel
does not need to be bounded by [lMin, IMax] either. Por
each occupied voxel traversed, we added a ray-box intersec
tion check with the bounding box containing all the polygons
(bounded by the voxel) inside the current voxel - refer to this
bounding box as B. This is done in hopes that the polygons
only occupy a small region of the space inside the voxel, and
that the ray might miss all of them - we only do this intersec
tion check if B is smaller than the voxel itself. If the ray does
not intersect B, then we just continue traversal. However, if
the ray does intersect B, we have to perform box crossing and
possibly intersection tests with those polygons inside the
voxel. Then if the ray intersects B at distances I) , t 2, we can
start off with a smaller ray bounding box bounded by [I) , 12].

where IMin ~ t) < t 2 ~ tMax. Note, in figure 3, with this new
ray box formed by t) and t 2, we do not have to intersect
against the bottom sphere.

In the case of second generation rays, it is usually that
t I, IMin < O. lben we bound the ray bounding box by
[0, t21. This usually avoids the intersected surface, if convex,
to test for reflection intersections against itself. Self-mirror
reflections cannot occur for convex surfaces.

Figure 3

Voxel

Original Ray Box

Graphics Interface '92

6.1. Some Pseudo Code

1* Standard ray bounding box scheme for each voxel *1
rayBox.boundl = 0 + vox el->tMin * 0;
rayBox.bound2 = 0 + voxel->tMax * 0;
for (each p o l y g o n in voxel)

{

if (boxesCross (rayBox, polygonBox))
hit = intersectPoly (&t Hit,

&intersec tPoint, polygo n) ;

1* New dynamic ray bounding box scheme *1
rayBox .boundl = 0 + max[O,tl] * 0;
rayBox.bound2 = 0 + t2 * 0;
f or (each polygon in voxel)

{

if (boxesCross (rayBox , polygonBox))
hit = intersectPoly (&tHit,

&in tersectPoint, po l ygon);

/* sect ion 5 op timization * /

if (hit 11 a lmost Hit)
p l a ce polygon at the front o f
t he voxe l list;

/ * s ectio n 6 opt imi zation * /

if (hit && tHit < t2)
rayBox . bound2 = intersectPoint;

6.2. A voiding Ray Bounding Box Evaluations

In the above pseudo code, the boxesCross routine takes
at most 6 floating point comparisons. However, this is needed
for each polygon in a voxel. In some instances, these ray
bounding box evaluations are known ahead of time to not help
speed up the ray tracing process, then we might as well do the
ray-polygon intersection irrunediately (without any box
esCross tests) . This is when the ray crosses a voxel that
results in a ray bounding box close to the size of the voxel.
We can detect this situation by evaluating
t 2 - I1 > lMaxVoxel for each voxel. If true, then we do not
bother with the ray bounding box checks, where
IMaxVoxel = p ..JX2 + y2 + Z2 (which is a constant), X, Y,Z
represent the dimensions of each voxel, and P is some value
close to and less than 1 (a good choice for p is 0.75). Note
that if P is I , then tMaxVoxel is just the maximum ray seg
ment th at can pass through the voxel.

Then we avoid the box crossing test for this voxel
unless the ray bounding box can be reduced by the section 5
and 6 optimizations .

6.3. Multiple Ray Bounding Boxes

If there are a large number of polygons in the voxel, an
obvious optimization that can be done here is to have mUltiple
ray bounding boxes for this voxel. Then we have a step-case

187

of smaller ray bounding boxes. If there are r ray bounding
boxes, then the voxel's linked list of polygons need to be
traversed r times, each time their bounding boxes checked
against the current ray bounding box.

This was implemented and tested on our ray tracer, but
found the results to be quite disappointing and thus was not
included in the final ray tracer code. It appeared that with
multiple ray bounding boxes, less ray-polygon intersections
took place. However, many ray-polygon intersections were
just delayed by the many box crossing tests. Then the box
crossing tests dominated the processing time.

7. The Ray-Plane Intersection

The ray-plane intersection (step 1) needs to be optim
ized to improve the overall ray-polygon intersection test. The
usual computation of t with a plane (or polygon) is :

d-N'D
t=

ND

where the plane equation is defined by N 'P = d, P is a
<x,y,Z> variable triplet, N is the surface normal, and the ray
(thus the ray-plane intersection point in step 3) is defined by
D + tD. We will show that the t evaluations should take 6-8
floating point operations under some circumstances.

7.1. For Second Generation Rays

With second generation rays being shot, we can reuse
some previous results to save computation. In other words,
for a reflection ray, some of the ray-plane computation can be
reused from its parent/cast ray.

We will subscript all cast ray information with c and
reflected ray information (extendible to refraction and shadow
rays as well) with r. We can expand d - N'D, to
d -N'(De + le Dc), where le is the 1 value for the closest visi
ble polygon in the cast ray. Then we get d - N 'De - le NDC"
As a result, only an additional multiplication and subtraction
are needed to compute the numerator of l, in step (1): we
already know the values of le' d 1 = d - N'De and d 2 = N 'De
from the cast ray . The reflection ray numerator is then simply
d l - le d 2·

After some implementation and testing, we found that
this optimization is not worth the trouble due to the small
number of same cast and reflection ray hits, and due to the
complicated information management within our scheme.

7.2. For Cast (First Generation) Rays

For first generation or cast rays, we notice that the
numerator of the 1 evaluation is always a constant for the
same triangle (assuming a perspective view). In other words,
d - N 'De is the same througout each triangle. However, it is
far too memory consuming to store the numerator for each t1i
angle in order to save dot product evaluations.

We can preprocess and translate the entire database so
that the eye origin resides at (0,0,0). Then N 'De = 0 and the
numerator of the 1 evaluation is d for all triangles, without the
need for any storage. Thus 1 = d I N ·De •

Graphics Interface '92

There are other advantages to this translation as well.
The ray-plane intersection point computation is simplified
from Dc + IDe to just IDe. We can use this IDe to simplify ray
bounding box computations for tMin*De and tMax*De as
well. However, we cannot apply this optimization when
depth of field effects (along the flavour of distribution ray
tracing [Cook84)) are to be generated.

7.3. Dynamic Clipping of t Values

In step (2) when the t value is computed, we need to
check that t is in front of the ray origin. In most implementa
tions, a constant fudge value is used to evaluate this: e.g.,
t > 0.0001. However, we can use dynamic clipping of the t
extents. We should check that t > tMin instead - actually, it is
even better to check that t > t I (since t I > tMin).

This optimization allows us to omit steps (3) and (4) if
t < / 1 • This is because the intersection point is far beyond the
polygon (beyond the vox el, in fact) that we know it cannot
possibly be an intersection hit. With more tight values like t I
to clip against, the better the chance that steps (3) and (4) can
be omitted.

8. Implications of Voxel Subdivision

One open and difficult question in uniform voxel
traversal approaches is the subdivision level necessary to get
an optimal overall ray tracing performance. If the subdivision
level is too deep, then we pay for more traversal and extensive
memory costs, but gain the advantage of only needing to deal
with small number of surfaces in each voxel. If the subdivi·
sion level is not deep enough, we pay for the cost of having to
perform more ray-surface intersection tests - this can
significantly slow down the ray tracing process. Devillers
[Devi88] attempted to answer this question with an analytic
solution R for uniformly sized voxels. Subramanian and
Fussell [Subr9l] also attempted to answer this question in a
similar fashion . However, both papers always assumed a
RxRxR subdivision scheme, instead of a general XxYxZ
scheme. In addition, there are so many variables (though spa
tial distribution and number of polygons play a major role in
this analysis) which we must consider that it cannot all be
encapsulated in an analytic equation. And is it worth the
effort to compute this complicated and expensive solution
anyway?

8.1. Previous Benchmarks

With ray bounding boxes [Snyd87], it seems that we
are less reliant on the voxel subdivision as compared to the
raw voxel traversal approach; the ray bounding boxes act as
second level cullers in case many surfaces need to be tested
for intersection. And since voxels do take up a lot of
memory, it seems that we should consider XxYxZ subdivision
schemes that are small. The justification for minimal subdivi·
sion can be seen in table I, where ray bounding boxes
(without our optimizations discussed here) were used to
accelerate ray tracing on a SUN 3/280 with fpa , and 8 me ga
bytes of memory . The benchmarks were done on a University

188

of Toronto ray tracing program named optik with true spheres
(not tessellated into many polygons), benchmarked in 1988.
The image used was taken from the Haines' sphere flakes
image [Hain87], where a densely populated environment dis
tributed in a non-uniform manner is created due to a large
floor and a small, concentrated set of spheres. Note that Ray
Box indicates the CPU minutes taken to ray trace with the ray
bounding box and uniform voxel traversal; Raw Traversal
indicates the CPU minutes taken to ray trace with only uni
form voxel traversal.

#Sphere Grid Res Image Res Ray Box Raw Traversal

7382 40x40x40 512xS12 163 391
7382 50XSOXSO 512xS12 142 270
7382 60x60x60 512xS12 138 220
7382 70x70x70 512xS12 133 199

Table I: Ray Box vs. Voxel Traversal

8.2. An Approximate Subdivision Level

Another reason we sought a memory conservative
voxel subdivision is due to our main platform - the Mac IT.
Memory conservation is so essential, we can only assume a
maximum configuration of 8 megabytes of memory on the
machines. This is why many of our optirnizations do not take
up additional memory and help reduce the usage of memory
as well: an alternative to faster but more memory intensive,
voxel-based cullers [Jeva89].

We do not try to look for an optimal subdivision level ;
an approximate one keeping the subdivision minimal should
do. Our subdivision scheme to be described below works
well in general for polygons . We consider only one main
variable: the total number of polygons in the scene - label this
n. Let m = n 1/3, assuming a rather uniform distribution of
polygons throughout 3-space. Then we compute the bound
ing box surrounding all polygons in the scene. Let the spans
of the bounding box extents (difference between the max
imum and minimum extents) be labelled s~, Sy and s. for each
of the axes. Then, taking into consideration the spans that
occupy the voxel space,

s~ Sy s,
X=--m, Y=--m, Z=--m.

ma.rS marS ma.rS

where maxS = max(s~,sy,s,). This linearity provides us with
more cubical voxels than the standard RxRxR subdivision.
More cubical voxels give a good distribution of polygons
within voxels without using up the excess memory imposed
by a RxRxR subdivision scheme.

8.3. Order Complexities of the Subdivision Level

With this voxel subdivision strategy, we have placed
an upper bound on the memory consumption. At worst, the
number of voxels is mxmXm, which actually equals n. And at
worst, each voxel will contain pointers to n polygons. Thus
the upper bound memory usage is O(n2) (actually, we can
lower this upper bound to O(n 513) for planar polygons if a
smart in sertion into voxels is done). However, having each
voxcl containing n polygons is very unrealistic: this means

Graphics Interface '92

that all the modelJed polygons occupy a large chunk of 3d
space. The best case memory usage is O(n), indicating that a
polygon resides totally within a fixed number of voxels,
which may very well be the norm for tessellated polygons.

Since the complexity of the ray bounding boxes is
clearly O(n), then the above paragraph's complexities also
hold true for the entire ray tracing intersection culler memory
requirements .

9. Testing and Analysis

The testing was done on a standard 68030, 40 MHz,
Mac Ilfx running under the MPW3.2 environment on Multi
Finder 6.0.5 with 8 megabytes of memory. The C code was
compiled under the standard MPW C compiler. In our imple
mentation, all surfaces are tessellated into triangles and
efficiently ray traced in barycentric coordinates. Our ray
tracer is a ported and re-coded version of Alias' ray tracer pro
duct, version 3.0. This ported version serves as the ray tracer
for the Sketch! product on the Mac.

Many previous papers on intersection culling algo
rithms appeared only interested in the number of ray-surface
intersections that were done. Their only aim was to lower the
number of such intersections. However, the computation to
avoid such intersections may become even more costly than
the actual intersection itself. Intersection culling research is at
the point now where this number alone has become a less
im portant indicator for speeding up the ray tracing process.
Thus, in the upcoming testing sections, the number of inter
sections done are not stressed in our benchmarks.

A worst-case breakdown of our ray-triangle intersec
tion scheme is as follows: step (1) requires 13 flops, step (2)
requires 2 flops, step (3) requires 6 flops, the extra bounding
box check [Woo90] requires 6 flops, and step (4) done in
barycentric coordinates requires 25 flops . This comes to a
total of 52 floating point evaluations per triangle. With the
section 7 optimizations, the floating point count for cast ray
intersections is lowered to 43 .

9.1. General Testing

The benchmarks in table 2 are listed in total CPU
minutes and seconds to render the 640x480 images, and
exactly 1 sample per pixel is taken. On average, it appears
th at we get about 9-14% improvement with our optimizations
over the old timings (New Time over Old Time), where the
old timings represent the basic Snyder and Barr culler imple
mentation [Snyd87] and using the subdivision level calculated
via section 8's method. Considering how much superior ray
bounding boxes are over uniform voxel traversal (as can be
seen in table I), the 9-14% improvement is not too bad. Also
note that %Intersect is the percentage of ray-polygon intersec
tions saved with our optimizations.

Everything in the scene is made mirror reflective, with
a max imum recursive reflection depth of 3. Note also that the
lamp image is non -uniformly/sparsely distributed due to the
large fl oor on which the lamp lies on. The lamp image is
densely populated due to the small nuts and bolts, as weIJ as

189

the duplicated lamp bowl on the inside and outside.

Image #Tri Grid Res %Inter.;ect Old Time New Time

Spheres 3500 15x9x5 13.6% 7:55 6:43
Room 5182 17x 17x 16 10.2% 37:20 34:01
Lamp 29062 3Oxl0x30 14.9% 25:44 23:27

Table 2: General Optimization Benchmarks

9.2. Object Coherence Testing

We suspect that with a higher sampling rate will come
better improvement results for our optimizations. This is
mainly due to the assumption that object coherence optimiza
tions in sections 5 and 6 are more likely to get similar hits
between subsequent rays (which will provide the majority of
the speed ups in this paper). The lamp image, at resolution
640x480, is being used to test out this assumption (see table
3), where a 6.7% (8.9 - 2.2) improvement jumps to 11.3%
(12.2-0.9) with more sampling. Note that sampling indi
cates the maximum sampling rate in an adaptive sampling
scheme [Whit80], Tri Time represents the timings for the
optimizations mentioned in section 7, and New Time
represents the timings for all our optimizations.

Sampling Old Time Tri Time %Improve New Time %Improve

l x l 25:44 25:10 2.2% 23:27 8.9%
2x2 37:32 37:11 0.9% 34:07 9.5%
3x3 6 1: 28 60:55 0.9% 54:02 12.2%

Table 3: Lamp Image with Levels of Anti-Aliasing

9.3. Voxel Subdivision Testing

Our voxel subdivision scheme proposed in section 8
needs to be verified, for it is difficult to accept that such
minimal subdivision is sufficient in many cases. Most pro
grammers implementing a uniform voxel traversal scheme
usually employ a much deeper subdivision level. Table 4
i\1ustrates an example for the spheres image. Note that space
usage indicates the total memory usage by the program, and
note the alarming increase in memory as subdivision level
increases for even such a simple scene .

Grid Res Ti me Space Usage

15x9x5 6:43 1,003,852 bytes
15x15x15 6: 44 1.221 .752 bytes
20x20x20 6:50 1.331.768 bytes
30x30x30 7:12 1,801,816 bytes

Table 4: Sphere Image with different Subdivision

In addition, note the comparatively small speed differ
ence in table I between the different subdivision levels . With
our optimizations and having only to ray trace polygons, we
expect that the difference will even be narrowed more .

10. Optimization Extensions

The list of optimizations mentioned in this paper can
be trivially extended to other surface types as well as culling
approaches. For example, the main surface type we co n
sidered here is the po lygon. However, the use of object

Graphics Interface '92

coherence with respect to the ray bounding box (sections 5
and 6) can be applied to other surface types such as general
quadrics, parametric and implicit surfaces, etc. In fact, the
speedups should be even superior due to the more expensive
ray-surface intersection routines for the complex surfaces and
the availability of more object coherence (as compared to tiny
polygons).

The object coherent ray bounding boxes can be applied
to most voxel-based cullers [Glas84] [Aman87] [Synd87]
[Jeva89]. Even with hierarchical voxel structures [Glas84],
we can apply these optimizations and reduce the voxel subdi
vision or in case the maximum depth of the voxel is reached
but the voxel is still over-populated. Furthermore, if voxels
are created on the fly [Jeva89] as needed, as opposed to all
preprocessed voxels, then a much higher polygon count
should be the limit used before further voxel subdivision is
done.

11. Conclusions and Further Discussions

We have listed some simple but rewarding optimiza
tions that can be easily achieved for ray tracing polygons.
They have the advantage of requiring neither additional
memory nor substantial additional floating point computation.
Some of the optimizations can be applied to other surface
types and intersection cullers as wel!.

Another optimization idea is to generate cartoon
rejiections for planar polygons. Such reflections place a
decay/fading factor on its intensity, where reflections have no
visible effect after a certain maximum distance maxDist. A
simple decay factor can be [(maxDist - tHit) ImaxDist]k ;
where tHit < maxDist. Voxel traversal and ray-polygon inter
sections will be halted beyond maxDist, but approximate
reflection information will usually already have been gen
erated. How acceptable and useful is this approximation?
Could this decay apply to shadows to fake ambience (shadow
intensity as a function of the distance to the closest occluding
object) as well? See cartoon reflections image, where the
floor has parameters maxDist = 5 for reflections, max
Dist = 10 for shadows, and k = I, i.e. linear decay.

Final thought: if our subdivision level is really quite
small and most polygons fit in few voxels, then do we really
need the raylD concept in this environment? Based on other
experiences [Sung91], the raylD may not always accelerate
the ray tracing process, probably due to extensive memory
usage - a 32 bit flag is attached to each polygon. A possible
alternative is to make the raylD an unsigned short (16 bits),
and reinitialize all raylD's after 65535 rays are shot. This
was implemented ontop of our ray tracer but found no notice
able speedups . Other alternatives are needed .. .

12. Acknowledgements

Thanks to Andrew Pearce, Steve Chall, Maria Raso (of
Alias Research), and Kelvin Sung (University of Illinois) for
proofreading and providing valuable suggestions to this paper.

190

13. References

[Aman87] J. Amanatides, A. Woo, "A Fast Voxel Traversal
Algorithm for Ray Tracing", Eurographics, August
1987, pp. 1-10.

[Appe68] A. Appel, "Some Techniques for Shading Machine
Renderings of Solids", Proc. AFlPS JSCC, VD!. 32,
1968, pp. 37-45.

[Clea88] J. Cleary, G. Wyvill, "Analysis of an Algorithm for
Fast Ray Tracing Using Uniform Space Subdivision",
Visual Computer, July 1988, pp. 65-83_

[Cook84] R. Cook, T. Porter, L. Carpenter, "Distributed Ray
Tracing", Computer Graphics, 18(3), July 1984, pp.
137-145.

[Devi88] O. Devillers, "The Macro Regions: An Efficient
Space Division Structure for Ray Tracing", Rapport de
Recherche du Laboratoire d'Informatique de I'Ecole
Normale Superieure, Paris, November 1988.

[Fuji86] A. Fujimoto, T. Tan aka, K. Iwata, "ARTS:
Accelerated Ray-Tracing System", IEEE Computer
Graphics and Applications, 6(4), April 1986, pp. 16-
26.

[Glas84] A. Glassner, "Space Subdivision for Ray Tracing",
IEEE Computer Graphics and Applications, 4(10),
October 1984, pp. 15-22.

[Gold71] R. Goldstein, R. Nagel, "3-D Visual Simulation",
Simulation, January 1971, pp. 25-31.

[Hain86] E. Haines, D. Greenberg, "The Light Buffer: A Sha
dow Testing Accelerator", IEEE Computer Graphics
and Applications, 6(9), September 1986, pp. 6-16.

[Hain87] E. Haines, "A Proposal for Standard Graphics
Environment", IEEE Computer Graphics and Applica
tions, 7(5), May 1987, pp. 3-5.

[Jeva89] D. Jevans, B. Wyvill, "Adaptive Voxel Subdivision
for Ray Tracing", Graphics Interface, June 1989, pp.
164-172.

[Pear91] A. Pearce, D. Jevans, "Exploiting Shadow Coher
ence in Ray Tracing", Graphics Interface, June 1991,
pp. 109-116.

[Snyd87] 1. Snyder, A. Barr, "Ray Tracing Complex Models
Containing Surface Tessellations", Computer Graph
ics, 21(4), July 1987, pp. 119-128.

[Subr91] K. Subramanian, D. Fussell, "Automatic Termina
tion Criteria for Ray Tracing Hierarchies", Graphics
Interface, June 1991, pp. 93-100.

[Sung91] K. Sung, "A DDA Octree Traversal Algorithm for
Ray Tracing", Eurographics, September 91, pp. 73-85 .

[Whit80] T. Whitted, "An Improved lllumination Model for
Shaded Display", Communications of the ACM, 23(6),
June 1980, pp. 343-349.

[Wo090] A. Woo, "Fas t Ray-Polygon Intersection", Graphics
Gems, ed. A. Glassner, Academic Press, August 1990,
pp. 394.

Graphics Interface '92

Image 1: Spheres Image 2: Room

Image 3: Lamp Image 4: Cartoon Reflections

