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1. Abstract 

Ray tracing consumes a lot of computational resources 
to render images. This expense usually lies in the ray-surface 
intersection tests. If the surfaces were polygonal, then we 
should be able to apply more polygon-specific optimizations 
to partially cull intersections. Our ray tracer uses a non
memory intensive, voxel traversal intersection culler to assist 
in such optimizations. 

Keywords: intersection culling, polygon, ray tracing, subdivi
sion, voxel traversal. 

2. Introduction 

Ray tracing [Appe6S] [Gold71] is widely ack
nowledged as a rendering approach that can produce very 
reali stic and beautiful images [WhitSO). It is also widely 
known that ray tracing is very expensive computation ally. 
Many intersection culling algorithms have been proposed to 
reduce this expense . However, such intersection culling algo
rithms do not take into consideration the nature of the primi
tives which they arc culling. 

The polygon is one of the most used primitives in 
rcndering surfaces - either as a result of tessellation of com
plex surfaces, or as descriptions of truncated planar surfaces . 
In this paper, we examine the polygon very carefully, in hopes 
of optimizing and rcducing the need for ray-polygon intersec
tions, while keeping the memory requirements down to a 
minimum. The intersection culling algorithm used to assist in 
such optimizations is uniform voxel traversal [FujiS6]. Our 
traversal implementation is taken from [AmanS7] [CIea88] 
with ray bounding box checks [Snyd87]. 

3. Voxel Travet'al and Ray Bounding Boxes 

A popular intersection culling algorithm is voxel 
traversal [Glas84] [Fuji86] . Space encompassing all polygons 
in the scene is divided up into small 3-dimensional boxes, 
commonly known as voxels . Each voxel contains a pointer to 
polygons that reside in the space occupied by that voxel. 
Each ray generated traverses the voxel structure in-order and 

tests for intersection only with polygons residing in voxels 
that the ray pierces. Thus we hope a small candidate subset of 
polygons needs to be tested for intersection. 

To further reduce the number of polygons that needs to 
be tested for intersection, Snyder and Barr [Snyd87] proposed 
the ray bounding box. A ray bounding box in a voxel is 
created from the ray segment that resides inside that voxel, 
bounded by the tMin and tMax extents/distances throu gh the 
voxel. For each polygon in the voxel, if its bounding box 
does not cross the ray bounding box, then no intersection test 
with that polygon is necessary; see figure 1. If they do cross, 
then the ray-polygon intersection test is needed. This box
crossing test requires at most 6 floating point comparisons. 

Figure 1. 
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This ray bounding box optimization has proven to 
accelerate the ray tracing culling process by a great deal, 
especially for densely populated regions distributed in a non-
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uniform spatial manner, in which the raw unifonn voxel 
travcrsal scheme does quite miserably. See table 1 bench
marks for this evidence. However, by using ray bounding 
boxes, we are restricted to floating point voxel traversal 
schemes [0Ias84] [Aman87] [Snyd87] because the IMin and 
tMax values need to be computed, and thus integer-only ver
sions [Fuji86] [Clea88] cannot be used (their increase in com
putational speed is neglible compared to the advantages of the 
ray bounding box anyway). 

4. Usual Ray-Polygon Intersection Process 

The usual ray-polygon intersection test involves the 
following steps: (1) intersection against the plane on which 
the polygon lies to compute the hit distance I; (2) check that t 
is in front of the ray origin (t > 0) and t is not in front of any 
already intersected hits (t < tHit) - if either is false, then do 
not proceed any further as we have already decided that this 
polygon cannot be the closest visible polygon; (3) use the t 
value to compute the intersection point; (4) check that the 
intersection point lies inside the polygon: this is known as the 
inside -outside check. 

Of all the above steps, the inside-outside check (4) is 
usually the most expensive. So we try to avoid this step as 
much as poss ible . One previous attempt to avoid (4) was 
illustrated in [Wo090], where after step (3), the intersection 
point is checked against the bounding box of the polygon . If 
the intersection point lies outside the box, then this polygon 
cannot possibly be hit by the ray - this check requires 6 float
ing point comparisons. Furthermore, there is no need to com
pute all the x,y,z intersection points before checking with the 
bounding box. Computing the x intersection point followed by 
checking with the x extents of the bounding box, then repeat 
with the y and;: extents, will be all that much more efficient. 
This optimization appears to be very effective for tessellated 
polygons. 

5. Order of Candidates for Intersection 

In step (2), we also make sure that the t value of the 
current polygon is not in front of any intersection hits tHie that 
have already taken place, i.e., t < tHit. If 1 > tHit, then even 
if this ray does intersect the polygon, it will not be the closest 
visib le polygon. So why bother with steps (3) and (4)? This 
leads us to think that it is advantageous to have the closest 
visible polygon tested for intersection near the beginning and 
all other candidate polygons can be trivially dismissed from 
the t < tHit check (as well as the advantage to be described in 
section 6). 

5.1. Dynamic Updating of the Database 

For each voxel, there exists a linked list of candidate 
polygons that occupy the voxel. Ray-polygon intersection 
tests occur in-order through the linked list. For our optimiza
tion, when a ray intersects the closest visible polygon inside 
the vox el, that polygon is shifted up to the beginning of the 
linked list. Future rays that pierce the voxel may have the 
same visible polygon but now have the advantage of intersect-
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ing the visible polygon first (or close to first). Then many 
other ray-polygon intersection tests are rejected at step (2). 

This optimization should theoretically be quite effec
tive for shadow determination. It is common practice to 
assume that what the previous shadow ray hits may be true for 
the current shadow ray [Hain86]. In addition, shadow rays 
only need to determine if there exists an intersection hit or 
not. Thus updating the voxellinked lists might lead to an ear
lier intersection hit for future neighbouring shadow rays. In 
addition, this is better than just keeping one polygon pointer 
to what was previously intersected [Hain861 , since neighbour
ing shadow rays might intersect polygons A, then B, then A, 
then B, etc. in that order. With our optimization, we should 
detect intersection within the first few tests of that voxel. In 
addition, this optimization would be a nice complement to 
another shadow culler [Pear91] in which triangles residing in 
the last shadow ray hit voxel are intersected first. 

However, we found that the linked list updates for sha
dow rays do not perfonn that well. Perhaps the [Hain86] 
[Pear9l] optimizations have already done quite a lot of the 
work in our implementation already. And having many 
lights, such linked list updates may prove to be quite useless. 
Thus, this linked list update is only done for non-shadow rays . 

5.2. Almost Hit Cases 

In the previous subsection, we only shifted the hit 
cases up to the front of the voxel's linked list so that future 
rays will hit the visible polygon near the beginning. How
ever, chances for the same visible polygon are not as likely 
due to the small tessellated polygons. Thus, we should shift 
pointers up to the front of the linked list for nearly hit 
polygons as well. Then we will be able to get even better 
results on reaching future visible polygons faster. 

An almost hit case will be one that returns a no hie 
intersection while in step (4) of the ray-polygon process 
(inside-outside check), and after the [Wo090] optimization 
check. This optimization check is quite reliable because it 
eliminates many candidate polygons, except ones that the ray 
is close to . 

5.3. Using the RayID Effectively 

In the previous subsections, we needed to do some 
linked list shifting. The ray/D [Aman87] (first proposed to 
eliminate multiple intersections with the same object in a 
voxel traversal environment) can be used to select better can
didates for intersection without such shifting. For a linked list 
of candidate polygons to intersect, a 2-pass walk through of 
the list is needed . The first time the linked list is traversed, 
only the polygons whose ray ID is quite close to the current 
ray's raylD are intersected . Then the second time the list is 
traversed, the remainder of the candidate polygons are inter
sected. 

We do this optimization because the closer the polygon 
raylD is to the current ray's raylD, the indication that previ
ous rays have attempted to intersect with this polygon . Thus 
it is more probable that this polygon may be hit by the current 
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ray. A polygon's raylD that is very different from the ray's 
ray/D indicates that the polygon has not been intersected 
lately by previous rays - thus it is likely that the polygon will 
not be the visible polygon . 

On trying out this optimization, it appeared that the 
raylD is not really a good indicator of better candidates, espe
cially when in section 6, dynamic ray boxes are used. Thus, 
this optimization was removed from our implementation. 

6. Dynamic Ray Bounding Box 

For each voxel, Snyder and Barr [Snyd87] suggested a 
box-crossing test between the ray bounding box and each 
polygon's bounding box. If they do not cross, then we know 
that intersection with the polygon must fail without any actual 
ray-polygon intersection tests . We can do a little better: once 
we get any intersection tHit (not just the closest one) with the 
ray, we can also dynamically reduce the size of the ray bound
ing box. In other words, the ray bounding box is bounded by 
[IMin, min (tHit,tMax)], instead of [tMin, tMax] t . With the 
section 5 optimizations, we hope that the closest visible 
polygon with hit tHit will be encountered near the beginning 
of the voxel's linked list. As a result of this, the ray bounding 
box can be adjusted earlier and more ray-polygon intersection 
tests can be avoided from the box-crossing test. 

Figure 2 
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t If If/il > IMw:, then the hit intersec tion point resides in a subsequent 
voxel. That voxeI. when reached, can be bounded by [IMin, If/il]. 

186 

This new ray bounding box does not require additional 
computation, since it is already done in the ray-polygon inter
section hit. In addition, note that this optirnzation does no t 
delay intersection, but is a guaranteed culling step; see next 
subsection's pseudo code. It can be interpreted as a form of 
object coherence, where we base our assumptions of visibility 
on a previous neighbouring ray. For example, in figure 2, if 
we intersect the visible polygon PI first as a result of the sec
tion 5 optirnizations, then all the other polygons P2, P3, P4, 
(which may belong to the same convex surface) residing in 
the same voxel can be trivially rejected for intersection due to 
the newly adjusted ray box. If the ray bounding box is not 
adjusted, then intersections with all those polygons would be 
needed. 

Note that the starting ray bounding box for a voxel 
does not need to be bounded by [lMin, IMax] either. Por 
each occupied voxel traversed, we added a ray-box intersec
tion check with the bounding box containing all the polygons 
(bounded by the voxel) inside the current voxel - refer to this 
bounding box as B. This is done in hopes that the polygons 
only occupy a small region of the space inside the voxel, and 
that the ray might miss all of them - we only do this intersec
tion check if B is smaller than the voxel itself. If the ray does 
not intersect B, then we just continue traversal. However, if 
the ray does intersect B, we have to perform box crossing and 
possibly intersection tests with those polygons inside the 
voxel. Then if the ray intersects B at distances I) , t 2, we can 
start off with a smaller ray bounding box bounded by [I) , 12]. 

where IMin ~ t) < t 2 ~ tMax. Note, in figure 3, with this new 
ray box formed by t) and t 2, we do not have to intersect 
against the bottom sphere. 

In the case of second generation rays, it is usually that 
t I, IMin < O. lben we bound the ray bounding box by 
[0, t21. This usually avoids the intersected surface, if convex, 
to test for reflection intersections against itself. Self-mirror 
reflections cannot occur for convex surfaces. 

Figure 3 
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6.1. Some Pseudo Code 

1* Standard ray bounding box scheme for each voxel *1 
rayBox.boundl = 0 + vox el->tMin * 0; 
rayBox.bound2 = 0 + voxel->tMax * 0; 
for (each p o l y g o n in voxel) 

{ 

if (boxesCross (rayBox, polygonBox)) 
hit = intersectPoly (&t Hit, 

&intersec tPoint, polygo n ) ; 

1* New dynamic ray bounding box scheme *1 
rayBox .boundl = 0 + max[O,tl] * 0; 
rayBox.bound2 = 0 + t2 * 0; 
f or (each polygon in voxel) 

{ 

if (boxesCross ( rayBox , polygonBox)) 
hit = intersectPoly (&tHit, 

&in tersectPoint, po l ygon); 

/* sect ion 5 op timization * / 

if (hit 11 a lmost Hit) 
p l a ce polygon at the front o f 
t he voxe l list; 

/ * s ectio n 6 opt imi zation * / 

if (hit && tHit < t2) 
rayBox . bound2 = intersectPoint; 

6.2. A voiding Ray Bounding Box Evaluations 

In the above pseudo code, the boxesCross routine takes 
at most 6 floating point comparisons. However, this is needed 
for each polygon in a voxel. In some instances, these ray 
bounding box evaluations are known ahead of time to not help 
speed up the ray tracing process, then we might as well do the 
ray-polygon intersection irrunediately (without any box
esCross tests) . This is when the ray crosses a voxel that 
results in a ray bounding box close to the size of the voxel. 
We can detect this situation by evaluating 
t 2 - I1 > lMaxVoxel for each voxel. If true, then we do not 
bother with the ray bounding box checks, where 
IMaxVoxel = p ..JX2 + y2 + Z2 (which is a constant), X, Y,Z 
represent the dimensions of each voxel, and P is some value 
close to and less than 1 (a good choice for p is 0.75). Note 
that if P is I , then tMaxVoxel is just the maximum ray seg
ment th at can pass through the voxel. 

Then we avoid the box crossing test for this voxel 
unless the ray bounding box can be reduced by the section 5 
and 6 optimizations . 

6.3. Multiple Ray Bounding Boxes 

If there are a large number of polygons in the voxel, an 
obvious optimization that can be done here is to have mUltiple 
ray bounding boxes for this voxel. Then we have a step-case 

187 

of smaller ray bounding boxes. If there are r ray bounding 
boxes, then the voxel's linked list of polygons need to be 
traversed r times, each time their bounding boxes checked 
against the current ray bounding box. 

This was implemented and tested on our ray tracer, but 
found the results to be quite disappointing and thus was not 
included in the final ray tracer code. It appeared that with 
multiple ray bounding boxes, less ray-polygon intersections 
took place. However, many ray-polygon intersections were 
just delayed by the many box crossing tests. Then the box 
crossing tests dominated the processing time. 

7. The Ray-Plane Intersection 

The ray-plane intersection (step 1) needs to be optim
ized to improve the overall ray-polygon intersection test. The 
usual computation of t with a plane (or polygon) is : 

d-N'D 
t= 

ND 

where the plane equation is defined by N 'P = d, P is a 
<x,y,Z> variable triplet, N is the surface normal, and the ray 
(thus the ray-plane intersection point in step 3) is defined by 
D + tD. We will show that the t evaluations should take 6-8 
floating point operations under some circumstances. 

7.1. For Second Generation Rays 

With second generation rays being shot, we can reuse 
some previous results to save computation. In other words, 
for a reflection ray, some of the ray-plane computation can be 
reused from its parent/cast ray. 

We will subscript all cast ray information with c and 
reflected ray information (extendible to refraction and shadow 
rays as well) with r. We can expand d - N'D, to 
d -N'(De + le Dc), where le is the 1 value for the closest visi
ble polygon in the cast ray. Then we get d - N 'De - le NDC" 
As a result, only an additional multiplication and subtraction 
are needed to compute the numerator of l, in step (1): we 
already know the values of le' d 1 = d - N'De and d 2 = N 'De 
from the cast ray . The reflection ray numerator is then simply 
d l - le d 2· 

After some implementation and testing, we found that 
this optimization is not worth the trouble due to the small 
number of same cast and reflection ray hits, and due to the 
complicated information management within our scheme. 

7.2. For Cast (First Generation) Rays 

For first generation or cast rays, we notice that the 
numerator of the 1 evaluation is always a constant for the 
same triangle (assuming a perspective view). In other words, 
d - N 'De is the same througout each triangle. However, it is 
far too memory consuming to store the numerator for each t1i 
angle in order to save dot product evaluations. 

We can preprocess and translate the entire database so 
that the eye origin resides at (0,0,0). Then N 'De = 0 and the 
numerator of the 1 evaluation is d for all triangles, without the 
need for any storage. Thus 1 = d I N ·De • 
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There are other advantages to this translation as well. 
The ray-plane intersection point computation is simplified 
from Dc + IDe to just IDe. We can use this IDe to simplify ray 
bounding box computations for tMin*De and tMax*De as 
well. However, we cannot apply this optimization when 
depth of field effects (along the flavour of distribution ray 
tracing [Cook84)) are to be generated. 

7.3. Dynamic Clipping of t Values 

In step (2) when the t value is computed, we need to 
check that t is in front of the ray origin. In most implementa
tions, a constant fudge value is used to evaluate this: e.g., 
t > 0.0001. However, we can use dynamic clipping of the t 
extents. We should check that t > tMin instead - actually, it is 
even better to check that t > t I (since t I > tMin). 

This optimization allows us to omit steps (3) and (4) if 
t < / 1 • This is because the intersection point is far beyond the 
polygon (beyond the vox el, in fact) that we know it cannot 
possibly be an intersection hit. With more tight values like t I 
to clip against, the better the chance that steps (3) and (4) can 
be omitted. 

8. Implications of Voxel Subdivision 

One open and difficult question in uniform voxel 
traversal approaches is the subdivision level necessary to get 
an optimal overall ray tracing performance. If the subdivision 
level is too deep, then we pay for more traversal and extensive 
memory costs, but gain the advantage of only needing to deal 
with small number of surfaces in each voxel. If the subdivi· 
sion level is not deep enough, we pay for the cost of having to 
perform more ray-surface intersection tests - this can 
significantly slow down the ray tracing process. Devillers 
[Devi88] attempted to answer this question with an analytic 
solution R for uniformly sized voxels. Subramanian and 
Fussell [Subr9l] also attempted to answer this question in a 
similar fashion . However, both papers always assumed a 
RxRxR subdivision scheme, instead of a general XxYxZ 
scheme. In addition, there are so many variables (though spa
tial distribution and number of polygons play a major role in 
this analysis) which we must consider that it cannot all be 
encapsulated in an analytic equation. And is it worth the 
effort to compute this complicated and expensive solution 
anyway? 

8.1. Previous Benchmarks 

With ray bounding boxes [Snyd87], it seems that we 
are less reliant on the voxel subdivision as compared to the 
raw voxel traversal approach; the ray bounding boxes act as 
second level cullers in case many surfaces need to be tested 
for intersection. And since voxels do take up a lot of 
memory, it seems that we should consider XxYxZ subdivision 
schemes that are small. The justification for minimal subdivi· 
sion can be seen in table I, where ray bounding boxes 
(without our optimizations discussed here) were used to 
accelerate ray tracing on a SUN 3/280 with fpa , and 8 me ga
bytes of memory . The benchmarks were done on a University 
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of Toronto ray tracing program named optik with true spheres 
(not tessellated into many polygons), benchmarked in 1988. 
The image used was taken from the Haines' sphere flakes 
image [Hain87], where a densely populated environment dis
tributed in a non-uniform manner is created due to a large 
floor and a small, concentrated set of spheres. Note that Ray 
Box indicates the CPU minutes taken to ray trace with the ray 
bounding box and uniform voxel traversal; Raw Traversal 
indicates the CPU minutes taken to ray trace with only uni
form voxel traversal. 

#Sphere Grid Res Image Res Ray Box Raw Traversal 

7382 40x40x40 512xS12 163 391 
7382 50XSOXSO 512xS12 142 270 
7382 60x60x60 512xS12 138 220 
7382 70x70x70 512xS12 133 199 

Table I: Ray Box vs. Voxel Traversal 

8.2. An Approximate Subdivision Level 

Another reason we sought a memory conservative 
voxel subdivision is due to our main platform - the Mac IT. 
Memory conservation is so essential, we can only assume a 
maximum configuration of 8 megabytes of memory on the 
machines. This is why many of our optirnizations do not take 
up additional memory and help reduce the usage of memory 
as well: an alternative to faster but more memory intensive, 
voxel-based cullers [Jeva89]. 

We do not try to look for an optimal subdivision level ; 
an approximate one keeping the subdivision minimal should 
do. Our subdivision scheme to be described below works 
well in general for polygons . We consider only one main 
variable: the total number of polygons in the scene - label this 
n. Let m = n 1/3, assuming a rather uniform distribution of 
polygons throughout 3-space. Then we compute the bound
ing box surrounding all polygons in the scene. Let the spans 
of the bounding box extents (difference between the max
imum and minimum extents) be labelled s~, Sy and s. for each 
of the axes. Then, taking into consideration the spans that 
occupy the voxel space, 

s~ Sy s, 
X=--m, Y=--m, Z=--m. 

ma.rS marS ma.rS 

where maxS = max(s~,sy,s,). This linearity provides us with 
more cubical voxels than the standard RxRxR subdivision. 
More cubical voxels give a good distribution of polygons 
within voxels without using up the excess memory imposed 
by a RxRxR subdivision scheme. 

8.3. Order Complexities of the Subdivision Level 

With this voxel subdivision strategy, we have placed 
an upper bound on the memory consumption. At worst, the 
number of voxels is mxmXm, which actually equals n. And at 
worst, each voxel will contain pointers to n polygons. Thus 
the upper bound memory usage is O(n2) (actually, we can 
lower this upper bound to O(n 513) for planar polygons if a 
smart in sertion into voxels is done). However, having each 
voxcl containing n polygons is very unrealistic: this means 
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that all the modelJed polygons occupy a large chunk of 3d 
space. The best case memory usage is O(n), indicating that a 
polygon resides totally within a fixed number of voxels, 
which may very well be the norm for tessellated polygons. 

Since the complexity of the ray bounding boxes is 
clearly O(n), then the above paragraph's complexities also 
hold true for the entire ray tracing intersection culler memory 
requirements . 

9. Testing and Analysis 

The testing was done on a standard 68030, 40 MHz, 
Mac Ilfx running under the MPW3.2 environment on Multi
Finder 6.0.5 with 8 megabytes of memory. The C code was 
compiled under the standard MPW C compiler. In our imple
mentation, all surfaces are tessellated into triangles and 
efficiently ray traced in barycentric coordinates. Our ray
tracer is a ported and re-coded version of Alias' ray tracer pro
duct, version 3.0. This ported version serves as the ray tracer 
for the Sketch! product on the Mac. 

Many previous papers on intersection culling algo
rithms appeared only interested in the number of ray-surface 
intersections that were done. Their only aim was to lower the 
number of such intersections. However, the computation to 
avoid such intersections may become even more costly than 
the actual intersection itself. Intersection culling research is at 
the point now where this number alone has become a less 
im portant indicator for speeding up the ray tracing process. 
Thus, in the upcoming testing sections, the number of inter
sections done are not stressed in our benchmarks. 

A worst-case breakdown of our ray-triangle intersec
tion scheme is as follows: step (1) requires 13 flops, step (2) 
requires 2 flops, step (3) requires 6 flops, the extra bounding 
box check [Woo90] requires 6 flops, and step (4) done in 
barycentric coordinates requires 25 flops . This comes to a 
total of 52 floating point evaluations per triangle. With the 
section 7 optimizations, the floating point count for cast ray
intersections is lowered to 43 . 

9.1. General Testing 

The benchmarks in table 2 are listed in total CPU 
minutes and seconds to render the 640x480 images, and 
exactly 1 sample per pixel is taken. On average, it appears 
th at we get about 9-14% improvement with our optimizations 
over the old timings (New Time over Old Time), where the 
old timings represent the basic Snyder and Barr culler imple
mentation [Snyd87] and using the subdivision level calculated 
via section 8's method. Considering how much superior ray 
bounding boxes are over uniform voxel traversal (as can be 
seen in table I), the 9-14% improvement is not too bad. Also 
note that %Intersect is the percentage of ray-polygon intersec
tions saved with our optimizations. 

Everything in the scene is made mirror reflective, with 
a max imum recursive reflection depth of 3. Note also that the 
lamp image is non -uniformly/sparsely distributed due to the 
large fl oor on which the lamp lies on. The lamp image is 
densely populated due to the small nuts and bolts, as weIJ as 
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the duplicated lamp bowl on the inside and outside. 

Image #Tri Grid Res %Inter.;ect Old Time New Time 

Spheres 3500 15x9x5 13.6% 7:55 6:43 
Room 5182 17x 17x 16 10.2% 37:20 34:01 
Lamp 29062 3Oxl0x30 14.9% 25:44 23:27 

Table 2: General Optimization Benchmarks 

9.2. Object Coherence Testing 

We suspect that with a higher sampling rate will come 
better improvement results for our optimizations. This is 
mainly due to the assumption that object coherence optimiza
tions in sections 5 and 6 are more likely to get similar hits 
between subsequent rays (which will provide the majority of 
the speed ups in this paper). The lamp image, at resolution 
640x480, is being used to test out this assumption (see table 
3), where a 6.7% (8.9 - 2.2) improvement jumps to 11.3% 
(12.2-0.9) with more sampling. Note that sampling indi
cates the maximum sampling rate in an adaptive sampling 
scheme [Whit80], Tri Time represents the timings for the 
optimizations mentioned in section 7, and New Time 
represents the timings for all our optimizations. 

Sampling Old Time Tri Time %Improve New Time %Improve 

l x l 25:44 25:10 2.2% 23:27 8.9% 
2x2 37:32 37:11 0.9% 34:07 9.5% 
3x3 6 1: 28 60:55 0.9% 54:02 12.2% 

Table 3: Lamp Image with Levels of Anti-Aliasing 

9.3. Voxel Subdivision Testing 

Our voxel subdivision scheme proposed in section 8 
needs to be verified, for it is difficult to accept that such 
minimal subdivision is sufficient in many cases. Most pro
grammers implementing a uniform voxel traversal scheme 
usually employ a much deeper subdivision level. Table 4 
i\1ustrates an example for the spheres image. Note that space 
usage indicates the total memory usage by the program, and 
note the alarming increase in memory as subdivision level 
increases for even such a simple scene . 

Grid Res Ti me Space Usage 

15x9x5 6:43 1,003,852 bytes 
15x15x15 6: 44 1.221 .752 bytes 
20x20x20 6:50 1.331.768 bytes 
30x30x30 7:12 1,801,816 bytes 

Table 4: Sphere Image with different Subdivision 

In addition, note the comparatively small speed differ
ence in table I between the different subdivision levels . With 
our optimizations and having only to ray trace polygons, we 
expect that the difference will even be narrowed more . 

10. Optimization Extensions 

The list of optimizations mentioned in this paper can 
be trivially extended to other surface types as well as culling 
approaches. For example, the main surface type we co n
sidered here is the po lygon. However, the use of object 

Graphics Interface '92 



coherence with respect to the ray bounding box (sections 5 
and 6) can be applied to other surface types such as general 
quadrics, parametric and implicit surfaces, etc. In fact, the 
speedups should be even superior due to the more expensive 
ray-surface intersection routines for the complex surfaces and 
the availability of more object coherence (as compared to tiny 
polygons). 

The object coherent ray bounding boxes can be applied 
to most voxel-based cullers [Glas84] [Aman87] [Synd87] 
[Jeva89]. Even with hierarchical voxel structures [Glas84], 
we can apply these optimizations and reduce the voxel subdi
vision or in case the maximum depth of the voxel is reached 
but the voxel is still over-populated. Furthermore, if voxels 
are created on the fly [Jeva89] as needed, as opposed to all 
preprocessed voxels, then a much higher polygon count 
should be the limit used before further voxel subdivision is 
done. 

11. Conclusions and Further Discussions 

We have listed some simple but rewarding optimiza
tions that can be easily achieved for ray tracing polygons. 
They have the advantage of requiring neither additional 
memory nor substantial additional floating point computation. 
Some of the optimizations can be applied to other surface 
types and intersection cullers as wel!. 

Another optimization idea is to generate cartoon 
rejiections for planar polygons. Such reflections place a 
decay/fading factor on its intensity, where reflections have no 
visible effect after a certain maximum distance maxDist. A 
simple decay factor can be [(maxDist - tHit) ImaxDist]k ; 
where tHit < maxDist. Voxel traversal and ray-polygon inter
sections will be halted beyond maxDist, but approximate 
reflection information will usually already have been gen
erated. How acceptable and useful is this approximation? 
Could this decay apply to shadows to fake ambience (shadow 
intensity as a function of the distance to the closest occluding 
object) as well? See cartoon reflections image, where the 
floor has parameters maxDist = 5 for reflections, max
Dist = 10 for shadows, and k = I, i.e. linear decay. 

Final thought: if our subdivision level is really quite 
small and most polygons fit in few voxels, then do we really 
need the raylD concept in this environment? Based on other 
experiences [Sung91], the raylD may not always accelerate 
the ray tracing process, probably due to extensive memory 
usage - a 32 bit flag is attached to each polygon. A possible 
alternative is to make the raylD an unsigned short (16 bits), 
and reinitialize all raylD's after 65535 rays are shot. This 
was implemented ontop of our ray tracer but found no notice
able speedups . Other alternatives are needed .. . 
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