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Abstract 

While almost all research on image representation 
has assumed an underlying discrete space, the 
most common sources of images have the structure 
of the continuum. Although employing discrete 
space representations leads to simple algorithms, 
among its costs are quantization errors, significant 
verbosity and lack of structural information . A 
neglected alternative is the use of continuous space 
representations. In this paper we discuss one such 
representation and algorithms for its generation 
from views of 3D continuous space geometric 
models. For this we use binary space partitioniM 
~ for representing both the model and the 
image . Our approach falls under the general rubric 
of visible surface algorithms, providing an object
space algorithm which under certain conditions 
requires only sub-linear time for a partitioning 
tree represented model, and in general exploits 
occlusion so that the computational cost converges 
toward the complexity of the image as the depth 
complexity increases. Visible edges can also be 
generated as a step following visible surface 
determination. However, an important contextual 
difference is that the resulting image trees are used 
in subsequent continuous space operations. These 
include affine transformations, set operations, and 
metric calculations, which can be used to provide 
image compositing, incremental image modification 
in a sequence of frames, and facilitating matching 
for computer vision/robotics. Image trees can also 
be used with the hemicube and light buffer 
illumination methods as a rep lacement for regular 
grids, thereby providing exact rather than 
approximate visibility. 

Discrete vs . Continuous Space 

We have come to think of images as synonymous 
with a 20 array of pixels . However, this is an artifact 
of the transducers we use to convert between the 
physical domain and the informational domain. 
Physical space at the resolution with which we are 
concerned IS most effectively modeled 

mathematically as being continuous, that is , as 
having the structure of the Real s (or at least the 
Rationals) as opposed to the structure of the 
Integers. Modeling space as being defined on a 
regular lattice, while simple, is verbose and induces 
quantization which reduces accuracy and can 
introduce visible artifacts. Using nothing other than 
a lattice for the representation provides no image 
dependent structure such as edges . 

Consider applying to a discrete image an affine 
transformation, an elementary spatial operation . 
The solution for this is developed by reasoning not 
merely in discrete . space but in the continuous 
domain as well : samples are used to reconstruct a 
"virtual" continuous function which is then 
resampled. However, the quantization effects can 
become rather apparent should the transform 
entail a significant increase in size and a rotation by 
some small angle, despite the use of high quality 
filters . This is due to such factors as ringing, 
blurring, aliasing, and anisotropic effects which 
cannot all be simultaneously minimized (see, for 
example, [Mitchell and Netravali 88]). More 
importantly, discon tinuities become increasingly 
smeared as one increases the size, since the 
convolution assumes a band-limited signal, i.e . an 
image with no edges. This has practical implications 
when texture mapping is used to define the eolor of 
surfaces in 30: since a texture map can be enlarged 
arbitrarily, a brick texture, for example, will become 
diffuse instead of exhibiting distinctly separate 
bricks. 

Now consider applying affine transformations to 
images represented by quadtrees, a spatial 
structure, developed within the context of a finite 
discrete space, for reducing verbosity and inducing 
structure on an image. The algorithm for 
constructing the new quadtree of the transformed 
image seems relatively complicated when compared 
to the corresponding algorithms for continuous 
space representations: it must res ample each 
transformed leaf node and construct an entirely 
new tree . In contrast, boundary representations, 
simplical decompositions, or binary space 
partitioning trees only require transforming points 
and/or hyperplanes (a vector-matrix product), and 
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no structural changes are required. An extremal 
example of this difference IS the quad-tree 
representation of a square occupying a quadrant, 
which requires 5 nodes, but when slightly rotated 
or translated the number of nodes is on the order 
of the number of pixels lying on its boundary (say 
about 4k for a lk x lk grid) . This rather dramatic 
metamorphosis illustrates quite clearly that the 
quadtree reflects the nature of a finite discrete 
space, a nature differing from that of the 
continuum, and that applying arbitrary affine 
transformations in discrete space can affect the 
structure of the representation, introducing 
quantization noise and requiring more complicated 
algorithms. 

We are inclined to state a stronger proposition: 
discrete space , as a regular lattice, supports weakly 
the semantics of the continuum . Assuming this, the 
difficulties with transforming pixel arrays and 
quadtrees is not so unexpected . A good model for 
images is one that treats them as functions mapping 
a continuous 2D domain to a color space (the 2D 
domain may be unbounded) . Discrete space 
representations are then treated as approximations 
of this function , or as evaluations achieved by 
point-sampling the domain, and discrete space 
operations are then constructed as approximations 
to their continuous space analogs. To display the 
image, conversion to a discrete representation 
would still be needed, but this now becomes strictly 
an issue of sampling the image function. (This 
argument should not be confused with the random 
vs . raster scan distinction, which is a question of 
transducer technology , not of computational 
technology .) With this said , we will now consider 
methods of generating continuous space image 
representations from 3D continuous space 
geometric models . 

Vis ible Surface Algorithms 

The context in which continuous space image 
representations are most easily produced is 
synthetic image generation. Here one begins with a 
3D geometric model, defined using continuous space 
methods, from which a continuous space image 
representation is generated. This idea appeared 
very early in the development of visible surface 
algorithms , and in [Sutherland, Sproull and 
Schumacker 74] such algorithms were called 
object -space algorithms. But the approach has been 
neglected in favor of solutions utilizing quanti zed 
spaces (except In the Computational Geometry 
community) . 

The algorithm of [Weiler and Atherton 77] is a 
well known example of a continuous space method 
for generating images, and since it resembles 
closely our own approach, we will describe it in 
some detail. The algorithm operates on a set of 
polygons defined in a 3D post-perspective screen
space; thus , all projectors are parallel to the z-axis. 
Each polygon IS represented by a boundary 

representation of some variety. Presumably the 
polygons are the faces of a collection of polyhedra, 
but this property is not relied on. The algorithm 
proceeds by recursively partitioning space un til 
homogeneous regions of the image are generated. 
Homogeneity in this case means, in 2-space, a 
region in which only one polygon is visible, or in 3-
space, a region which is entirely visible or entirely 
occluded. The output of the algorithm is a set of 
polygons in 2-space with disjoint interiors whose 
union forms the image. These polygons are In 
general non-convex and contain holes. 

At each point in the recursion, a region r of 
space is partitioned into two sub-regions, which we 
denote as r- and r+. The partitioning set used is a 
3-space polygonal cylinder determined by the 
boundary of a polygon p, chosen from among those 
polygons that intersect r (Figure 1). The faces of the 
cylinder are orthogonal to the xy-plane, and so 
con tain those projectors which go through the 
boundary of p. Since p may be of any genus, the 
sub-regions created by partitioning with p are not 
necessarily connected and are rarely convex . All 
polygons, including p , are then partitioned into 
subsets lying in r- and r+, where we take r- to be 
the sub-region containing p, i.e . the interior sub
region, and r+ to be the exterior sub-region. 

Weller-Atherton Algorithm 
Figure 1 

Whenever there is some polygon p I in r with 
supporting hyperplane h such that p' = h " r, then 
all polygons lying "behind" p I are occluded by p'; 
such a polygon was called a surrounder in the 
literature on visible surface algorithms of the 70's, 
taken from the analogy of a 2D window being 
surrounded by a polygon. The algorithm selects 
whenever possible the plane of such a polygon as 
the partitioning set and then treats the "far region" 
of p' as homogeneous, i.e. as being totally occluded, 
and so terminates recursion in that region and 
discards the occluded polygons. Note that the 
cylindrical partitioning by p above results in p 
being a surrounder for r- . Finally , whenever a 3-
space region is generated containing no polygons, 
this region is necessarily homogeneous . 
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While the algorithm as just described is all that 
is required to generate a set of polygons forming 
the image, we have said nothing about which 
polygon is chosen as the partition er when no 
surrounder is present. A typical technique aimed at 
improving the performance is to initially sort the 
polygons in z using for each polygon the smallest z
coordinate from among its vertices, and then to 
maintain this ordering when polygons are 
partitioned. The partltlOner in the absence of a 
surrounder is then the first in this ordering among 
those intersecting a region. In the presence of 
multiple surrounders, the closest one is chosen. 

A similar but lesser known approach was 
described in an unpublished paper by Ivan 
Sutherland I Sutherland 73], where he develops a 
visible surface algorithm inspired by the ideas used 
in the ID sorting algorithm quicksort. Its output is 
the same as the above algorithm, i.e. a set of disjoint 
polygons, and it differs from that algorithm 
primarily in one aspect: In the absence of a 
surrounder, the partitioning set is a plane through 
only one edge of a polygon in r. The plane then is 
orthogonal to the xy-plane, or equivalently, it 
contains the edge and the center of projection 
(Figure 2). Selecting which edge to use at each point 
in the recursion is a heuristic process. Sutherland 
tried several heuristics without reaching any firm 
conclusions about what method was best. It is 
interesting to note that Sutherland's paper also 
contains a section discussing how this algorithm can 
be used for shadow generation , transparency and 
collision detection . 

Partitioning tree algorithm 
Figure 2 

As pointed out in [Harp 86], this algorithm can 
be treated as a binary space partltlOning tree 
algorithm in that it uses a recursive partitioning by 
arbitrary hyperplanes; however, it does not 
generate a tree explicitly, a crucial distinction . This 
is not surprising given the original inspiration, 
quicksort. For indeed quicksort can be seen as 
implicitly constructing a ID binary search tree , 
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which in turn can be interpreted as a ID 
partitioning tree. There is a somewhat subtle but 
important difference however: sorting has been 
developed in terms of points whereas space 
partitioning is in terms of hyperplanes . In ID, and 
only in ID, points and hyperplanes have the same 
dimension, viz. 0, and so it is easy to confuse them. 
But hyperplanes are (d-l)-dimensional not OD sets, 
as are points. And they have an orientation that 
distinguishes the two halfspaces induced on a d
space, an orientation that can be used for ordering. 
Points have no such orientation, nor do they 
partition space, and so cannot be used to order d
space, d> 1. This is one way to see why sorting 
algorithms are not applicable in dimensions other 
than ID . Indeed, if we "attach" the ordering 
relationship to a ID point, we then have a ID 
hyperplane. 

It seems apropos before leaving this section to 
discuss briefly the visible surface algorithm by John 
Warnock [Warnock 69]. It was the first recursive 
space partitioning, visible surface algorithm, and it 
follows the general scenario outlined above, the 
main difference being that the partitioning 
hyperplanes are not determined by polygonal 
edges (also, polygons were not explicitly 
partitioned). Today we see it as using a quadtree 
partitioning scheme. However, like the Sutherland 
algorithm, no explicit tree representation is 
generated; its output is a set of visible squares 
typically drawn directly into a pixel array. It is in 
effect a discrete space solution (also called a screen
space algorithm). It was to a certain degree the 
verbosity of this discrete solution that motivated 
the development of the two previously described 
continuous space algorithms. 

Partitioning Trees 

The binary space partitioning tree was originally 
developed in the context of visible surface 
determination. (The appendix contains a summary 
for those unfamiliar with the method.) [Schumacker 
et al 69] developed an incipient version that 
involved manual creation of a binary tree of 
vertical separating planes so that each object was 
separated from all other objects in the scene. The 
tree could then be used to generate a view
dependent visibility priority ordering. In [Fuchs, 
Kedem and N aylor 80] and IN aylor 81] three 
advancements were made: 1) the objects 
themselves were represented by the tree, 2) tree 
generation was automatic, 3) a dimension 
independent representation of space was 
introduced along with the name "binary space 
partitioning tree". As noted above, Sutherland also 
developed a number of ideas using this approach 
without generating a tree, the lack of which 
presumably contributed to his not realizing the 
connection between his work and that of 
[Schumacker et al 69]. 
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A generalized VIew of partitioning trees sees 
them not simply as representations of polytopes 
but as a representation of functions whose domain 
and range are continuous spaces of finite 
dimensions dl and d2 respectively: f: X ESdI =} 

Y E Sdz. The partitioning tree partitions the domain 
into a hierarchical collection of sub-domains. Within 
each sub-domain a value-continuous function fi 
defines the value of f within that sub-domain 
(typically, fi is defined for all of SdI as well , 
although this is not essential). All points in SdI at 
which f is value-discontinuous are contained within 
partitioning hyperplanes. This interpretation is 
relevant to the work here since images are 
functions from 2-space to some color space. 

A partitioning tree also provides a structure 
enabling a hierarchical representation of f. As an 
example, consider polytopes. At the cells of the 
partitioning , each fi is a boo lean valued constant 
function indicating whether or not the cell is in the 
set. The polytope is the set of points P = closure( { 
c i I Cj is an in-cell} ). Thus f is the characteristic 
function fx for the set P; the algorithm for 
computing f is the point classification algorithm 
given in [Naylor 81] [Thibault and Naylor 87]. A 
useful hierarchical representation of fx can be 
obtained by associating with each region r a 
constant function providing the conditional 
probability of a point being in P given that it is 
known to lie somewhere within r . Thus , for 
example, the value at the root of the tree is the 
expected value of the function. We use this idea 
below to detect regions of the image plane that are 
discovered to be totally occluded yet 
inhomo geneous. 

Partitioning Tree Visible Surface Algorithm 

Consider a 3D geometric mode ling system in which 
all geometric sets are represented by partitioning 
trees. An explicit representation of the model can 
be formed by taking the union of all the objects 
comprising the model, resulting in a single tree. This 
model-tree can then be used, along with a 
particular view of the model , to generate a total 
visibility priority ordering on the components of 
the tree. This ordering can be either far-to-near 
(back-to-front) or near-to-far (front-to-back). 
Generating this ordering can be combined with 
view volume clipping, which performs a non
destructive intersection operation between the 
model and the view volume, generally in sub-linear 
time [Naylor 90b]. 

Regardless of the ordering, a partitioning tree 
representing the image can be generated by 
forming the union of the faces in priority order. 
More specifically, consider a near-to-far ordering 
with the initial value of the image being the empty 
set. 
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1) project each face onto the 2D projection 
plane and let the attributes of each face be 
its color. 

2) form the 2-space union of the faces in 
priority order: 

image = Union_Sets( image, face ) 
where the attributes of the image take 

precedent over those of the face . 

Thus faces are projected to 2D regions of the image 
plane, and the effect of higher priority faces 
occluding lower priority faces is achieved by letting 
the attributes of the image tree take precedence 
over those of the current face being "added" to the 
image. If the faces are represented by partitioning 
trees, then the union can be performed using tree 
merging [Naylor, Amanatides and Thibault 90] 
(figure 3), or if by b-reps, then by the algorithm 
given in [Thibault and Naylor 87]. If the reverse 
ordering is used (far-to-near), then the attributes 
of the new face would take precedence over those of 
the image tree. We see then that visible surface 
problem can be reduced to ordered set operations 
on polyhedral faces . (All of what has been said for 
3D -> 2D holds for any d > I, since partitioning trees 
and their algorithms are dimension independent.) 

/A" 
{'o/'o X 

( \ 1\ o 1 0 

A union operation between two faces with 
attribute precedence 

Figure 3 

With either ordering, non-refractive 
transparency can be supported by using a "merge 
attributes" method that blends colors according to 
their opacity (alpha values). Given two polygons PI 
and p 2, in which P I has color Cl and opacity et} 

and occludes P2 which has color C2 and opacity a2, 
then the resulting color is c 1,2 = (Cl· a I) + 
(c2*a2) * (l-al) and opacity is al,2 = al + (l-al) 
* a2 [Porter and Duff 84]. 

In addition the set of visible edges can be 
generated, if desired , by performing a closure 
operation which determines for each sub
hyperplane which subsets have a heterogeneous 
neighborhood [Naylor, Amanatides and Thibault 
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90). So for example, in Figure 3 the subsets of 
hyperplane A that have homogeneous neighbor
hoods and so would not be on a discontinuity in the 
image are those that separate the two polka-dotted 
cells or two out-cells. This then provides a 
continuous space visible edge (hidden line) 
algorithm as an additional step after the visible 
surface algorithm . 

A 3D variant is obtained by transforming the 
faces into 3D post-perspective screen-space. Then 
each face is considered to define a polygonal cylin
der as in [Weiler and Atherton 77). The union 
operation is now on 3D cylinders bounded on the 
near side by the plane of the face (see Figure 2). The 
faces could then be added to the image tree in .!!..!lY 
order, although near-to-far still has advantages as 
discussed below. Note that the 3D image tree that 
this produces represents In continuous space 
exactly the same function represented in discrete 
space by the standard {frame-buffer, z-buffer} 
structure. 

The algorithm can also be performed in model
space, in which the cylinders are instead cones 
whose conical-vertex is the center of projection. 
This then becomes the algorithm present in [Chin 
and Feiner 89) which they applied to shadow 
generation, instead of image/visible-surface gen
eration I . The resulting model-space image tree can 
then be transformed by the viewing transform
ation into screen-space. Working in model-space is 
preferable numerically, as it avoids the problems 
encountered as a consequence of the non-linear 
perspective projection which com-presses the 
depth at rate of z-2. Note that this problem can be 
ameliorated somewhat by attempting to match the 
distribution created by the projection to the distri
bution of floating-point representable numbers. 
Uniformly distributed points in model-space 
become more compressed by the perspective pro
jection the greater the depth. Floating-point repre
sentable numbers become more dense the closer 
the value is to O. The standard mapping of the near 
plane to z=O and the far plane to z=1 results in a 
mismatch: the greater the model-space depth the 
further the projected depth-value is from O. This is 

1 Both their ideas and our ideas on this subject occurred 
independently. We first realized the potential presented 
here during the period in which we were developing 
the thesis that partitioning trees could provide a 
representation of polytopes [Thibault and Naylor 87]. 
Being able to solve analytically the visible
surface/shadow problems with partitioning trees, 
analogous to [Sutherland 73], provided part of the 
supporting evidence for this thesis. [Chin and Feiner 89] 
extended the ideas in [Thibault and Naylor 87] to 
generation of shadows. Concurrent with their work, we 
developed set operations on partitioning trees [Naylor, 
Amanatides and Thibault 90], which then enabled us to 
implement the work described in this paper. However, 
we had originally conceived of our solutions in terms of 
screen-space using 2D trees , rather than the model
space approach with 3D trees in [Chin and Feiner 89]. 
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trivially rectified by mapping the far plane to 0, and 
the near plane to -1 if in a left-handed system or to 
+ 1 if in a right-handed system. 

Now let us compare our algorithm, using a 
near-to-far ordering, both to the Weiler and 
Atherton algorithm and to the Sutherland algo
rithm. They are of course all quite similar. They 
recursively partition space using at each stage a 
binary partitioning set (i.e. any (d-l)-set that 
partitions a d-region into two d-regions), and the 
partitioning is determined by planes containing 
either a polyhedral edge and the center of 
projection and/or by planes of faces. Aside from 
differences arising from the availability of a priority 
ordering (to be discussed below), the relationship of 
our algorithm to Sutherland's is simple: the order 
of "edge selection", i.e. partitioning hyperplane 
selection, is pre-determined by the priority 
ordering of the faces and the tree representing 
each face. And of course, we explicitly construct a 
tree to represent the output. 

The primary difference between our method 
and that of Weiler and Atherton, once again other 
than the priority ordering, is the representation of 
polygons: their representation is a variety of b
reps while ours is partitioning trees. This difference 
manifests both in the algorithms for set operation 
(between faces), and the form of the output (a 
graph vs. a tree). It is our contention that the set 
operation algorithm for b-reps are more 
complicated, slower, and less numerically robust 
than the corresponding algorithm for partitioning 
trees. Some early indication of this is suggested by 
the fact that the original set operation algorithm 
given in [Weiler and Atherton 77], which is based 
on a kind of parity counting of intersections, fails to 
handle co-incident boundaries correctly. A correct 
but more involved solution was presented later in 
[Weiler 80) based on Euler operations. 

If in the case of partitioning trees, the boundary 
is already represented by 2D partitioning trees 
lying in a 3D hyperplane, as discussed in [N aylor 
90a], then their representation in screen space 
either as 2-space entities or as 3-space cylinders is 
trivial, requiring the application of a single affine 
transformation (the inverse of the viewing 
transformation used for points). The tree merging 
algorithm can then be used to form the image tree 
as shown in Figure I above. Note that a single 2D 
partitioning tree can represent multiple coplanar 
connected components (faces), and a well built tree 
will generally yield better performance than 
operations on a list of connected components. 

The second and more important difference 
arises from our use of a 3D partitioning tree to 
represent the model and so to generate a priority 
ordering. As a consequence, the algorithm is 
simplified by eliminating the code and execution 
time for the initial approximating depth sort , and 
everything associated with the notion of 
surrounders (detection and ordering). Of greater 
consequence is that the partitioning of faces by any 
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occluded subset of an edge is automatically 
eliminated simply by using a near-to-far ordering. 
Indeed, at any point in the construction, the image 
tree can be interpreted as a 2D-polytope 
representing a visibility mask: interior regions 
correspond to occluded regions and exterior to 
unoccluded regions . Since additions are made only 
to unoccluded regions , any intersection between 
two occluded edges is never computed. 

Exploiting the creation of occluded regions of the 
image plane to reduce computation can be 
enhanced further by maintaIning at internal 
regions a mem bership attribute indicating opacity 
within any region r . This can be either the 
percentage of r that is opaque, i.e. the expected 
value of a point lying in r being occluded (see Figure 
4) , or simply a boolean variable indicating whether 
r is fully occluded or not. Maintaining this 
membership value during the insertion of a new 
face amounts to the standard condensation of 
homogeneous regions used in set operations, the 
difference being that a region which is 
homogeneous only with respect to opacity but not 
color is not replaced by a leaf node. Thus, whenever 
an internal region becomes fully opaque, it will 
become a cell of the visibility mask even though a 
subtree remains defining the image within this fully 
occluded region . Consequently , this subtree is 
never again accessed during subsequent processing 
of lower priority faces. Moreover, when the root 
region becomes occluded , rendering ceases . 

Maintaining % occluded at regions 
Figure 4 

This captures very simply the ideas present in 
other work using such masks 2 which require 

2 A recent example of this is [Sharir and Overmars 92), 
which is similar in many ways to our method, although 
it apparently was not implemented. They assume the 
existence of a visibility priority ordering, maintain a 
visibility map (our image tree) and a separate mask 
(our opacity attribute in the image tree) . They also rely 
on merging of these. However, instead of adding one 
face at a time, they construct a separate visibility map 
for the next several faces, and then merge this with the 
"current" map, improving the worst case performance. 
This idea, if shown to be fruitful, can be easily applied 
to our method, since there is no algorithmic difference 
between a tree for a single face and another temporary 
image tree. 
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algorithms comparable to set operations on b-reps , 
and it is the continuous space correlate of pixel 
masks, be they 1-bit per pixel or many bits per 
pixel masks (i .e. sub-pixel masks) [Fiume and 
Fournier 83) [Carpenter 84). When combined with 
view-volume clipping, an effect IS achieved 
somewhat analogous to the culling methods 
presented in [Teller and Sequin 91). While one 
would presume that their additional preprocessing 
would lead to noticeably less computation to 
generate an image, our method permits a dynamic 
geometric model (and of course none of the 
requisite preprocessing and storage of the resulting 
information) . 

There is, however, a notable deficiency with our 
scheme as outline above: the order in which the 
image plane is partitioned is predetermined by the 
visibility ordering. However, the order in which 
hyperplanes are chosen affects significantly the 
"goodness" of the trees, i.e. the efficiency of the 
search structure provided by the tree . We have 
come to realize that an efficient partitioning tree is 
one that represents the set/function as something 
analogous to a sequence of approximations [N aylor 
92). We have implemented tree construction 
methods employing expected case models for 
various elementary operations and these methods 
produce such trees. What we would then like is to 
reflect within the image trees this effort at 
constructing good trees . To achieve this, instead of 
building the image tree from scratch, we modify (a 
copy of) the existing model tree so that it will 
become a representation in 3-space of the occluded 
and unocculded regions . This can be performed 
equally well in either model-space or screen-space, 
with the afore mentioned caveat that screen-space 
induces a numerically undesirable compression of 
the depth. 

There are several ways to apply this idea; we 
will describe here only the simplest. We still 
traverse the tree in a near-to-far priority order. 
However, after forming the 3D face-beam, instead 
of performing image u face-beam we perform 
model u face-beam . As a consequence, entirely 
occluded faces will be removed by this union 
operation, and so will not have their face-beam 
constructed only to find that it is totally occluded, 
as will occur with the previous method. Indeed, 
every subtree of the model-tree that is found to be 
totally occluded will be condensed automatically by 
the union operation to a single cell before it is 
encountered in the priority traversal (Figure 5). 

An extremal illustration of the power of this 
approach occurs when an entire object is occluded 
by a single face of another object. The beam for that 
face will "engulf' the object, and it will be reduced to 
a single "occluded" cell. Given our tree construction 
methods, the computation required in such a case is 
comparable to computing the union of the beam 
with a bounding volume of the object, yielding 
constant time elimination of the occluded object. 
Thus, under favorable conditions, the visible 
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surface can be computed in sub-linear time (and 
this is in addition to the typically su b-linear clipping 
of the model to the view volume) . More generally, 
this approach exploits during "beam insertion" the 
efficient search structures previously generated 
for each object and the gains from condensing 
homogeneous regions . Equally important, it retains 
a desirable residue of thi s structure in the resulting 
image tree, and this residue is important for 
efficient execution of any subsequent spatial 
operations, such as those discussed in the next 
sec tion . 

v v 

With viewer V, subtree S Is occluded by face 
F and is removed by condensation. 

Figure 5 

Utilizing Image Trees 

Given an image tree, one can sample it for display . 
There are a number of ways to do this. The simplest 
but most expensive would be to use point 
classification for each pixel to determine its color. 
This would, however, allow one to use non-uniform 
sampling techniques [Mitchell 87) for anti-aliasing. 
A more reasonable alternative would be to classify 
scan-lines . But since parametric representations 
are ideal for scan-conversion, and b-reps are in 
effect such representations, one can use the 
algorithm in [Thibault and Naylor 87) to classify an 
initial b-rep polygon corresponding to the viewport . 
This yields a disjoint set of convex polygons each as 
list of vertices, one for each cell, whose attributes 
are the color of the corresponding cell. Finally, if the 
faces of the polyhedra are given as b-reps, then 
these can be retained in the process that constructs 
the image tree, i.e. during the union operations, as 
described in [Naylor, Amanatides and Thibault 90) . 
Thus , by extracting these from the image tree, one 
obtains an output similar to that generated by the 
b-rep based algorithms, viz. a set of convex 
polygons each represented by a list of vertices . 

Since only the visible surfaces are scan-
converted, texture mapping and per-pixel 
illumination calculations (Phong shading) will be 
computed only for visible pixels . . In addition, 
transparency is ca lculated between polygons 
rather than repeatedly for each pixel, and so can be 
provided on systems that do not have the requisite 
pixel-Ievel hardware . The accuracy of anti-aliasing 
can be improved significantly, since the visible 
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surface is represented at the resolution provided 
by floating point , which provides a much higher 
degree of accuracy than is practical with discrete 
space. Polygonal edges can be filtered using either 
continuous or discrete space representations of the 
filter, with the results being accumulated in the 
fame buffer using calculations analogous to those 
described for transparency . This then provides the 
continuous space version of sub-pixel mask 
techniques for anti-aliasing presented in [Fiume 
and Fournier 83) [Carpenter 84) and [Abram , 
Westover and Whitted 85], and no per-pixel list of 
micro-polygons with an approximating depth-sort 
is needed as in [Carpenter 84) . It is also a more 
efficient form of the per-pixel "analytic" approach in 
[Catmull 78) which relied on Sutherland's algorithm 
for visible surfaces. And for line drawings on B&W 
printers and displays , the visible edges can be used . 

As discussed in the introduction, an immediate 
advantage of continuous space representations is 
th at affine transformations can be applied with 
ease. Images can be scaled by (Sx, Sy , Sz) 
corresponding to a model-space scaling of ( Sx, Sy, 
l/S z ). A rotation of an image about the screen
space z-axis by 9 is comparable to a rotation by 9 
about the model-space image of this axis, which is 
the axis through the center of projection and 
orthogonal to the projection plane. A translation of 
the image by ( Tx , Ty ) is equivalent to a shearing 
with respect to this same model-space axis by ( Shx 
= Tx, Shy = Ty ). If the perspective is not too severe, 
then this approximates a similar translation in 
model-space . For defining texture on a surface, a 2D 
image tree can be affinely transformed in order to 
map it into screen-space and then sampled (note 
that transforming hyperplanes into screen-space 
requires no "perspective division ", but only an 
affine transformation) . In either case, no 
quantization artifacts , such as enlarged pixels or 
blurred edges, occur. 

Image trees can also be used in subsequent 
continuous space operations. As noted above, this 
provides a continuous space version of what has 
been represented in discrete space by a rgbaz 
buffer. Therefore, compositing operations can be 
performed on 3D images as discussed in [Duff 85) (in 
that work, the space is discrete). These operations 
can be interpreted as set operations with blending. 
More specifically we have the following equality: 

image( A <set op> B ) = 
image( A ) <set op> image( B ), <set op> E {u, I'I} 

And set difference can be used for masking. Since 
our 3D image trees are of the same data type as any 
other of our geometric sets, the previously devel
oped set operations can give us compositing immed
iately . Blending is provided by the same mechanism 
that provides non -refractive transparency . Using 
3D instead of 2D images frees the compositing from 
being simply a layering of images on top of each 
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other, as in the case for traditional cell animation or 
video games; i.e. visibility is not restricted to a total 
order on the individual images, instead they may 
be interleaved. 

While compositing has not been associated with 
interactive 3D graphics, consider the rather likely 
situation in which a user has a model comprised of a 
collection of objects. Typically, the user will engage 
in modification of only one object at any given time 
while the view remains stationary. Then an image 
tree can be constructed for the static objects once 
at the beginning of this interaction, and the image 
of the model is generated by 

image( model ) = image( static-objects) u 
image( dynamic-object ) 

This will yield more benefits the greater the 
number of static objects, the greater the amount of 
occlusion, and the greater the duration between 
selecting a new dynamic object. (For those readers 
familiar with random-scan display systems, each 
image tree is analogous to a segment.) 

Additionally, it is possible to redraw into a 
frame-buffer only those faces whose visibility has 
changed between successive frames. To do this, one 
needs to maintain in the static-object's image tree a 
frame index at each node v. This will indicate the 
last frame in which the subtree rooted at v was 
changed by the union with the dynamic-object 
image tree. The drawing process needs to traverse 
only those subtrees which have changed in the 
current frame or else in the immediately prior 
frame so that the image of previously but no longer 
occluded static-object faces can be redrawn. This 
then provides a simple means of exploiting temporal 
correlation (frame-to-frame coherence) in this 
particular setting, i.e. static view and relatively few 
moving objects. 

Visibility computations are, of course, crucial in 
the evaluation of all light transport equations. The 
equivalence between visible surface and shadow 
computations was recognized at a fairly early stage. 
Thus, our model-modification method can be used 
to partItIOn model space into regions that are 
homogeneous in the number of lights visible from 
any point in that region, which then provides a way 
to classify any other set to determine its light
source visibility and simultaneously detect 
collisions. For global illumination, a well established 
technique is the hemicube method [Cohen and 
Greenberg 85) which for each surface element 
projects the scene onto a half-cube whose surface 
has been partitioned by a grid, and visibility is 
approximated within each grid-cell at the midpoint. 
Image trees provide an alternative to this grid. For 
each face of the hemicube, one can use our methods 
to represent the image. And instead of approx
imating the form factors discretely, the transport 
can be computed exactly using contour integration 
[Nishita and Nakamae 85) [Campbell 91). This then 
leads to a global illumination algorithm with certain 
similarities to that of [Campbell 91) which is also 
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based on partitioning trees. Similarly, image trees 
can be used to implement light buffers [Haines and 
Greenberg 86). once again , with exact rather than 
approximate visibility, yielding a significantly sim
plified methodology. 

Generating image trees from 3D models 
provides a potentially important companion to our 
work on a discrete-to-continuous transform In 
which a pixel array representation is converted 
into a corresponding partitioning tree repre
sentation [Rahda et al 91). Currently , we can solve 
no more than the segmentation problem; texture 
representation remains an open issue . However, 
this may be enough for certain applications . 
Consider a robotics application in which the 
constituents of an external environment are known 
a priori and for which a geometric model has been 
constructed. The problem is to maintain a cor
relation between an internal geometric model and 
the dynamic external physical state, given an initial 
correlated state. One could construct two image 
trees, one from the discrete image provided by a 
camera, and the other from the current view of the 
geometric model. These then could be correlated by 
an iterative process using affine transformations, 
set operations (symmetric difference) and calcu
lation of moments, and in doing so determine how 
the geometric model should be updated . It may also 
be possible to use image trees in template matching. 

Examples 

Pictures 1-5 provide a few examples of generating 
image trees . The number of faces for pictures 1-3 
are given below for each of the three rendering 
methods: painter 's algorithm (method I) , creating 
a new image tree (method 2) , and modifying the 
model tree (method 3). For the phone handset, the 
difference between method 3 and the number of 
front-facing polygons is due to the fact that the 
polygons forming the sound transmitting holes in 
the hand set are contained in fully occluded 
subtrees which are condensed to a single cell (the 
tree has also been clipped). 

object method 1 

head 705 

shuttle 499 

phone 432 

method 2 

1982 

1100 

353 

method 3 

703 

523 

141 

In Picture 4, we have composited two 3D image 
trees using a union operation. Picture 5 shows a 
skewed view of this revealing the solid nature of the 
images (the full boundary of the solid images has 
been generated only for the purpose of illustrating 
their 3D nature) . 

Appendix 

Binary space partitIOning trees, also called bsp trees 
or partitioning trees, are defined by a generating 
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algorithm , and for this o nly one operation is 
required: binary partitioning by a hyperplane of a 
region in a d-dimensional continuous space, d > O. 
Figure A.I illustrates this. Given a homogeneous 
open region r, a hyperplane h that intersects r is 
chosen using some criteria. Then h is used to induce 
a binary partitioning on r that generates two new 
d-dimensional regions, r+ = r r1 h+ and r - = r r1 

h -, where h + and h - are the positive and negative 
open halfspaces of h respectively. Also, generated is 
a (d-1)-dimensional region r O = r r1 h , called a 
sub-hyperplane (abbr. as shp). Thus r = r + u r - u 
r O = (r r1 h+) u (r r1 h- ) u (r r1 h). Any of these 
new unpartitioned homogeneous regions can be 
partitioned similarly , and so on recursively. When 
the process is terminated, the remaining un
partitioned regions, called cells, together with the 
sub-hyperplanes forms a partitioning of the initial 
region. (In figure A.1, the cells are labeled with 
numbers and the sub-hyperplanes with letters.) 

D 0 ~ O~ h -
Initial region and tree First binary New tree 

part iti on ing 

Spatial partitioning Binary t ree 

Constructing a partitioning tree 
Figure A.1 

This process, when begun with d-space as the 
initial region, induces a structure on d-space in the 
form of a hierarchical decomposition . A partitioning 
tree is the computational representation of this 
process, and its combinatorial/syntactic form is 
captured by a binary tree. This tree is simply the 
directed graph of an asymmetric relation defined 
on the set of regions generated by the process 
where rl -> r 2 if r 2 was created directly by a 
partitioning of r}. The tree also corresponds to the 
graph of the partial ordering of the regions induced 
by the subset relation. In addition, the tree can be 
interpreted as a type of computation graph by 
interpreting the arcs as intersection operations : 
"moving " a set s contained in a region rand 
partitioned by hyperplane h along a left arc from r 
to r- can be interpreted as computing s r1 h-, and 
similarly for the right arc . This interpretation 
provides a set theoretic definition of any region r ' 
as the intersection of open halfspaces corre-
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sponding to arcs on the path from the root to r'. In 
figure A.1, cell-3 2-space r1 A - n B+ . 
Consequently, if the initial region is a convex and 
open set, it follows that all regions of the tree are 
convex and open. 

A partitioning tree can provide the basis of a 
computational object for the semantic domain of 
geometric sets. These are subsets of continuous 
spaces of finite dimension for which each point has 
an associated set of attributes (e .g. color) . The 
partitioning tree provides an isomorphism between 
certain geometric entitles and a combinatorial 
structure manipulated by algorithms; in other 
words , the binary tree is a syntactic entity whose 
intended interpretation, or model (as in Model 
Theory) , is a geometric set. In particular, a 
polytope, or collection of polytopes, can be 
represented by associating with each cell a 
membership attribute = { in, ou t }, dividing the cells 
into in-cells and out-cells. The polytope may be of 
any topology, including multiple connected com
ponents, and have a boundary that is non-manifold 
and/or unbounded . All possible trees represent 
some topologic ally valid polytope, although if a tree 
is chosen at random, certain subtrees may 
correspond to the empty set or to a homogeneous 
region . This means that every syntactically valid 
tree, i.e. any binary tree with hyperplanes at 
internal nodes and membership attributes at leaf 
nodes, represents a semantically valid polytope. 

For any point in d-space, its e-neighborhood 
with respect to the polytope can be discovered by 
following the paths in the tree to any cell whose 
closure contains the point. This is just the standard 
method of inserting a point into a search tree, with 
the simple extension that whenever a point is found 
to lie on a partitioning hyperplane, both subtrees 
are visited. The cells reached by the traversal are 
exactly those lying in the point's e-neighborhood 
[Thibault and Naylor 87) . 

Any central projection using linear projectors 
(rays) determines a partial ordering, called a 
visibility p riority ordering, on the regions of any 
partitioning tree. This ordering depends only upon 
the center of projection. The total priority ordering 
induced by any single rayon the subset of the 
regions it intersects is consistent with this "global" 
partial ordering. The ordering is possible because 
for a ray t and hyperplane h, their intersection is a 
single point, unless t lies in h . This intersection 
point partitions t into ill<Y., Q.!l and far subsets . This 
implies that any set in the near-halfspace of h has 
priority over any sets lying in h which in turn has 
priority of any sets in the far-halfspace. Given a 
partitioning tree representation of polyhedra , 
discovering that the viewing position is in say the 
positive halfspace of a partitioning hyperplane h at 
node v means that all sets represented by the 
positive subtree of v have priority over any sets 
lying in h which then have priority over those sets 
represented by the negative subtree. One can apply 
this local ordering recursively to generate a total 
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priority ordering of all sets represented by the 
tree . (See [Schumacker et al 69] or [Sutherland, 
Sproull and Schumacker 74], and [Fuchs , Kedem 
and Naylor 80] or [Naylor 81]). 

Along similar lines, efficient ray-tracing 
algorithms have been devised [N aylor and Thibault 
86] which exploit both the convex decomposition 
and the inherent hierarchical search structure. 
Calculation of shadows due to point light sources is 
addressed in [Chin and Feiner 89] and due to area 
light sources in [Chin and Feiner 92] and [Campbell 
91] . Use of partitioning trees for global illumination 
calculations can be found in [Fussell and Camp bell 
90] [Campbell 91]. Algorithms for set operations are 
presented in [Thibault and Naylor 87] and [Naylor, 
Amanatides and Thibault 90]. 

In [Naylor 81], it was shown that partitioning 
trees could represent arrangements of hyper
planes, and the complexity of the arrangements 
was used to give a bound of e ( od ) on the size of 
the largest possible partitioning tree formed using 
o hyperplanes in d-space. It was also shown that a 
set of disjoint (d-I)-faces could result in a tree of 
size n( od-l ). In [Paterson and Yao 90] algorithms 
are given for converting a set of non-intersecting 
faces to a partitioning tree of size e( od-I) in time 
O( od + 1 ), d > 3, which is reduced to e ( 0 2 ) and 
O( n3 ) for 3D. In 2D, the tree size and run time are 
both O( 0 log 0 ). A convex n-gon can be repre
sented by a tree of size e ( n ) and depth e ( log 0 ) 

and two such trees can be merged in O( 0 log 0 ) 

[Naylor 92]. Two arbitrary trees each of size n can 
be merged in e ( nd ) for d = 2, 3 or 4 [Naylor , 
Thibault and Amanatides 90]. However, empirical 
results in [Naylor 81] and much subsequent 
experience indicate that polygonal models of real 
objects result in trees much closer to O( 0 log n ). 

Partitioning trees are the same computational 
structure as linear decision trees [Rabin 72], which 
have been used to prove lower bounds on various 
problem, e.g. that sorting is n ( 0 log 0). Another 
application of this structure, concerned primarily 
with representing a finite set of points is called 
polygon trees [Wi\lard 82] or partition trees. 
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