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Abstract 

We present discrete physically-based methods for gen­
erating polygonal approximations of implicit surfaces. 
These methods not only generate a combinatorial man­
ifold approximating the surface, but also produce a 
structure that is well suited to numerical simulations 
in physically-based modeling and animation systems. 
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1 Introd uctio n 

Consider a differentiable function F : Rn -+ R , for 
which 0 is a regular value. This means that the gradient 
vector 

[ of of Of] "il F(p) = -(p), -(p),,,,, -(p) 
ox} OX2 OXn 

(1) 

is non-zero at all points p in the inverse image M = 
F- 1 (0). In this case, the set M is a differentiable man­
ifold of dimension n - 1 that we shall simply call an 
implicit manifold (Spivak, 1965) . 

Recently the use of implicit surfaces has attracted 
the attention of researchers in geometric modeling . Im­
plicit surfaces are suitable for applying visualization 
techniques based on ray-tracing (see (Hanharan, 1983) 
(Barr, 1986)), but some difficulties arise when we try 
to sample or structure points on them in order to gain 
more information about their topology and geometry 
(Figueiredo, 1991) . One of the important issues in this 
sampling and structuring problem is the computation of 
polygonal approximations to the surface. Polygonal ap­
proximations enable us to use the fast , special purpose 
processors of graphic workstations in order to display 
implicit surface models . 

1.1 Polygon ization of Implicit Surfaces 

To capture the geometry of an implicit manifold , we 
must sample and structure points on it. In this paper, 
our objective is to structure the points in order to obtain 
a combinatorial manifold iJ that is close to M in some 
suitable topology. The manifold M is called a polygonal 
approximation of the surface M . 

Polygonal approximations to implicit manifolds were 
first described in the classic paper (Allgower & Schmidt , 
1985). The method proposed by Allgower and Schmidt 
consists of the following steps: 

1. Compute a triangulation of the ambient space; 

2. Replace the function F by its simplicial approxi­
mation P relative to this triangulation; 

3. Refine the triangulation so that P is close to F. 
The combinatorial manifold is then obtained as the 
inverse image p- I (0) of the simplicial approxima­
tion . 

The Freudenthal triangulation is the simplest trian­
gulation in Rn: the space is subdivided into cubes and 
the triangulation is obtained by subdividing each n­

cube into n! simplices. Figure 1 shows a two dimen­
sional example. For more details the reader should con­
sult (Allgower & Georg , 1990) . 

Several variations of Allgower's method exist in the 
graphics literature (Wyvill et al., 1986), (Loreson & 
Cline, 1987) , (Bloomental, 1988), (Velho, 1989), (Hall 
& Warren, 1990). The correct computation of polygo­
nal approximations to implicit manifolds depends on a 
priori estimates of the variation of the surface' geometry 
(this is the refinement step (3) in the above algorithm) . 
For this reason, some of the aforementioned works in­
volve the computation of adaptive polygonizations in 
order to get better approximations. 
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Figure 1: Freudenthal triangulation 

1.2 Physically-based Modeling 

Modeling is the most labor intensive part in the process 
of computer graphics. Modeling the motion of objects 
is often very difficult when the main goal is to generate 
realistic motion . The best solution to this problem is 
to model the physical habitat of the object: the mo­
tion will be a consequence of the interaction between 
the object and its environment, according to the laws 
of physics. A discussion of this physically-based model­
ing approach is found in several papers in the graphics 
literature (Barr et al., 1987), (Terzopoulos & Fleischer, 
1988). 

1.3 Physically-based Polygonization of 
Implicit Objects 

In this paper we use physically-based methods to com­
pute polygonal approximations. These methods yield 
naturally adapted polygonizations. They also make it 
possible to construct a model such that the resulting 
polygonization has a natural physical structure associ­
ated with it which can be exploited for physically-based 
simulations. 

Physically based methods in the study of implicit 
surfaces is a very recent research topic. In (Velho & 
Gomes, 1991) a spring-mass model is used to construct 
an adapted shell that approximates the geometry of the 
manifold . In (Velho & Gomes, 1991a) , it is shown how 
this spring-mass shell can be used to do dynamical sim­
ulations with implicit models. In (Figueiredo, 1991) , 
physically-based particle systems are used to sample 
points on an implicit manifold ; algorithms for struc­
turing such samples provide a powerful technique for 
modeling with implicit surfaces. 

The physically-based approach to constructing piece­
wise linear approximation of implicit manifolds is re­
lated to the variational methods used to generate adap­
tive numerical grids for the numerical solution of partial 
differential equations (Thompson et al., 1985). How­
ever, there are two main differences: 

• To our knowledge , the adaptive methods in the nu­
merical grid generation literature are developed for 
structured grids. The problem of polygonization of 
implicit surfaces is a non-structured one. 

• In numerical grid generation , the physics of the as­
sociated problems may drive the adaptation of the 
grid. In our case, the primary interest is in the ge­
ometry and topology of the underlying grid space. 

Our methods can certainly be used to generate adap­
tive numerical grids for problems where the physical do­
main can be defined implicitly. In fact, polygonization 
methods for implicit surfaces seem to be a very attrac­
tive technique for generating non-structured numerical 
grids. 

In this paper, we are interested in polygonizations 
that are regular or "quasi-regular" triangulations. A 
quasi-regular triangulation is a 2-dimensional simplicial 
complex which is constituted by elements that are al­
most equilateral and equiangular. This type of poly­
gonization is desirable in a number of applications to 
modeling and numerical simulation. 

1.4 Overview 

Section 2 describes the two discrete physical systems 
that we use to construct the polygonal approximation. 
Section 3 describes the polygonization algorithm us­
ing physically-based particle systems. Section 4 de­
scribes the polygonization algorithm using a spring­
mass physical model. Section 5 gives examples and 
makes some comparisons between the two approaches 
described . Section 6 closes with a brief description of 
our current work in this area. 

2 Discrete Physical Systems 

A discrete physical model abstracts matter as an ensem­
ble of particles related to each other by forces . Several 
physical phenomena may be naturally modeled using 
discrete physical systems (Greenspan, 1973). In a dis­
crete physical system the particles interact under the ac­
tion of internal and external forces . The associated mo­
tion equations are easily written as a classical F = ma 
equation of Newtonian dynamics. Simple numerical in­
tegration methods, such as Euler's method generally 
produce good results. 

In this work, we use two discrete physical models : a 
particle system and a spring-mass system. 

2.1 Dynamic Particle Systems 

A particle system is a finite set of particles which have 
an initial position in space and whose behavior in time 
is governed by algorithmic rules. Particle systems were 
introduced in graphics by Reeves as an algorithmic tech­
nique for modeling fire explosions (Reeves, 1983). In a 
physical particle system, the particles have masses and 
the N ewtonian mechanics dictates their dynamical be­
havior. The motion of a particle depends on its mass, 
position and velocity, and on the forces acting on it , ei­
ther by other particles or by the ambient medium . A 
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physical particle system is a discrete physical model as 
defined above. 

Physical particle systems have been used to simulate 
natural phenomena such as waterfalls (Sims, 1990) and 
fireworks (Weil, 1987). These systems in general re­
quire a significant amount of computational effort be­
cause of the number of particles involved. In Section 3 
we shall use a simple physical particle system to com­
pute a polygonal approximation to an implicit manifold . 
More recently, (Szeliski & Tonnesen, 1991) have applied 
physical particle systems to surface modeling. 

2.2 Spring-Mass Systems 

A spring-mass system is a physical particle system 
structured by connecting pairs of particles with springs. 
The springs impose internal forces that depend on the 
distance between these particles and govern the global 
behavior of the system. The resulting structure can be 
represented as a graph, where each particle is a node, 
and two nodes are connected when there is a spring 
joining the corresponding particles. Conversely, each 
graph linearly embedded in the space is naturally asso­
ciated to a spring-mass system - a duality that will be 
exploited in Section 4 for triangulations. 

Spring-mass systems are suitable to create physically­
based models of deformable objects for dynamical sim­
ulation (Haumann, 1987) , (Terzopoulos et al., 1989). 
In the recent paper (Terzopoulos & Vasilescu, 1991), a 
spring-mass system is applied to adaptive image sam­
pling and surface reconstruction . This approach has 
several connections with our method. 

3 Polygonization using Dynamic 
Particle Systems 

In this section, we describe an algorithm for computing 
a polygonal approximation of an implicit manifold using 
a physically-based particle system (Figueiredo, 1991). 

3.1 Sampling using Dynamic Particle 
Systems 

To properly sample a geometric object we must com­
pute enough points on it so that its geometry can be 
reconstructed from the samples within some tolerance. 
In the case of a manifold given implicitly by a dif­
ferentiable function F : Rn -> R, such a computa­
tion requires finding several solutions of the equation 
F(x) = O. Physically-based methods for the solution 
of nonlinear equations have been known for some time 
(Incerti et al., 1979), although it seems that the main in­
terest then was in finding anyone solution, and not the 
many solutions that sampling requires. Consequently, 
these methods have not been applied to geometric mod­
eling. 

The particle systems we use for sampling derive their 
dynamics from the potential function IFI. The particles 

252 

will seek equilibrium positions on the manifold F- 1 (0) 
because these are positions of minimum potential en­
ergy. If the gradient of F is non-singular, then these 
are the only equilibrium positions. 

This interpretation of the gradient of IFI as a force 
field implies the following equation of motion for a unit 
mass particle: 

d2 x dx . di2 + 'Ydi + s\gn(F)V' F = 0, (2) 

where "( is a positive real number representing friction 
proportional to velocity. (Incerti et al. , 1979) have pro­
posed a similar differential equation for finding zeros of 
functions Rn -> Rn . 

3.2 Structuring Samples 

The samples obtained by simulating the physics of par­
ticle systems have no structure other than the equilib­
rium position of each particle . Moreover,the samples 
are not evenly distributed across the surface, but rather 
tend to concentrate around points of high curvature. 
While this could be exploited for investigations on the 
geometry of the surface, a polygonal approximation in­
terpolating such samples will rarely be quasi-regular. 

In order to obtain a quasi-regular approximation, the 
sample is subjected to a relaxation process similar to 
the one used by (Turk, 1991) and (Szeliski & Tonnesen, 
1991): particles repel each other with an intensity that 
rapidly decreases as the distance between the particles 
increases. Moreover, the movement of each particle is 
constrained to stay close to the surface by projecting 
repulsion forces onto the tangent plane. 

The result of this relaxation process is a more uniform 
sampling of the surface. The desired polygonal approx­
imation is then obtained by computing the Delaunay 
triangulation associated with the points and choosing 
the triangles that approximate well the tangent planes 
at each of its vertices. 

4 Polygonization using Spring-Mass 
Systems 

In this section, we describe a method to construct a 
polygonal approximation to an implicit manifold using 
a spring-mass system. 

4.1 Subordinated Triangulation 

Initially we define a system of spring-mass elements as­
sociated with a Freudenthal triangulation of the space. 
Like the particle systems described in Section 3.1, this 
system is subjected to deformation forces derived from 
the gradient field of the implicit manifold . Its equilib­
rium position gives a triangulation of a region of the 
space that contains the manifold M and has the follow­
ing properties: 

• M is transversal to the triangulation; 
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• The simplices are quasi-regular; 

• For each n-simplex er that intersects M there exists 
a point p E M close to the barycenter of er such that 
the tangent space of M at p is close to the support 
hyperplane of one of the faces of er . 

Figure 2 illustrates the properties above in two dimen­
sions. A triangulation with these properties is said to be 
subordinated to the surface M (Velho & Gomes, 1991) . 

1t - support plaM to I" 
b - simpltx barianJtr 

rpM· /ang'"' plane of M at p 

Figure 2: Subordinate triangulation 

4.2 Mesh Generation 

The spring-mass lattice generation process requires the 
following steps: 

1. A Freudenthal triangulation is created within a vol­
ume bounding the implicit manifold ; 

2. Each simplex of the triangulation that intersects 
the implicit manifold is identified. Together , they 
form an intersecting simplicial complex; 

3. A spring-mass system is created by associating 
mass nodes and springs to the vertices and edges 
of the intersecting complex. 

The construction of the Freudenthal triangulation in 
step 1 is obtained as explained in Section 1.1. The 
identification of the relevant simplices in step 2 is done 
through a classification of the simplicial cells by test­
ing the sign of the implicit function at the vertices of 
each simplex. Assuming that the uniform grid is suffi­
ciently fine , if the signs are the same for all vertices, the 
simplex must be totally inside or totally outside of the 
manifold M. If the signs are different , then the simplex 
must intersect the surface M. 
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4.3 Mesh Deformation 

After generating the mesh we use a physically-based 
approach in order to obtain the final triangulation that 
will be used for the polygonization of M . The dynamic 
simulation submit the spring-mass system to deforma­
tion forces with the purpose of conforming it to the 
shape of the implicit manifold . The process takes into 
account the internal forces produced by the springs as 
well as external deformation forces. 

The external forces are based on information de­
rived from the geometry of the implicit manifold. More 
specifically, two opposite attracting and repulsing force 
fi elds are generated using the gradient vector fi eld of 
the implicit manifold. One field defined inside a small 
neighborhood of the object's boundary generates re­
pelling forces that prevent points from being too close 
to the surface. The other force field , defined outside 
this neighborhood, generates attraction forces that pulls 
points towards the surface. 

In order to facilitate the relaxation of the mesh struc­
ture into the desirable configuration, the initial rest 
length of the strings is made smaller than the initial 
grid spacing. This means that we start the process with 
a tensioned mesh that moves to a rest position under 
the action of internal and external forces. 

4.4 Polygonization 

The polygonization ofthe implicit manifold M is now 
obtained using the same technique of Allgower's algo­
rithm described in Section 1.1 : since the triangulation 
obtained is subordinated to M, the manifold intersects 
each 3-simplex er in at most 4 distinct points, each one 
located on a different I-dimensional face . Therefore, 
the linear approximation to M inside er is formed by 
one or two triangles (2-simplices). The set of all these 
simplices constitute the combinatorial manifold that ap­
proximates M. We shall illustrate the method with 
some examples in section 5.1. 

5 Results 

In this section, we show the result of applying the 
two methods described in Sections 3 and 4 to compute 
polygonal approximations of implicit surfaces. We also 
make a comparative analysis of the polygonizations ob­
tained and discuss the differences and similarities be­
tween the two methods. 

5.1 Examples 

Figures 3 and 4 illustrate the polygonization method us­
ing the particle systems presented in Section 3. Figure 
3-a shows the trajectories of a particle system associated 
with a two-dimensional curve with 2 connected compo­
nents described by the implicit equation y2 - x3 +x = o. 

Figure 3-b shows the final equilibrium positions of these 
particles along the curve. Figure 4-a shows the sample 
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points on the surface of the sphere x 2 + y2 + z2 = 1. 
Figure 4-b shows the polygonal approximation for the 
sphere. 

Figures 5 to 7 illustrate the polygonization using the 
spring-mass system method presented in Section 4. Fig­
ure 5 demonstrates the mesh deformation process for 
the cylinder x 2 + y2 = 1. Figure 5-a depicts the initial 
mesh created from a Freudenthal triangulation of the 
ambient space, Figure 5-b shows the final mesh in its 
equilibrium position. It is apparent that the mesh was 
constrained to lie in a tubular neighborhood of the im­
plicit surface, conforming to the cylinder's shape. The 
polygonal approximation is obtained from this deformed 
mesh . 

Figure 6 shows a detail of the polygonization asso­
ciated with the spring-mass mesh before (a) and after 
(b) the deformation process. Note how the deforma­
tion of the mesh produces a very homogeneous polygon 
structure , transforming long, thin elements to nearly 
equilateral ones. This is because the triangulation re­
sulting from the dynamical simulation is subordinate 
to the surface; as a consequence, the associated polygo­
nization is quasi-regular. 

Figure 7 shows the final polygonal approximation for 
the cylinder. 

5.2 Comparisons 

The main difference between the two methods presented 
in this paper is related to the order in which the op­
erations of sampling and structuring of points on the 
implicit surface are performed. 

The dynamical particle systems method in Section 3 
first generates samples of the implicit object and sub­
sequently structures these samples in order to create a 
polygonal approximation of the object. 

The spring-mass systems method of Section 4 does 
the opposite. First the structure is created from a reg­
ular tessellation of space and second, this structure is 
used to sample the implicit object . 

It is interesting to note that the physically-based ap­
proach is applied only to the sampling process. The 
structuring operation involves combinatorial methods. 

The two methods produce equally good polygonal ap­
proximations of implicit surfaces. The combinatorial 
manifold generated by them is constituted by "almost 
fat" triangles. 

The dynamical systems employed in both methods 
are very stable. The convergence to an equilibrium state 
is in general reasonably fast, requiring a small number 
of time steps (usually less than 100). 

6 Conclusions 

We have presented a new approach for the polygoniza­
tion of implicit surfaces based on physically-based meth­
ods. The two methods described "exploit different strate­
gies to obtain polygonizations that are quasi-regular 
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and faithfully approximate the original implicit objects . 
The use of a physically-based approach for the poly­

gonization of implicit objects provides great flexibility 
and control of the resulting structure. 

Although this process is computation ally more ex­
pensive than traditional methods , due to the numerical 
simulation of a dynamical system, it produces qualita­
tively better results. 

We are presently incorporating these polygonization 
methods in a modeling and animation system for im­
plicit objects. 

Our current research also includes the development of 
adapti ve physically-based polygonization methods and 
the application of these methods to numerical grid gen­
eration problems for domains defined by implicit sur­
faces. 

In relation to the method of Section 3, we are in­
vestigating higher order approximations using intrinsic 
Voronoi diagrams. This would enable us to do continu­
ous deformations using spline patches. 
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Figure 3: Trajectories (a) and final positions (b) of particles for 2D curve 
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Figure 4: Sample points on the surface of a sphere (a) and polygonization of the sphere (b) 
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(a) (b) 

Figure 5: 3D mesh before (a) and after (b) deformation 

(a) (b) 

Figure 6: Detail of the polygonization before (a) and after (b) deformation of the mesh 
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Figure 7: Final polygonization of the cylinder 
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