
19

Fast Algorithms For Rendering Cubic Curves

Benjamin Watson
Larry F. Hodges

Graphics, Visualization, and Usability Center
College Of Computing

Georgia Institute Of Technology
Atlanta, GA 30332

Abstract

We present two integer-only algorithms to be used in tan
dem for rendering cubic functions and parametric cubic
curves with rational coefficients. Analysis of execution
speed of existing algorithms shows that our algorithms
will match or outperform other current algorithms.
Furthermore, while other existing algorithms can only
handle curves shaped by rational coefficients by
introducing some approximation error, our algorithms
always choose the best approximation. Curves may have
to be split before rendering, because each algorithm only
handles curves with slope in a certain range. When
plotting parametric curves, our algorithms may require
more bits of representation for some integer variables than
other existing algorithms.

Keywords: display algorithms, curve representations,
parametric curves, raster graphics

1. Introduction

Computer scientists have been developing line and curve
rendering algorithms for over 25 years. Only recently,
however, have efficient algorithms for the plotting of cu
bic curves begun to appear. This paper will propose and
develop two fast, integer-only algorithms that can be used
in tandem to render cubic curves with rational coefficients
defined by the function

The algorithms are based on the midpoint method,
described by Van Aken and Novak in [17] and below.

2. History And Existing Algorithms

I.E. Bresenham was the first to present a fast, integer-only
line rendering algorithm in 1965 [1] . Research in line ren
dering since has seized on the periodic patterns shown by

Bresenham's algorithm when viewed on a raster display as a
means of improving algorithm speed [4,14].

Algorithms for rendering circles began to appear in the
1970s. Bresenham [2,3]. Horn [7], and McIlroy [12] have
all presented algorithms. Later, algorithms for rendering
ellipses were published [9,15,16], and more recently, algo
rithms for the plotting of parabolas and hyperbolas were
presented [13,15,18].

Algorithms for the rendering of cubic curves have only
begun to appear in the last few years . In [11], Klassen pre
sented two algorithms for rendering parametric cubic
curves. First he identified the family of Bezier curves that
are "worst-case", meaning that they are most likely to
cause overflow during calculation. If 2h is screen length or
width, Klassen asserted that "worst case" curves would have
the four Bezier control points [-h,5h,-5h,h] in at least one
dimension, which would describe the one-dimensional
parametric Bezier cubic 32hr3 - 48ht2 + 18ht - h. Klassen
called such curves S curves. Klassen then presented his two
algorithms and outlined their relative speed and overflow
restrictions for worst-case curves. Algorithm A uses a
fixed-point representation of curve coordinates, and thus
incorporates an inherent level of error. However, it is fast
and has a liberal overflow restriction. Algorithm B divides
forward differences into integer and fractional parts,
providing perfect accuracy. But it is slower than algorithm
A, and can only take 1024 parametric steps if overflow is
to be avoided with 32-bit words. Both algorithms allow
arbitrary step size and do not restrict curve segments to
certain slope octants. Both can be used with non-integer
coefficients. However, use of such coefficients with
algorithm B would eliminate its perfect accuracy.

In [10], Klassen studied the use of these two algorithms
with cubic spline curves. He envisioned the use of the
algorithms with adaptive forward differencing [6,8]. which
dynamically adjusts step size as a curve is plotted.

Graphics Interface '92 ~

......• Drv'J)d

Figure 1: Elimination of the constant
term can be compensated for by a
translation.

0 0 0
(X+I,Y+I) -• -- 0

(X,Y) (X+I,Y)

0 0 0
Figure 3: If Islopel < 0 and X and Y
plotting directions are positive the
candidate points are (X + I, Y) and
(X+I, Y+I).

Simultaneous to Klassen, Chang et al. [5] developed an
algorithm similar to Klassen's algorithm B that also could
be used with adaptive forward differencing. Differences
between the two algorithms are minor.

3. Preliminaries

3.1. Elimination or The Constant Term DnlDd

Since the last term (On/Dd) in (1) does not change the
shape of the curve, we can render the curve described by
instead rendering the curve

with a compensating translation (see figure I). Note that if
the (On/Dd) rational coefficient is not an integer, transla
tion of the Y coordinate at plotting by round(Dn/Dd) alone
will not necessarily produce the best approximation of the
curve. In section 4 we will discuss a method of compensat
ing for this inaccuracy.

20

d(x,y) < 0

Figure 2: If the decison function is
evaluated at a point above the curve, it
is negative. Otherwise it is positive.

Table 1. The candidate and midpoints used depend on
curve slope and X and Y plot direction. Points are listed in
clockwise order.

YPlot X Plo
Dir Dir IS lapel Candidate Points Midpoints

+ + < I (X+I.Y); (X+I.Y+I) (X+I.Y+I!2)
+ + >= I (X+I.Y+I); (X,Y+I) (X+I/2.Y+I)
+ - >= I (X.Y+I); (X-I.Y+I) (X-I/2.Y+I)
+ - < I (X-I.Y+I); (X-I.Y) (X-I,Y+I!2)
- + < I (X-I.Y); (X-I,Y-I) (X-I.Y-I/2)
- + >= I (X-I.Y-I); (X,Y-I) (X-I/2.Y-I)
- - >= I (X.Y-I); (X+I.Y-l) (X+I/2.Y-I)
- - < I (X+I.Y-I); (X+I.Y) (X+I .Y-I/2)

3.2. The Midpoint Method

The midpoint method. described by Van Aken and Novak in
[17]. requires the incremental evaluation of a decision func
tion that indicates which of two candidate pixels should be
chosen for rendering. If the equation for a curve is y = f(x).
then the decision function has the form d(x.y) = f(x) - y.
Notice that this function will have a different sign on each
side of the curve f(x) (see figure 2).

Where do we evaluate this function? This depends on the
slope of the curve. If -I < f(x) < I and we are plotting in
positive X and Y directions. then if we have just plotted the
point (X.Y), the two candidate points for plotting are
(X+I.Y) and (X+I.Y+I). (See figure 3. Table I shows a
complete list of candidate points.) The midpoint method
evaluates the decision function at the midpoint between the
candidate pixels. In our example, this midpoint is
(X+I.Y+I/2). and thus we evaluate d(X+I.Y+I/2). (See fig
ure 4. Table I shows a complete list of midpoints .) We

Graphics Interface ' 92

21

0 0 0
o (Xtl..Y+1(l)

• • 0
(X,Y)

0 0 0
Figure 4: If Islopel < 0 and the X and Y
plotting directions are positive, the midpoint
is (X+l,Y+l!2).

will call the decision function the "decision variable" when
it is evaluated at a midpoint.

Since the sign of the decision function d(x,y) corresponds
to a specific side of f(x), the sign of decision variable
d(X+l,Y+l!2) indicates the side of f(x) on which the mid
point lies, and also which of the candidate pixels lies
closer to the curve being plotted, f(x). In figure 4, the sign
of the decision variable is negative, so the lower candidate
pixel is chosen for plotting.

Once the next pixel is chosen and plotted, the decision
function must be evaluated at the next midpoint to allow
the plotting of the next pixel. In our example (figure 5),
the appropriate decision variable would be d(X+2,Y+l/2).

3.3 Forward Differencing

Simple evaluation of the decision function at each succes
sive midpoint would be computationally expensive.
Fortunately, there is a method of incremental function eval
uation, called forward differencing, which is uniquely suited
to our needs. This method, which was known to Newton,
involves the initialization of several difference values that
may be added together to produce the value of a function at a
certain point. These difference values are then themselves
incrementally evaluated, to prepare for the next evaluation
of the original function. Note that mulitiplication is only
required for function and difference initialization.
Furthermore, if all function coefficients are integers, no
floating point addition is required.

As an example, consider the simple function f(x) = 2x + 1.
f(x+l) differs from f(x) only by the constant difference
value 2. By successively adding 2 to an initial value for
f(x), we could incrementally calculate the value of f(x) at
integer intervals on X. For the higher-order function g(x) =
x2, the binomial expansion g(x+l) = (x+l)2 = x2 + 2x + 1
gives us the first-order difference value 2x + 1 for an integer
interval. Since this difference value is also dependent on
X, it must also be subjected to forward differencing, as

0 0 0 0
----.Ao(X+2,Y+l!2)

• • e 0
(X,y) (X+l,Y)

0 0 0 0
Figure 5: With this curve, (X+l,Y) would be plotted,
and (X+2,Y+l!2) used as the next midpoint.

already discussed. Thus the incremental calculation of g(x)
= x2 would require two additions per integer interval.

4. The RunRise Algorithm

Let us first fmd the decision function d(x,y) for equation (2)
when -1 < f(x) < 1. In this case, the X component of f(x)
is larger than the Y component: the curve "runs" faster than
it "rises." We will label segments of f(x) where this
condition holds true "RunRise." Since we will only make
use of the sign of our decision function, we multiply our
cubic function (2) by 2AdBdCd to increase efficiency by
eliminating the floating point division calculations. To
conserve space, we use the shorthand Ai = AnBdCd, Bi =
BnAdCd, Ci = CnAdBd, and Di = AdBdCd, in the rest of
this paper and the equation below. We assume without loss
of generality that Di (and thus the denominators ~, Bd,
and Cd) are positive:

(3)

We will find it useful to plot in both positive and negative
X and Y directions. Our direction-flexible decision variable

d(x±1,y±I/2) is then

2Ai(X±I)3 + 2Bi(X±I)2+ 2Ci(x±l) - 2Di(y±I/2) (4)

where ± is positive if we are plotting in a positive
direction, negative otherwise.

We must evaluate (4) incrementally as we plot the RunRise
portion of f(x). To avoid computationally complex multi
plications, we will use forward differencing. The difference
constant day is the difference between d(x,y) evaluated at
the "current" Y coordinate, and d(x,y) evaluated at the
"next" Y coordinate:

dOy = d(X±I,y±3/2) - d(X±I,y±1/2)

= 2Di(y±3!2) - 2Di(y±I!2)

=±2Di·

Graphics Interface '92 ~

This difference constant is used to update the decision vari
able when a "Y step" is made -- that is, when the last
plotted pixel differs from the previously plotted one in its
Y coordinate.

Because the decision variable (4) is a third-order function in
X, updating it when an X step is made is more complex.
The second order difference function d2(x) is the difference
between the decision variable at the current X coordinate
and the next X coordinate:

d2(x) d(X±I,y±I/2) - d(x,y±I/2)

2Ai(X±1)3 + 2Bi(x±I)2 + 2Ci(x±l) - 2Aix3

- 2Bix2 - 2CiX

2Ai(x3±3x2+3x±l) + 2Bi(x~2x+l) + 2Ci(X±1)

- 2AiX3 - 2BiX2 - 2Cix

2Ai(±3x2+3x±l) + 2Bj(±2x+l) ± 2Ci

= ±6Aix2 + (6Ai±4Bi)X + (±2Ai+2Bi±2Ci)·

d2(x) must itself be subjected to forward differencing. The

22

where (x, Y) and (XEnd, YEnd) are the endpoints of the plot
ted curve segment, and a the cost of one addition operation.

Earlier, we noted that compensating for the elimination of
the non-integer constant with translation will not
necessarily produce the best approximation of the curve.
Adding an appropriately signed round(Di * «Dn/Dd) mod
1» to the initial decision variable will simulate a fractional
Y step and improve accuracy.

5. The RiseRun Algorithm

Now let us fmd the decision variable needed when If(x)1 > 1.
In this case, it is the Y component of f(x) that is larger, so
the curve will "rise" faster than it "runs." We will label
segments of f(x) where this condition holds true
"RiseRun."

As is clear from table I, the direction-flexible midpoint
decision variable is d(X±I/2,y±I). Expanded, this is

first order difference function dl (x) is the difference SAi(X±1/2)3 + SBi(X±1/2)2 + SCi(x±l/2) - SDj(y±I). (5)
between the value of d2(x) at the current and next X
coordinates:

d 1 (x) = d2(X±I) - d2(X)

= ±6Ai(X±1)2 + (6Ai±4Bi)(x±l) - ±6kAiX2

- (6Ai±4B i)x

= ±6Ai(x2±2x+l) + (6Ai±4Bi)(X±I) - ±6Aix2

- (6Ai±4B i)x

±6Ai(±2x+l) + (±6Ai+4Bi)

12Aix + (±12Ai+4Bi)·

Finally, dl (x) must be subjected to forward differencing .
The difference between d 1 (x) evaluated at the current and
next X coordinates gives us constant dox:

dOx =dl(X±l) - dl(X)

= 12Ai(x±l) - 12Aix

= ±1 2Ai·

Stepping one pixel at a time, and using the global declara
tions below, we can construct a direction-flexible
algorithm for plotting the RunRise segments of cubic
curves. Figures 6 and 7 show the core of this algorithm in
C. For brevity's sake, we have removed the variable and
function declarations (all variables are long integers). The
initialization of Ai, Bi, Ci and Di is not shown -- it is
common to all curve segments .

In its loop, the RunRise algorithm performs 4 additions for
each step in X, 2 additions for each step in Y. This gives a
cost of

4alXEnd-xl + 2aIYEnd-YI,

We have used the constant SDi rather than 2Di in (5) to

allow the integer performance of the half step x±1/2. (5)

reduces as follows:

SAi(x3±3/2x2+3/4x±I/S) + SBi(x2±x+l/4)

+ SCi(X±1/2) - SDi(y±l)

SAix3 + (±12Ai+SBi)x2 + (6Ai±8Bi+SCi)x

+ (±Ai+2Bi±4Ci) - SDi(y±l)

We use this all-integer equation to initialize our decision
variable. The following forward stepping increments allow
us to update that decision variable:

d2(x) d(x±3/2,y±1) - d(X±1/2,y±l)

8Ai(x±3/2)3 + SBi(x±3/2)2 + SCi(x±3/2)

- 8Ai(x±1!2)3 - 8Bi(X±1/2)2 - 8Ci(x±I/2)

SAi(x3±9/2x2+27/4x±27/8) + 8Bi(x2±3x+9/4)

+ 8Ci(x±3!2)

= 8Ai(x3±3/2x2+3/4x±I/8) - 8Bi(x2±X+l/4)

- 8Ci(x±1!2)

±24Aix2 + (48Ai±16Bi)X + (±26Ai+16Bi±8Ci)

dl (x) d2(X±I) - d2(x)

±24Ai(X±I)2 + (48Ai±16Bi)(X±I) - ±24AiX2

- (48Ai±16Bi)x

±24Ai(x2±2x+1) + (48Ai±16Bi)(X±1) - ±24AiX2

- (48Ai±16Bi)x

±24Ai(±2x+l) + (±48Ai+16Bi)

48Aix + (±72Ai+16Bi)

Graphics Interface '92

XDec2Constl = Ai«l;
*/

23

XDecOConst = (XDec2Const1«2) + (XDec2Const1«1);
XDec2Const2 = Bi«l;
*/
XDeclConst = XDec2Const2«1 ;
*/
XDec2Const3 = Ci«l;
*/
DecConst = Di;
YDecConst = DecConst«l ;

Temp1 XDec2Const1*X;
*/
if (X < XEnd)

XStep 1;
XDecO = XDecOConst;
XDec1 = (Temp1«2) + (Temp1«1)

+ XDecOConst + XDec1Const ;
XDec2 = « Temp1«1) + Temp1

+ (XDecOConst»l) + XDec1Const)*X
+ XDec 2Const1 + XDec2Const2 + XDec2Const3 ;

else (
XStep
XDecO
XDec1

- 1 ;
-XDecOConst;
(Temp1«2) + (Temp1«1)

- XDecOConst + XDec1Const ;
XDec2 = (-(Temp1 «1) - Temp1

+ (XDecOConst»l) - XDec1Const)*X
- XDec2Const1 + XDec2Const2 - XDec2Const3;

) /* end if */

Dec = «Temp1 + XDec2Const2)*X + XDec2Const3)*X ;
if (Y < YEnd)

YStep = 1 ;
Dec = Dec + XDec2 - YDecConst*Y - DecConst;

else {
YStep
XDecO
XDec1

- 1 ;
-XDecO ;
-XDec1 ;

XDec2 -X Dec2 ;
Dec = - Dec + XDec2 + YDecConst*Y - DecConst ;

/* end if * /

/* Used to i nit 2nd order diffc function

/* Used to init diffc constant */
/* Used to init 2nd order diffc function

/* Used to init 1st order diffc function

/* Used to init 2nd order diffc function

/* Used to in it decision variable */
/* Difference constant for a Y step */

/* Used several times to save multiplies

/* If plotting in positive X direction */
/* Set X increment */
/ * Difference constant for an X step */
/* Init 1st order diffc function * /

/* Init 2nd order diffc function */

/* If plotting in negative X direction * /
/* Set X increment */
/* Diffc constant for an X step */
/ * Init 1st order diffc function */

/* Init 2nd order diffc function */

/* Init deci s ion variable */
/* If plotting in positive Y direction */
/* Set Y increment */
/* Final decision variable init'zation */
/* If plotting in negative Y directi on */
/* Set Y increment */
/* Negate X differences */

/* Final decision variable init ' zation */

Figure 6: RunRise algorithm initialization. (x,y) and (XEnd,YEnd) are segment endpoints .

if (X == XEnd)
(LinPlot(X , Y,XEnd , YEnd) ;

else
for (X=X ; X<=XEnd; X=X+XStep)

Plot(X,Y) ;
XDec2 = XDec2 + XDec1 ;
XDec1 = XDec1 + XDecO ;
if (Dec > 0) { /* perform Y step */

Y = Y + YStep ;
Dec = Dec + XDec2 - YDecConst ;

else Dec = Dec + XDec2;
/ * end for * /

/* If degenerate curve, */
/* Plot a line */
/* Otherwi se, */
/* For each X in the curve */
/* Plot a point */
/* Update the 2nd order diffc */
/* Update t he 2st order diffc */
/* If must perform Y step */
/ * Adjust Y accordingly * /
/* Update the decision var accordingly */
/* If no Y step , update dec var accdgly * /

Figure 7: RunRise algorithm loop. (x,Y) and (XE nd,YEnd) are curve segment endpoints.

Graphics Interface '92

dOx = dl(X±I) - dl(X)

= 48Ai(X±I) - 48Aix

= ±48Ai

dOy = 8Dif(x±I/2,y±2) - 8Dif(x±I/2,y±l)

= 8Dj(y±2) - 8Di(y±I)

= ±8Di·

Figures 8 and 9 show the RiseRun algorithm. Again, vari
able declarations and global initializations are not shown.

The RiseRun algorithm, like the RunRise algorithm, per
forms 4 additions for each step in X, 2 additions for each
step in Y. Thus algorithm cost is

4aIXEnd-xl + 2a1YEnd-YI.

Note, however, that IYEnd-YI will in this case always be
greater than IXEnd-XI.

6. Use Of The Algorithms In Tandem

Because each of the RunRise and RiseRun algorithms only
function for curve segments that have slope within a
certain range, plotting a cubic curve with these algorithms
will typically require that the curve be split into segments
which satisify the algorithms' slope range requirements.
Algorithm initialization must then be performed for each
curve segment, increasing overhead.

The actual curve splitting itself will also increase overhead.
Since each algorithm takes as input only function
constants and segment endpoints, splitting essentially
involves the location of appropriate segment endpoints.
For the unoptimized algorithms. these endpoints will be
the points on the curve at which the conditions If(x)1 = 1
and f(x) = 0 hold true. Locating these points will involve
floating point arithmetic. The appropriate algorithm must
then be called for each segment. In the worst case, a curve
will have to be split into seven such segments. However,
use of the algorithms with spline and Bezier curves would
typically require the splitting of curves into only two or
three segments.

7. Overflow

Care must be taken to avoid overflow when using these
algorithms. Below, we provide overflow analysis for the
initialization and looping portions of each of the algo
rithms.

We begin with the Run Rise algorithm. During initializa
tion, the largest intermediate value that must be handled is
the first initialization of the decision variable, « Temp 1 +
XDec2Const2) *X + XDec2Const3) *X. This represents
2Aix3 + 2BiX2 + 2Cix. For ease of algorithm use and anal
ysis, we define i such that each of the coefficients IAil, IBil,
ICil and IDil are less than i. The screen space variable Ixl

24

has the maximum value w(2, where w is screen width. Thus
in the worst case, the decision variable will take on the
intermediate value liw(w2/4 + w!2+ 1)1. To represent this
value without overflow, the condition

liw(w2/4 + w/2+ 1)1 < 2bits-l,

where bits is the number of bits available for
representation, must hold true. As an example, it is
reasonable to expect screen width w to be less than 1280.
We then have

1280i (3202 + 640+ 1) < 2bits-l
1280i (103041) < 2bits-l

li I < 2bits-l/131892480.

If a 32-bit word is to be used for representation. bits = 32
and li I must be less than or equal to 16. Clearly, this is too
restrictive. If instead 64 bits are used during initialization,
we have li I < 3.496549627e+l0. Considering that
LIog(3.496549627e+l0)J is 35, this is quite reasonable.

The algorithm changes the state of 5 variables while loop
ing: x, Y, Dec, XDec 1, and XDec2. X and Y are screen
space variables. and thus will not overflow unless any
screen coordinate is larger than 2bits-1 in magnitude -- an
unlikely event, given the present state of raster
technology. XDecl represents the difference function
dl(X) = d2(x±l) - d2(x), and XDec2 the difference function
d2(x). By definition. then, XDec2 will always be larger
than XDecl in magnitude.

Dec represents the decision function d(x.y) evaluated at the
midpoint (X±I.Y±I/2). When curve slope If(x)1 < 1 (the
RunRise case), the midpoint method guarantees that this
point will be a distance d of at most 1/2 in Y from the point
(X±I,f(X±I» (see again figure 4 and table 1). Thus we have

d = If(X±l) - (Y±I!2)1 ::; 1(2.

Scaling by 2Di gives

2Did = 12Dif(X±I) - 2Di(Y±1/2)1::; Di·

Note now that 2Dif(X±1) - 2Di(Y±I/2) is equivalent to the

decision variable (4). Thus we have Id(X±I.y±I/2)1 = IDecl

::;Di·
X D e c 2 represents the difference function d2 (x) =

d(X±I,y±1(2) - d(x,y±1(2) = g(X±I) - g(x). where g(x) is the
function (3). We define the difference dz'(x) = d2(x)/2Di =
f(X±I) - f(x), where f(x) is the function (2). In the RunRise

case. If(x)1 < 1, which implies that dz'(x) = If(X±I) - f(x)1 ::;

I, and then it follows that IXDec21 = Id2(x)1 ::; 2Di. This
allows us to conclude that representing the RunRise
looping variables requires only the fulfillment of the
almost trivial inequality

Graphics Interface '92

XDecOConst (Ai«S) + (Ai «4);
XDec2Const XDecOConst»l;
XDec1Const XDec2Const + (Bi«4);
YDecConst Di«3;
XDecConst = Ci«3;

Temp 1 = (Ai«3) *X ;
if (X < XEnd) {

XStep 1 ;
XDecO = XDecOConst ;
XDec1 = (Temp1« 2) + (Temp1 «1)

+ XDecOConst + XDec1Const;
XDec2 = « Temp1« 1) + Temp1

+ XDec 1Const + XDec2Const)*X
+ XDec1Const + (Ai« l) + XDecConst;

Dec = «Temp1 + (XDec1Const»1))* X
+ (XDec1Const»1) - (XDec2Const»2)
+ XDecConst)*X + Ai + (Bi«l)
+ (Ci«2);

e lse {
XStep
XDecO
XDec1

-1;
-XDecOConst ;
(Temp1 «2) + (Temp1«1)

- (XDecOConst«l) + XDec1Const ;
XDec2 = (-(Temp1«1) - Temp1

+ XDecOConst + XDe c2Const
- XDec1Const)*X + XDec1Const
- XDecOConst - (Ai«l) - XDe cConst;

Dec = « Temp1 + (XDec1C onst »1)
- XDec2Const)*X - (XDec1Const»1)
+ XDec2Const - (XDec2Const»2)
+ XDecConst)*X - (Ci«2) + (Bi«l)
- XDecConst;

) /* end if */

if (Y < YEnd)
YStep = 1;
Dec = Dec - YDecConst*Y - YDecConst;

else (
YStep
XDecO
XDec1
XDec2

- 1 ;
-X DecO ;
-X Dec1 ;
-XDec2 ;

Dec = - Dec + YDecConst *Y - YDecConst ;
/* end if * /

25

/* Used to in it diffc constant */
/* Used to init 2nd order diffc fction */
/* Used to init 1st order diffc fction */
/* Difference constant for a Y step */
/ * Used to in it 1st/2nd ord dif fc fcts * /

/* Used to save multiplies */
/* If plott ing in positive X direct i on */
/* Set X increment */
/* Difference constant f or an X step */
/* Init 1st order diffc function */

/* Init 2nd order diffc function */

/* Init decision variable * /

/* If plotting in negative X direction */
/* Set X increment */
/* Diffc c on st ant for an X step * /
/* Init 1st order diffc function */

/* Init 2nd order diffc function */

/* Init decisi on variable */

/* If plotting in positive Y directi on */
/* Set Y increment */
/ * Final decision variable init'zation */
/* If plotting in negative Y direction */
/* Set Y increment */
/* Negate X differences */

/* Final decision varaible init ' zation */

Figure 8: RiseRun algorithm initialization. (x ,Y) and (XEnd,Y End) are segment endpoints.

if (Y == YEnd)
{LinPlot(X,Y,XEnd,YEnd) ;

else
for (Y=Y ; Y<=YEnd; Y=Y+YStep)

Plot (X, Y) ;
if (Dec < 0) { /* perform X step */

X = X + XStep ;
Dec = Dec + XDec2 - YOecConst ;
XDec2 = XDec2 + XDec1;
XDec1 = XDec1 + XDecO;

else Dec = Dec - YDecConst;
/* end for * /

/* If degenerate curve , */
/* Plot a line * /
/* Otherwise, */
/* For each Y in the curve */
/* Plot a point */
/* I f must perf o rm X step */
/* Adjust X accordingly */
/* lJpda.te the dec va.t:iabLe a.ccot:dingLy */
/ * Update the 2nd order diffc */
/* Update the 1st order diffc */
/* If no X step , update dec var accdgly */

Figure 9: RiseRun algorithm loop. (x, Y) and (XEnd,YEnd) are curve segment endpoints.

Graphics Interface '92

2Di < 2bits-1.

Then if bits = 32, we must have Di < 230 to loop in the
RunRise algorithm without overflow.

The overflow analysis of initialization for the RiseRun
algorithm is similar to the RunRise initialization analysis.
The largest intermediate value calculated during initializa
tion is the partial sum of the decision variable SAi x 3 +

(±12Ai+SBi)x2 + (6Ai±SBi+SCi)x + (±Ai+2Bi±4Ci). Here

the worst case value is li (w3 + 5w2 + 12w + 7)1, giving us
the inequality

li (wl + 5w2 + 12w + 7)1 < 2bits-l

if overflow is to be avoided. Since this inequality is clearly
more restrictive than the inequality required for RunRise
initialization, the use of more than 32 bits is appropriate.

Because the condition If(x)1 < 1 does not hold for RiseRun
curves, overflow analysis of the RiseRun looping section
will differ significantly from the similar RunRise analysis.
The unoptimized RiseRun algorithm changes the same five
variables as the unoptimized RunRise algorithm. We can
again conclude that the overflow restrictions required by
Dec and XDec2 will most seriously affect program utility.

In the RiseRun algorithm, d2(X)/2Di = f(X±3!2) - f(X±1/2).

But since If(x)1 ~ 1, we cannot conclude that If(X±3/2) -

f(x±1/2)1 ~ 1 and IXDec2 1 ~ SDi. Theoretically, the differ

ence If(x±3/2) - f(X±1/2)1 could be infinite. Clearly, how
ever, a curve that fulfilled such a condition would have infi
nite slope, and f(x) would then simply describe a vertical
line. In fact, any curve segment that fulfills the condition
x End = X would for our purposes be a vertical line, and
would be most quickly rendered by a primitive line plotting
routine. Since our RiseRun algorithm captures such cases,
we can guarantee that XEn d ~ X and thus that If(x±3/2) -

f(x±l/2)1 ~ h, where h is screen height. This allows us to

conclude that IXDec2 1 = d2(X) = ISDif(X±3!2) - SDif(x±I!2)1

~ SDih, and gives us the restriction

The RiseRun decision variable d(x±I/2,y±I), like the
RunRise decision variable, is proportional to a distance.
We'll call this distance d' = f(X±1/2) - (Y±I). However,

because If(x)1 ~ 1 for RiseRun curves, Id'l has the wider

range [O,h], which implies that Id(x±l/2,y±l)1 has the

proportional range [O,SDih], and that IDe c l ~ SDih. Thus
the above overflow restriction for XD ec2 also applies to
Dec.

If bits = 32 and h = 1024, we have

213 Di < 231

Di < 21S .

26

8. Algorithm Use With Parametric Curves

While the algorithms presented in this paper were designed
for the direct plotting of cubic functions, they can be used,
with slight modifications, to plot parametric curves.

Typically, parametric curves are plotted by making both
the X and Y coordinates functions of a parameter t, which
may take on values in the range [0,1] . Our algorithms
could be used to plot such curves by running them twice:
once to obtain X coordinates, and once to obtain Y
coordinates. In both cases, the algorithm variable X would
contain the current value of the parameter t . The variable y

would contain an X or Y coordinate. Below, we present
overflow analysis only for the parametric equation x(t).
For overflow restrictions for yet), simply substitute h for
w.

Since our algorithms can only use a step size of 1, X
cannot, like t, take on values only in the range [0,1].
Instead, we could let it take on integer values in the range
[O,n], where the even number n is the number of parametric
steps desired. If we have the parametric equation

(6)

in [0,1], the equation

t' in [O,n], would describe the same coordinates. Thus the
parametric version of the RunRise decision variable (4) is

Note that we have not scaled the parametric decision vari
able by 2 because we know that n is an even number. The
RunRise parametric differences are:

- Cin2t'

Ai(t,3±3t,2+3t'±I) + Bin(t'2:t2t'+I) + Cin2(t'±I)

- Ait,3 - Bint'2 - Cin2t'

Ai(±3t'2+3t'±I) + Bin(±2t'+I) ± Cin2

±3Ait'2 + (3Ai±2Bin)t' + (±Ai+Bin±Cin2)

d1(t') ±3Ai(t'±1)2 + (3Ai±2Bin)(t'±1) - ±3Ait'2

- (3A i±2B in)t'

= ±3Ai(±2t'+I) ± (3Ai±2Bin)

= 6Ait' + (±6Ai+2Bin)

dot, = ±6Ai

For the parametric versions of our algorithms, we only pre
sent overflow restrictions for the looping sections .
Analysis for the parametric RunRise variables XDec2 and

Graphics Interface '92

De c is quite similar to the analysis for the identically
named non-parametric RunRise variables, and gives the
overflow restriction

If bits = 32 and n = 256, we have Di ~ 128.

Remember that t' refers to a step number rather than an
absolute screen location. This enables us to use a low value
of n, 128, and still know that the algorithm will function
over the entire screen. If we were to make n smaller, the
upper limit for IDil would increase. If we had to plot a curve
segment that required more than n steps, we could simply
split the curve into several sub-segments of a more
managable size.

Since many parametric curves interpolate or are controlled
by points chosen on a computer screen, it is often the case
that the coefficients A, B, C, and D in (6) are integers, not
rational. In such cases, Ai, Bi and Ci are equal to An, Bn,
and Cn . Most important, however, is the observation that
Di = 1. In such cases, our RunRise overflow restriction
above becomes

If bits = 32, we have n ~ 1290.

The parametric version of the RiseRun decision variable (5)
is

8Ai(t'±1/2)3 + 8Bin(t'±1/2)2 + 8Cin2(t'±1/2) -

8Din3(X±1).

The RiseRun parametric differences are:

d2(t') = ±24Ait'2 + (48Ai±16Bin)t '

+ (±26Ai+ 16B in±8Cin2)

d 1 (I') 48Ait' + (±72Ai+ 16Bin)

dOt, ±6Ai

The overflow restriction for the RiseRun parametric case is:

8Din3w ~ 2bits-1.

If bits = 32, w = 1280, and IDil ~ 64 we have

10Din3216 ~ 231

n3 < 215/10,

giving n ~ 14.

If Di = 1, bits = 32 and w = 1280, we have

10n32 10 ~ 232

n3 < 222/10,

giving n ~ 74.

27

9. Algorithm Comparison And Evaluation

In this section, we compare the RunRise and RiseRun algo
rithms as they would be used with parametric curves with
the algorithms A and B presented by Klassen in [11]. Table
2 shows the operation costs and the overflow restrictions
associated with Klassen's algorithms and our algorithms.
We have assumed that a barrel shifter is available.
Furthermore, while we generally follow Klassen's practice
of weighing each branch of a conditional statement
equally, we have made an exception for the branches in our
algorithms' main loops. In particular, since the RunRise
algorithm plots curve segments with absolute slope less
than one, we have assumed (rather conservatively) that the
algorithm will make 3 X steps for every 2 Y steps, and thus
that the if statrnent in figure 7 will be true only 40% of the
time. By similar logic, we assume that the if statrnent in
figure 9 will be true only 40% of the time. As curve slope
nears zero or infinity, these percentages decrease, and
algorithm performance improves.

Clearly, the main loops of both the RunRise and RiseRun
algorithms use less operations than Klassen's algorithm B,
and are comparable in cost to Klassen's algorithm A.
During initialization, our algorithms use no expensive
divide operations, and use about half the number of add and
multiply operations used by Klassen's algorithms. It
should be noted, however, that while our algorithms require
that a cubic curve be split into segments, both of Klassen's
algorithms A and B do not depend on slope. Thus,
initialization for the RunRise and RiseRun algorithms will
in practice require slightly more addition and multiply
operations than Klassen's algorithms, as well as several
floating point calculations.

Klassen's algorithm A has by far the most liberal overflow
restriction -- it is linear in n, the number of parametric
steps, and w, screen width in pixels. The RunRise algo
rithm and Klassen's algorithm B both have restrictions that
are cubic in n, with the RunRise algorithm allowing twice
as many parametric steps as algorithm B. The RiseRun
overflow restriction, however, is cubic in n and linear in w.
This severely restricts the RiseRun algorithm's utility if
only 32 bits are available.
It should be noted that the overflow restriction shown for
Klassen's algorithms guarantee that both initialization and
looping will be accomplished without overflow. The
restrictions shown for the RunRise and RiseRun algorithms
guarantee only that looping will be accomplished without
overflow. Initialization of our algorithms requires many
more bits for representation than does initialization for
Klassen's algorithms (with the exception of algorithm A's
extended precision divide (xdlv) operation).

Klassen's algorithm A uses a fixed point approach, and thus
incorporates an inherent level of error not present in the
other algorithms. Both of Klassen's algorithms can be
used with rational coefficients, but doing so would require
floating point calculation, increase error in algorithm A,
and introduce error into algorithm B. Our algorithms
remain perfectly accurate even with rational coefficients.

Graphics Interface '92 ~

28

Table 2. A comparison of Klassen's algorithms from [11] with the algorithms presented in this paper
as used for plotting parametric curves with integer coefficients. n is the number of parametric steps
made, w is the width of the screen in pixels, bits is the number of bits used to represent algorithm values,
Z is the number of bits of fractional precision.

Operation
Main Loop

Algorithm + If « = + •
RunRise 3 1 0 3 16 5

RiseRun 2 1 0 2 22 5

Klassen's A 3 0 3 3 17+3Z 12

Klassen's B 10 3 0 10 40 12

If non-parametric curves are being plotted, overflow
restrictions for our algorithms improve: the RunRise
algorithm requires only that the product of the rational
denominators Di be less than 2bits-l, and the RiseRun
algorithm is similar, but is linear in screen width .
Overflow restrictions for Klassen's algorithms in such a
case will not show such a significant improvement.

In summary, Klassen's algorithms make efficient use of
available bits, but at the price of algorithm speed or accu
racy. Our algorithms require more representational bits,
but are faster and more accurate. We believe that if word
size is 64 or larger, or non-parametric curves are being
rendered, our algorithms are clear wirmers.

10. Conclusions And Future Work

We have presented integer-only algorithms that allow fast,
accurate plotting of cubic curves. Analysis shows that
using these algorithms to plot parametric curves may
require more representational bits than already existing
algorithms. But if such bits are not at a premium, or non
parametric curves are being plotted, our algorithms are the
algorithms of choice.

We plan to explore further the use of these algorithms with
parametric curves, spline curves, and Bezier curves. In par
ticular, we would like to explore the use of these algorithms
with adaptive forward differencing.

11. References

1. Bresenham, J. E. "Algorithm for computer control of a
digital plotter," mM Syst. 1. 4(1) (1965): 25-30.

2. Bresenham, J. E. "Algorithms for circular arc genera
tion, " Fundamental Algorithms for Computer Graphics,
R.A. Earnshaw, ed., NATO ASI Series, Vol. F17,
Springer Veriag, Berlin, (1985): 197-218.

3. Bresenham, J. E. "A linear algorithm for incremental
digital display of digital arcs," Commun. ACM. 20(2)
(Feb. 1977): 100-106.

4. Bresenham, 1. E. "Run length slice algorithm for incre
mental lines," Fundamental Algorithms for Computer
Graphics, R.A. Earnshaw, ed., NATO ASI Series, Vol.
F17, Springer Verlag, Berlin, (1985): 59-104.

Cost
Initialization Overflow
dlv xdlv « If = Restriction

0 0 11 2 16 nJ < 2blts-l

0 0 16 2 14 8wnl < 2bits-l
1 5 2 Z 28+2Z 46wn < 2bits-l
5 0 0 6 33 2nl < 2bits-l

5. Chang, S-L., Shantz, M., and Rocchetti, R. "Rendering
cubic curves and surfaces with integer adaptive forward
differencing," Comput. Graph., 23(3) (Jul. 1989): 157-
166.

6. Foley, J., van Dam, A., Feiner, S ., and Hughes, J.
Computer Graphics: Principles And Practice, Addison
Wesley, Reading, Mass., (1990).

7. Horn, B. K. P. "Circle generators for display devices,"
Comput. Graph. Image Process. 5 (1976): 280-288.

8. Lien, S-L., Shantz, M., and Pratt, V. "Adaptive forward
differencing for rendering . curves and surfaces,"
Comput. Graph., 21(4) (Ju!. 1987): 111-118.

9. Kappel, M. R. "An ellipse-drawing algorithm for raster
displays," Fundamental Algorithms for Computer
Graphics, R.A. Earnshaw, ed., NATO ASI Series, Vol.
F17, Springer Verlag, Berlin, (1985): 257-280.

10. Klassen, R. V. "Drawing antialiased cubic spline
curves," ACM Trans. Graph. 10(1) (Jan. 1991): 92-
108.

11. Klassen, R. V. "Integer forward differencing of cubic
polynomials," ACM Trans. Graph. 10(2) (ApT. 1991):
152-181.

12. McIlroy, M. D. "Best approximate circles on integer
grids," ACM Trans. Graph. 2(4) (Oct. 1983): 237-
263.

13. Metzger, R. A. "Computer generated graphics
segments in a raster display," Spring 1969 Joint
Computer Journal Conference, AFIPS Conf. Proc. : 161-
172.

14. Pitteway, M. ''The relationship between Euclid's algo
rithm and run length encoding," Fundamental
Algorithms for Computer Graphics, R.A. Earnshaw,
ed., NATO ASI Series, Vol. F17, Springer Verlag,
Berlin, (1985): 105-112.

15. Surany, A. P. "An ellipse-drawing algorithm for raster
displays," Fundamental Algorithms for Computer
Graphics, R.A. Earnshaw, ed., NATO ASI Series, Vo!.
F17, Springer Verlag, Berlin, (1985): 281-285.

16. Van Aken, 1. "An efficient ellipse-drawing algorithm,"
IEEE Comput. Graph. & Appl. 4(9) (Sept. 1984): 24-
35.

17. Van Aken, J., and Novak, Mark. "Curve drawing algo
rithms for raster displays," ACM Trans. Graph. 4(2)
(Apr. 1985): 147-169.

18. Watson, B., and Hodges, L. "A fast algorithm for ren
dering quadratic curves on raster displays," S EA CM
Conf. Proc. 27 (Apr. 1989): 160-165.

Graphics Interface '92

