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Abstract 

We present two integer-only algorithms to be used in tan
dem for rendering cubic functions and parametric cubic 
curves with rational coefficients. Analysis of execution 
speed of existing algorithms shows that our algorithms 
will match or outperform other current algorithms. 
Furthermore, while other existing algorithms can only 
handle curves shaped by rational coefficients by 
introducing some approximation error, our algorithms 
always choose the best approximation. Curves may have 
to be split before rendering, because each algorithm only 
handles curves with slope in a certain range. When 
plotting parametric curves, our algorithms may require 
more bits of representation for some integer variables than 
other existing algorithms. 

Keywords: display algorithms, curve representations, 
parametric curves, raster graphics 

1. Introduction 

Computer scientists have been developing line and curve
rendering algorithms for over 25 years. Only recently, 
however, have efficient algorithms for the plotting of cu
bic curves begun to appear. This paper will propose and 
develop two fast, integer-only algorithms that can be used 
in tandem to render cubic curves with rational coefficients 
defined by the function 

The algorithms are based on the midpoint method, 
described by Van Aken and Novak in [17] and below. 

2. History And Existing Algorithms 

I.E. Bresenham was the first to present a fast, integer-only 
line rendering algorithm in 1965 [1] . Research in line ren
dering since has seized on the periodic patterns shown by 

Bresenham's algorithm when viewed on a raster display as a 
means of improving algorithm speed [4,14]. 

Algorithms for rendering circles began to appear in the 
1970s. Bresenham [2,3]. Horn [7], and McIlroy [12] have 
all presented algorithms. Later, algorithms for rendering 
ellipses were published [9,15,16], and more recently, algo
rithms for the plotting of parabolas and hyperbolas were 
presented [13,15,18]. 

Algorithms for the rendering of cubic curves have only 
begun to appear in the last few years . In [11], Klassen pre
sented two algorithms for rendering parametric cubic 
curves. First he identified the family of Bezier curves that 
are "worst-case", meaning that they are most likely to 
cause overflow during calculation. If 2h is screen length or 
width, Klassen asserted that "worst case" curves would have 
the four Bezier control points [-h,5h,-5h,h] in at least one 
dimension, which would describe the one-dimensional 
parametric Bezier cubic 32hr3 - 48ht2 + 18ht - h. Klassen 
called such curves S curves. Klassen then presented his two 
algorithms and outlined their relative speed and overflow 
restrictions for worst-case curves. Algorithm A uses a 
fixed-point representation of curve coordinates, and thus 
incorporates an inherent level of error. However, it is fast 
and has a liberal overflow restriction. Algorithm B divides 
forward differences into integer and fractional parts, 
providing perfect accuracy. But it is slower than algorithm 
A, and can only take 1024 parametric steps if overflow is 
to be avoided with 32-bit words. Both algorithms allow 
arbitrary step size and do not restrict curve segments to 
certain slope octants. Both can be used with non-integer 
coefficients. However, use of such coefficients with 
algorithm B would eliminate its perfect accuracy. 

In [10], Klassen studied the use of these two algorithms 
with cubic spline curves. He envisioned the use of the 
algorithms with adaptive forward differencing [6,8]. which 
dynamically adjusts step size as a curve is plotted. 
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Figure 1: Elimination of the constant 
term can be compensated for by a 
translation. 
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Figure 3: If Islopel < 0 and X and Y 
plotting directions are positive the 
candidate points are (X + I, Y) and 
(X+I, Y+I). 

Simultaneous to Klassen, Chang et al. [5] developed an 
algorithm similar to Klassen's algorithm B that also could 
be used with adaptive forward differencing. Differences 
between the two algorithms are minor. 

3. Preliminaries 

3.1. Elimination or The Constant Term DnlDd 

Since the last term (On/Dd) in (1) does not change the 
shape of the curve, we can render the curve described by 
instead rendering the curve 

with a compensating translation (see figure I). Note that if 
the (On/Dd) rational coefficient is not an integer, transla
tion of the Y coordinate at plotting by round(Dn/Dd) alone 
will not necessarily produce the best approximation of the 
curve. In section 4 we will discuss a method of compensat
ing for this inaccuracy. 
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d(x,y) < 0 

Figure 2: If the decison function is 
evaluated at a point above the curve, it 
is negative. Otherwise it is positive. 

Table 1. The candidate and midpoints used depend on 
curve slope and X and Y plot direction. Points are listed in 
clockwise order. 

YPlot X Plo 
Dir Dir IS lapel Candidate Points Midpoints 

+ + < I (X+I.Y); (X+I.Y+I) (X+I.Y+I!2) 
+ + >= I (X+I.Y+I); (X,Y+I) (X+I/2.Y+I) 
+ - >= I (X.Y+I); (X-I.Y+I) (X-I/2.Y+I) 
+ - < I (X-I.Y+I); (X-I.Y) (X-I,Y+I!2) 
- + < I (X-I.Y); (X-I,Y-I) (X-I.Y-I/2) 
- + >= I (X-I.Y-I); (X,Y-I) (X-I/2.Y-I) 
- - >= I (X.Y-I); (X+I.Y-l) (X+I/2.Y-I) 
- - < I (X+I.Y-I); (X+I.Y) (X+I .Y-I/2) 

3.2. The Midpoint Method 

The midpoint method. described by Van Aken and Novak in 
[17]. requires the incremental evaluation of a decision func 
tion that indicates which of two candidate pixels should be 
chosen for rendering. If the equation for a curve is y = f(x). 
then the decision function has the form d(x.y) = f(x) - y. 
Notice that this function will have a different sign on each 
side of the curve f(x) (see figure 2). 

Where do we evaluate this function? This depends on the 
slope of the curve. If -I < f(x) < I and we are plotting in 
positive X and Y directions. then if we have just plotted the 
point (X.Y), the two candidate points for plotting are 
(X+I.Y) and (X+I.Y+I). (See figure 3. Table I shows a 
complete list of candidate points.) The midpoint method 
evaluates the decision function at the midpoint between the 
candidate pixels. In our example, this midpoint is 
(X+I.Y+I/2). and thus we evaluate d(X+I.Y+I/2). (See fig
ure 4. Table I shows a complete list of midpoints .) We 
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Figure 4: If Islopel < 0 and the X and Y 
plotting directions are positive, the midpoint 
is (X+l,Y+l!2). 

will call the decision function the "decision variable" when 
it is evaluated at a midpoint. 

Since the sign of the decision function d(x,y) corresponds 
to a specific side of f(x), the sign of decision variable 
d(X+l,Y+l!2) indicates the side of f(x) on which the mid
point lies, and also which of the candidate pixels lies 
closer to the curve being plotted, f(x). In figure 4, the sign 
of the decision variable is negative, so the lower candidate 
pixel is chosen for plotting. 

Once the next pixel is chosen and plotted, the decision 
function must be evaluated at the next midpoint to allow 
the plotting of the next pixel. In our example (figure 5), 
the appropriate decision variable would be d(X+2,Y+l/2). 

3.3 Forward Differencing 

Simple evaluation of the decision function at each succes
sive midpoint would be computationally expensive. 
Fortunately, there is a method of incremental function eval
uation, called forward differencing, which is uniquely suited 
to our needs. This method, which was known to Newton, 
involves the initialization of several difference values that 
may be added together to produce the value of a function at a 
certain point. These difference values are then themselves 
incrementally evaluated, to prepare for the next evaluation 
of the original function. Note that mulitiplication is only 
required for function and difference initialization. 
Furthermore, if all function coefficients are integers, no 
floating point addition is required. 

As an example, consider the simple function f(x) = 2x + 1. 
f(x+l) differs from f(x) only by the constant difference 
value 2. By successively adding 2 to an initial value for 
f(x), we could incrementally calculate the value of f(x) at 
integer intervals on X. For the higher-order function g(x) = 
x2, the binomial expansion g(x+l) = (x+l)2 = x2 + 2x + 1 
gives us the first-order difference value 2x + 1 for an integer 
interval. Since this difference value is also dependent on 
X, it must also be subjected to forward differencing, as 

0 0 0 0 
----.Ao(X+2,Y+l!2) 

• • e 0 
(X,y) (X+l,Y) 

0 0 0 0 
Figure 5: With this curve, (X+l,Y) would be plotted, 
and (X+2,Y+l!2) used as the next midpoint. 

already discussed. Thus the incremental calculation of g(x) 
= x2 would require two additions per integer interval. 

4. The RunRise Algorithm 

Let us first fmd the decision function d(x,y) for equation (2) 
when -1 < f(x) < 1. In this case, the X component of f(x) 
is larger than the Y component: the curve "runs" faster than 
it "rises." We will label segments of f(x) where this 
condition holds true "RunRise." Since we will only make 
use of the sign of our decision function, we multiply our 
cubic function (2) by 2AdBdCd to increase efficiency by 
eliminating the floating point division calculations. To 
conserve space, we use the shorthand Ai = AnBdCd, Bi = 
BnAdCd, Ci = CnAdBd, and Di = AdBdCd, in the rest of 
this paper and the equation below. We assume without loss 
of generality that Di (and thus the denominators ~, Bd, 
and Cd) are positive: 

(3) 

We will find it useful to plot in both positive and negative 
X and Y directions. Our direction-flexible decision variable 

d(x±1,y±I/2) is then 

2Ai(X±I)3 + 2Bi(X±I)2+ 2Ci(x±l) - 2Di(y±I/2) (4) 

where ± is positive if we are plotting in a positive 
direction, negative otherwise. 

We must evaluate (4) incrementally as we plot the RunRise 
portion of f(x). To avoid computationally complex multi
plications, we will use forward differencing. The difference 
constant day is the difference between d(x,y) evaluated at 
the "current" Y coordinate, and d(x,y) evaluated at the 
"next" Y coordinate: 

dOy = d(X±I,y±3/2) - d(X±I,y±1/2) 

= 2Di(y±3!2) - 2Di(y±I!2) 

=±2Di· 
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This difference constant is used to update the decision vari
able when a "Y step" is made -- that is, when the last 
plotted pixel differs from the previously plotted one in its 
Y coordinate. 

Because the decision variable (4) is a third-order function in 
X, updating it when an X step is made is more complex. 
The second order difference function d2(x) is the difference 
between the decision variable at the current X coordinate 
and the next X coordinate: 

d2(x) d(X±I,y±I/2) - d(x,y±I/2) 

2Ai(X±1)3 + 2Bi(x±I)2 + 2Ci(x±l) - 2Aix3 

- 2Bix2 - 2CiX 

2Ai(x3±3x2+3x±l) + 2Bi(x~2x+l) + 2Ci(X±1) 

- 2AiX3 - 2BiX2 - 2Cix 

2Ai(±3x2+3x±l) + 2Bj(±2x+l) ± 2Ci 

= ±6Aix2 + (6Ai±4Bi)X + (±2Ai+2Bi±2Ci)· 

d2(x) must itself be subjected to forward differencing. The 

22 

where (x, Y) and (XEnd, YEnd) are the endpoints of the plot
ted curve segment, and a the cost of one addition operation. 

Earlier, we noted that compensating for the elimination of 
the non-integer constant with translation will not 
necessarily produce the best approximation of the curve. 
Adding an appropriately signed round(Di * «Dn/Dd) mod 
1» to the initial decision variable will simulate a fractional 
Y step and improve accuracy. 

5. The RiseRun Algorithm 

Now let us fmd the decision variable needed when If(x)1 > 1. 
In this case, it is the Y component of f(x) that is larger, so 
the curve will "rise" faster than it "runs." We will label 
segments of f(x) where this condition holds true 
"RiseRun." 

As is clear from table I, the direction-flexible midpoint 
decision variable is d(X±I/2,y±I). Expanded, this is 

first order difference function dl (x) is the difference SAi(X±1/2)3 + SBi(X±1/2)2 + SCi(x±l/2) - SDj(y±I). (5) 
between the value of d2(x) at the current and next X 
coordinates: 

d 1 (x) = d2(X±I) - d2(X) 

= ±6Ai(X±1)2 + (6Ai±4Bi)(x±l) - ±6kAiX2 

- (6Ai±4B i)x 

= ±6Ai(x2±2x+l) + (6Ai±4Bi)(X±I) - ±6Aix2 

- (6Ai±4B i)x 

±6Ai(±2x+l) + (±6Ai+4Bi) 

12Aix + (±12Ai+4Bi)· 

Finally, dl (x) must be subjected to forward differencing . 
The difference between d 1 (x) evaluated at the current and 
next X coordinates gives us constant dox: 

dOx =dl(X±l) - dl(X) 

= 12Ai(x±l) - 12Aix 

= ±1 2Ai· 

Stepping one pixel at a time, and using the global declara
tions below, we can construct a direction-flexible 
algorithm for plotting the RunRise segments of cubic 
curves. Figures 6 and 7 show the core of this algorithm in 
C. For brevity's sake, we have removed the variable and 
function declarations (all variables are long integers). The 
initialization of Ai, Bi, Ci and Di is not shown -- it is 
common to all curve segments . 

In its loop, the RunRise algorithm performs 4 additions for 
each step in X, 2 additions for each step in Y. This gives a 
cost of 

4alXEnd-xl + 2aIYEnd-YI, 

We have used the constant SDi rather than 2Di in (5) to 

allow the integer performance of the half step x±1/2. (5) 

reduces as follows: 

SAi(x3±3/2x2+3/4x±I/S) + SBi(x2±x+l/4) 

+ SCi(X±1/2) - SDi(y±l) 

SAix3 + (±12Ai+SBi)x2 + (6Ai±8Bi+SCi)x 

+ (±Ai+2Bi±4Ci) - SDi(y±l) 

We use this all-integer equation to initialize our decision 
variable. The following forward stepping increments allow 
us to update that decision variable: 

d2(x) d(x±3/2,y±1) - d(X±1/2,y±l) 

8Ai(x±3/2)3 + SBi(x±3/2)2 + SCi(x±3/2) 

- 8Ai(x±1!2)3 - 8Bi(X±1/2)2 - 8Ci(x±I/2) 

SAi(x3±9/2x2+27/4x±27/8) + 8Bi(x2±3x+9/4) 

+ 8Ci(x±3!2) 

= 8Ai(x3±3/2x2+3/4x±I/8) - 8Bi(x2±X+l/4) 

- 8Ci(x±1!2) 

±24Aix2 + (48Ai±16Bi)X + (±26Ai+16Bi±8Ci) 

dl (x) d2(X±I) - d2(x) 

±24Ai(X±I)2 + (48Ai±16Bi)(X±I) - ±24AiX2 

- (48Ai±16Bi)x 

±24Ai(x2±2x+1) + (48Ai±16Bi)(X±1) - ±24AiX2 

- (48Ai±16Bi)x 

±24Ai(±2x+l) + (±48Ai+16Bi) 

48Aix + (±72Ai+16Bi) 
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XDec2Constl = Ai«l; 
*/ 
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XDecOConst = (XDec2Const1«2) + (XDec2Const1«1); 
XDec2Const2 = Bi«l; 
*/ 
XDeclConst = XDec2Const2«1 ; 
*/ 
XDec2Const3 = Ci«l; 
*/ 
DecConst = Di; 
YDecConst = DecConst«l ; 

Temp1 XDec2Const1*X; 
*/ 
if (X < XEnd) 

XStep 1; 
XDecO = XDecOConst; 
XDec1 = (Temp1«2) + (Temp1«1) 

+ XDecOConst + XDec1Const ; 
XDec2 = « Temp1«1) + Temp1 

+ (XDecOConst»l) + XDec1Const)*X 
+ XDec 2Const1 + XDec2Const2 + XDec2Const3 ; 

else ( 
XStep 
XDecO 
XDec1 

- 1 ; 
-XDecOConst; 
(Temp1«2) + (Temp1«1) 

- XDecOConst + XDec1Const ; 
XDec2 = (-(Temp1 «1) - Temp1 

+ (XDecOConst»l) - XDec1Const)*X 
- XDec2Const1 + XDec2Const2 - XDec2Const3; 

) /* end if */ 

Dec = «Temp1 + XDec2Const2)*X + XDec2Const3)*X ; 
if (Y < YEnd) 

YStep = 1 ; 
Dec = Dec + XDec2 - YDecConst*Y - DecConst; 

else { 
YStep 
XDecO 
XDec1 

- 1 ; 
-XDecO ; 
-XDec1 ; 

XDec2 -X Dec2 ; 
Dec = - Dec + XDec2 + YDecConst*Y - DecConst ; 

/* end if * / 

/* Used to i nit 2nd order diffc function 

/* Used to init diffc constant */ 
/* Used to init 2nd order diffc function 

/* Used to init 1st order diffc function 

/* Used to init 2nd order diffc function 

/* Used to in it decision variable */ 
/* Difference constant for a Y step */ 

/* Used several times to save multiplies 

/* If plotting in positive X direction */ 
/* Set X increment */ 
/ * Difference constant for an X step */ 
/* Init 1st order diffc function * / 

/* Init 2nd order diffc function */ 

/* If plotting in negative X direction * / 
/* Set X increment */ 
/* Diffc constant for an X step */ 
/ * Init 1st order diffc function */ 

/* Init 2nd order diffc function */ 

/* Init deci s ion variable */ 
/* If plotting in positive Y direction */ 
/* Set Y increment */ 
/* Final decision variable init'zation */ 
/* If plotting in negative Y directi on */ 
/* Set Y increment */ 
/* Negate X differences */ 

/* Final decision variable init ' zation */ 

Figure 6: RunRise algorithm initialization. (x,y) and (XEnd,YEnd) are segment endpoints . 

if (X == XEnd) 
(LinPlot(X , Y,XEnd , YEnd ) ; 

else 
for (X=X ; X<=XEnd; X=X+XStep) 

Plot(X,Y) ; 
XDec2 = XDec2 + XDec1 ; 
XDec1 = XDec1 + XDecO ; 
if (Dec > 0 ) { /* perform Y step */ 

Y = Y + YStep ; 
Dec = Dec + XDec2 - YDecConst ; 

else Dec = Dec + XDec2; 
/ * end for * / 

/* If degenerate curve, */ 
/* Plot a line */ 
/* Otherwi se, */ 
/* For each X in the curve */ 
/* Plot a point */ 
/* Update the 2nd order diffc */ 
/* Update t he 2st order diffc */ 
/* If must perform Y step */ 
/ * Adjust Y accordingly * / 
/* Update the decision var accordingly */ 
/* If no Y step , update dec var accdgly * / 

Figure 7: RunRise algorithm loop. (x,Y) and (XE nd,YEnd) are curve segment endpoints. 
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dOx = dl(X±I) - dl(X) 

= 48Ai(X±I) - 48Aix 

= ±48Ai 

dOy = 8Dif(x±I/2,y±2) - 8Dif(x±I/2,y±l) 

= 8Dj(y±2) - 8Di(y±I) 

= ±8Di· 

Figures 8 and 9 show the RiseRun algorithm. Again, vari
able declarations and global initializations are not shown. 

The RiseRun algorithm, like the RunRise algorithm, per
forms 4 additions for each step in X, 2 additions for each 
step in Y. Thus algorithm cost is 

4aIXEnd-xl + 2a1YEnd-YI. 

Note, however, that IYEnd-YI will in this case always be 
greater than IXEnd-XI. 

6. Use Of The Algorithms In Tandem 

Because each of the RunRise and RiseRun algorithms only 
function for curve segments that have slope within a 
certain range, plotting a cubic curve with these algorithms 
will typically require that the curve be split into segments 
which satisify the algorithms' slope range requirements. 
Algorithm initialization must then be performed for each 
curve segment, increasing overhead. 

The actual curve splitting itself will also increase overhead. 
Since each algorithm takes as input only function 
constants and segment endpoints, splitting essentially 
involves the location of appropriate segment endpoints. 
For the unoptimized algorithms. these endpoints will be 
the points on the curve at which the conditions If(x)1 = 1 
and f(x) = 0 hold true. Locating these points will involve 
floating point arithmetic. The appropriate algorithm must 
then be called for each segment. In the worst case, a curve 
will have to be split into seven such segments. However, 
use of the algorithms with spline and Bezier curves would 
typically require the splitting of curves into only two or 
three segments. 

7. Overflow 

Care must be taken to avoid overflow when using these 
algorithms. Below, we provide overflow analysis for the 
initialization and looping portions of each of the algo
rithms. 

We begin with the Run Rise algorithm. During initializa
tion, the largest intermediate value that must be handled is 
the first initialization of the decision variable, « Temp 1 + 
XDec2Const2) *X + XDec2Const3) *X. This represents 
2Aix3 + 2BiX2 + 2Cix. For ease of algorithm use and anal
ysis, we define i such that each of the coefficients IAil, IBil, 
ICil and IDil are less than i. The screen space variable Ixl 
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has the maximum value w(2, where w is screen width. Thus 
in the worst case, the decision variable will take on the 
intermediate value liw(w2/4 + w!2+ 1)1. To represent this 
value without overflow, the condition 

liw(w2/4 + w/2+ 1)1 < 2bits-l, 

where bits is the number of bits available for 
representation, must hold true. As an example, it is 
reasonable to expect screen width w to be less than 1280. 
We then have 

1280i (3202 + 640+ 1) < 2bits-l 
1280i (103041) < 2bits-l 

li I < 2bits-l/131892480. 

If a 32-bit word is to be used for representation. bits = 32 
and li I must be less than or equal to 16. Clearly, this is too 
restrictive. If instead 64 bits are used during initialization, 
we have li I < 3.496549627e+l0. Considering that 
LIog(3.496549627e+l0)J is 35, this is quite reasonable. 

The algorithm changes the state of 5 variables while loop
ing: x, Y, Dec, XDec 1, and XDec2. X and Y are screen 
space variables. and thus will not overflow unless any 
screen coordinate is larger than 2bits-1 in magnitude -- an 
unlikely event, given the present state of raster 
technology. XDecl represents the difference function 
dl(X) = d2(x±l) - d2(x), and XDec2 the difference function 
d2(x). By definition. then, XDec2 will always be larger 
than XDecl in magnitude. 

Dec represents the decision function d(x.y) evaluated at the 
midpoint (X±I.Y±I/2). When curve slope If(x)1 < 1 (the 
RunRise case), the midpoint method guarantees that this 
point will be a distance d of at most 1/2 in Y from the point 
(X±I,f(X±I» (see again figure 4 and table 1). Thus we have 

d = If(X±l) - (Y±I!2)1 ::; 1(2. 

Scaling by 2Di gives 

2Did = 12Dif(X±I) - 2Di(Y±1/2)1::; Di· 

Note now that 2Dif(X±1) - 2Di(Y±I/2) is equivalent to the 

decision variable (4). Thus we have Id(X±I.y±I/2)1 = IDecl 

::;Di· 
X D e c 2 represents the difference function d2 (x) = 

d(X±I,y±1(2) - d(x,y±1(2) = g(X±I) - g(x). where g(x) is the 
function (3). We define the difference dz'(x) = d2(x)/2Di = 
f(X±I) - f(x), where f(x) is the function (2). In the RunRise 

case. If(x)1 < 1, which implies that dz'(x) = If(X±I) - f(x)1 ::; 

I, and then it follows that IXDec21 = Id2(x)1 ::; 2Di. This 
allows us to conclude that representing the RunRise 
looping variables requires only the fulfillment of the 
almost trivial inequality 
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XDecOConst (Ai«S ) + (Ai «4 ); 
XDec2Const XDecOConst»l; 
XDec1Const XDec2Const + (Bi«4 ); 
YDecConst Di«3; 
XDecConst = Ci«3; 

Temp 1 = (Ai«3 ) *X ; 
if (X < XEnd ) { 

XStep 1 ; 
XDecO = XDecOConst ; 
XDec1 = (Temp1« 2 ) + (Temp1 «1 ) 

+ XDecOConst + XDec1Const; 
XDec2 = « Temp1« 1) + Temp1 

+ XDec 1Const + XDec2Const)*X 
+ XDec1Const + (Ai« l) + XDecConst; 

Dec = «Temp1 + (XDec1Const»1) )* X 
+ (XDec1Const»1 ) - (XDec2Const»2 ) 
+ XDecConst )*X + Ai + (Bi«l ) 
+ (Ci«2); 

e lse { 
XStep 
XDecO 
XDec1 

-1; 
-XDecOConst ; 
(Temp1 «2 ) + (Temp1«1 ) 

- (XDecOConst«l) + XDec1Const ; 
XDec2 = (-(Temp1«1) - Temp1 

+ XDecOConst + XDe c2Const 
- XDec1Const)*X + XDec1Const 
- XDecOConst - (Ai«l) - XDe cConst; 

Dec = « Temp1 + (XDec1C onst »1 ) 
- XDec2Const)*X - (XDec1Const»1 ) 
+ XDec2Const - (XDec2Const»2 ) 
+ XDecConst)*X - (Ci«2 ) + (Bi«l) 
- XDecConst; 

) /* end if */ 

if (Y < YEnd ) 
YStep = 1; 
Dec = Dec - YDecConst*Y - YDecConst; 

else ( 
YStep 
XDecO 
XDec1 
XDec2 

- 1 ; 
-X DecO ; 
-X Dec1 ; 
-XDec2 ; 

Dec = - Dec + YDecConst *Y - YDecConst ; 
/* end if * / 
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/* Used to in it diffc constant */ 
/* Used to init 2nd order diffc fction */ 
/* Used to init 1st order diffc fction */ 
/* Difference constant for a Y step */ 
/ * Used to in it 1st/2nd ord dif fc fcts * / 

/* Used to save multiplies */ 
/* If plott ing in positive X direct i on */ 
/* Set X increment */ 
/* Difference constant f or an X step */ 
/* Init 1st order diffc function */ 

/* Init 2nd order diffc function */ 

/* Init decision variable * / 

/* If plotting in negative X direction */ 
/* Set X increment */ 
/* Diffc c on st ant for an X step * / 
/* Init 1st order diffc function */ 

/* Init 2nd order diffc function */ 

/* Init decisi on variable */ 

/* If plotting in positive Y directi on */ 
/* Set Y increment */ 
/ * Final decision variable init'zation */ 
/* If plotting in negative Y direction */ 
/* Set Y increment */ 
/* Negate X differences */ 

/* Final decision varaible init ' zation */ 

Figure 8: RiseRun algorithm initialization. (x ,Y) and (XEnd,Y End) are segment endpoints. 

if (Y == YEnd) 
{LinPlot(X,Y,XEnd,YEnd) ; 

else 
for (Y=Y ; Y<=YEnd; Y=Y+YStep) 

Plot (X, Y) ; 
if (Dec < 0 ) { /* perform X step */ 

X = X + XStep ; 
Dec = Dec + XDec2 - YOecConst ; 
XDec2 = XDec2 + XDec1; 
XDec1 = XDec1 + XDecO; 

else Dec = Dec - YDecConst; 
/* end for * / 

/* If degenerate curve , */ 
/* Plot a line * / 
/* Otherwise, */ 
/* For each Y in the curve */ 
/* Plot a point */ 
/* I f must perf o rm X step */ 
/* Adjust X accordingly */ 
/* lJpda.te the dec va.t:iabLe a.ccot:dingLy */ 
/ * Update the 2nd order diffc */ 
/* Update the 1st order diffc */ 
/* If no X step , update dec var accdgly */ 

Figure 9: RiseRun algorithm loop. (x, Y) and (XEnd,YEnd) are curve segment endpoints. 
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2Di < 2bits-1. 

Then if bits = 32, we must have Di < 230 to loop in the 
RunRise algorithm without overflow. 

The overflow analysis of initialization for the RiseRun 
algorithm is similar to the RunRise initialization analysis. 
The largest intermediate value calculated during initializa
tion is the partial sum of the decision variable SAi x 3 + 

(±12Ai+SBi)x2 + (6Ai±SBi+SCi)x + (±Ai+2Bi±4Ci). Here 

the worst case value is li (w3 + 5w2 + 12w + 7)1, giving us 
the inequality 

li (wl + 5w2 + 12w + 7)1 < 2bits-l 

if overflow is to be avoided. Since this inequality is clearly 
more restrictive than the inequality required for RunRise 
initialization, the use of more than 32 bits is appropriate. 

Because the condition If(x)1 < 1 does not hold for RiseRun 
curves, overflow analysis of the RiseRun looping section 
will differ significantly from the similar RunRise analysis. 
The unoptimized RiseRun algorithm changes the same five 
variables as the unoptimized RunRise algorithm. We can 
again conclude that the overflow restrictions required by 
Dec and XDec2 will most seriously affect program utility. 

In the RiseRun algorithm, d2(X)/2Di = f(X±3!2) - f(X±1/2). 

But since If(x)1 ~ 1, we cannot conclude that If(X±3/2) -

f(x±1/2)1 ~ 1 and IXDec2 1 ~ SDi. Theoretically, the differ

ence If(x±3/2) - f(X±1/2)1 could be infinite. Clearly, how
ever, a curve that fulfilled such a condition would have infi
nite slope, and f(x) would then simply describe a vertical 
line. In fact, any curve segment that fulfills the condition 
x End = X would for our purposes be a vertical line, and 
would be most quickly rendered by a primitive line plotting 
routine. Since our RiseRun algorithm captures such cases, 
we can guarantee that XEn d ~ X and thus that If(x±3/2) -

f(x±l/2)1 ~ h, where h is screen height. This allows us to 

conclude that IXDec2 1 = d2(X) = ISDif(X±3!2) - SDif(x±I!2)1 

~ SDih, and gives us the restriction 

The RiseRun decision variable d(x±I/2,y±I), like the 
RunRise decision variable, is proportional to a distance. 
We'll call this distance d' = f(X±1/2) - (Y±I). However, 

because If(x)1 ~ 1 for RiseRun curves, Id'l has the wider 

range [O,h], which implies that Id(x±l/2,y±l)1 has the 

proportional range [O,SDih], and that IDe c l ~ SDih. Thus 
the above overflow restriction for XD ec2 also applies to 
Dec. 

If bits = 32 and h = 1024, we have 

213 Di < 231 

Di < 21S . 
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8. Algorithm Use With Parametric Curves 

While the algorithms presented in this paper were designed 
for the direct plotting of cubic functions, they can be used, 
with slight modifications, to plot parametric curves. 

Typically, parametric curves are plotted by making both 
the X and Y coordinates functions of a parameter t, which 
may take on values in the range [0,1] . Our algorithms 
could be used to plot such curves by running them twice: 
once to obtain X coordinates, and once to obtain Y 
coordinates. In both cases, the algorithm variable X would 
contain the current value of the parameter t . The variable y 

would contain an X or Y coordinate. Below, we present 
overflow analysis only for the parametric equation x(t). 
For overflow restrictions for yet), simply substitute h for 
w. 

Since our algorithms can only use a step size of 1, X 
cannot, like t, take on values only in the range [0,1]. 
Instead, we could let it take on integer values in the range 
[O,n], where the even number n is the number of parametric 
steps desired. If we have the parametric equation 

(6) 

in [0,1], the equation 

t' in [O,n], would describe the same coordinates. Thus the 
parametric version of the RunRise decision variable (4) is 

Note that we have not scaled the parametric decision vari
able by 2 because we know that n is an even number. The 
RunRise parametric differences are: 

- Cin2t' 

Ai(t,3±3t,2+3t'±I) + Bin(t'2:t2t'+I) + Cin2(t'±I) 

- Ait,3 - Bint'2 - Cin2t' 

Ai(±3t'2+3t'±I) + Bin(±2t'+I) ± Cin2 

±3Ait'2 + (3Ai±2Bin)t' + (±Ai+Bin±Cin2 ) 

d1(t') ±3Ai(t'±1)2 + (3Ai±2Bin)(t'±1) - ±3Ait'2 

- (3A i±2B in)t' 

= ±3Ai(±2t'+I) ± (3Ai±2Bin) 

= 6Ait' + (±6Ai+2Bin) 

dot, = ±6Ai 

For the parametric versions of our algorithms, we only pre
sent overflow restrictions for the looping sections . 
Analysis for the parametric RunRise variables XDec2 and 
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De c is quite similar to the analysis for the identically 
named non-parametric RunRise variables, and gives the 
overflow restriction 

If bits = 32 and n = 256, we have Di ~ 128. 

Remember that t' refers to a step number rather than an 
absolute screen location. This enables us to use a low value 
of n, 128, and still know that the algorithm will function 
over the entire screen. If we were to make n smaller, the 
upper limit for IDil would increase. If we had to plot a curve 
segment that required more than n steps, we could simply 
split the curve into several sub-segments of a more 
managable size. 

Since many parametric curves interpolate or are controlled 
by points chosen on a computer screen, it is often the case 
that the coefficients A, B, C, and D in (6) are integers, not 
rational. In such cases, Ai, Bi and Ci are equal to An, Bn, 
and Cn . Most important, however, is the observation that 
Di = 1. In such cases, our RunRise overflow restriction 
above becomes 

If bits = 32, we have n ~ 1290. 

The parametric version of the RiseRun decision variable (5) 
is 

8Ai(t'±1/2)3 + 8Bin(t'±1/2)2 + 8Cin2(t'±1/2) -

8Din3(X±1). 

The RiseRun parametric differences are: 

d2(t') = ±24Ait'2 + (48Ai±16Bin)t ' 

+ (±26Ai+ 16B in±8Cin2) 

d 1 (I') 48Ait' + (±72Ai+ 16Bin) 

dOt, ±6Ai 

The overflow restriction for the RiseRun parametric case is: 

8Din3w ~ 2bits-1. 

If bits = 32, w = 1280, and IDil ~ 64 we have 

10Din3216 ~ 231 

n3 < 215/10, 

giving n ~ 14. 

If Di = 1, bits = 32 and w = 1280, we have 

10n32 10 ~ 232 

n3 < 222/10, 

giving n ~ 74. 
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9. Algorithm Comparison And Evaluation 

In this section, we compare the RunRise and RiseRun algo
rithms as they would be used with parametric curves with 
the algorithms A and B presented by Klassen in [11]. Table 
2 shows the operation costs and the overflow restrictions 
associated with Klassen's algorithms and our algorithms. 
We have assumed that a barrel shifter is available. 
Furthermore, while we generally follow Klassen's practice 
of weighing each branch of a conditional statement 
equally, we have made an exception for the branches in our 
algorithms' main loops. In particular, since the RunRise 
algorithm plots curve segments with absolute slope less 
than one, we have assumed (rather conservatively) that the 
algorithm will make 3 X steps for every 2 Y steps, and thus 
that the if statrnent in figure 7 will be true only 40% of the 
time. By similar logic, we assume that the if statrnent in 
figure 9 will be true only 40% of the time. As curve slope 
nears zero or infinity, these percentages decrease, and 
algorithm performance improves. 

Clearly, the main loops of both the RunRise and RiseRun 
algorithms use less operations than Klassen's algorithm B, 
and are comparable in cost to Klassen's algorithm A. 
During initialization, our algorithms use no expensive 
divide operations, and use about half the number of add and 
multiply operations used by Klassen's algorithms. It 
should be noted, however, that while our algorithms require 
that a cubic curve be split into segments, both of Klassen's 
algorithms A and B do not depend on slope. Thus, 
initialization for the RunRise and RiseRun algorithms will 
in practice require slightly more addition and multiply 
operations than Klassen's algorithms, as well as several 
floating point calculations. 

Klassen's algorithm A has by far the most liberal overflow 
restriction -- it is linear in n, the number of parametric 
steps, and w, screen width in pixels. The RunRise algo
rithm and Klassen's algorithm B both have restrictions that 
are cubic in n, with the RunRise algorithm allowing twice 
as many parametric steps as algorithm B. The RiseRun 
overflow restriction, however, is cubic in n and linear in w. 
This severely restricts the RiseRun algorithm's utility if 
only 32 bits are available. 
It should be noted that the overflow restriction shown for 
Klassen's algorithms guarantee that both initialization and 
looping will be accomplished without overflow. The 
restrictions shown for the RunRise and RiseRun algorithms 
guarantee only that looping will be accomplished without 
overflow. Initialization of our algorithms requires many 
more bits for representation than does initialization for 
Klassen's algorithms (with the exception of algorithm A's 
extended precision divide (xdlv) operation). 

Klassen's algorithm A uses a fixed point approach, and thus 
incorporates an inherent level of error not present in the 
other algorithms. Both of Klassen's algorithms can be 
used with rational coefficients, but doing so would require 
floating point calculation, increase error in algorithm A, 
and introduce error into algorithm B. Our algorithms 
remain perfectly accurate even with rational coefficients. 
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Table 2. A comparison of Klassen's algorithms from [11] with the algorithms presented in this paper 
as used for plotting parametric curves with integer coefficients. n is the number of parametric steps 
made, w is the width of the screen in pixels, bits is the number of bits used to represent algorithm values, 
Z is the number of bits of fractional precision. 

Operation 
Main Loop 

Algorithm + If « = + • 
RunRise 3 1 0 3 16 5 

RiseRun 2 1 0 2 22 5 

Klassen's A 3 0 3 3 17+3Z 12 

Klassen's B 10 3 0 10 40 12 

If non-parametric curves are being plotted, overflow 
restrictions for our algorithms improve: the RunRise 
algorithm requires only that the product of the rational 
denominators Di be less than 2bits-l, and the RiseRun 
algorithm is similar, but is linear in screen width . 
Overflow restrictions for Klassen's algorithms in such a 
case will not show such a significant improvement. 

In summary, Klassen's algorithms make efficient use of 
available bits, but at the price of algorithm speed or accu
racy. Our algorithms require more representational bits, 
but are faster and more accurate. We believe that if word 
size is 64 or larger, or non-parametric curves are being 
rendered, our algorithms are clear wirmers. 

10. Conclusions And Future Work 

We have presented integer-only algorithms that allow fast, 
accurate plotting of cubic curves. Analysis shows that 
using these algorithms to plot parametric curves may 
require more representational bits than already existing 
algorithms. But if such bits are not at a premium, or non
parametric curves are being plotted, our algorithms are the 
algorithms of choice. 

We plan to explore further the use of these algorithms with 
parametric curves, spline curves, and Bezier curves. In par
ticular, we would like to explore the use of these algorithms 
with adaptive forward differencing. 
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