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Abstract 

The automatic generation of motion for animation re­
mains an unsolved problem in computer graphics. One 
approach to the problem is to combine physically ac­
curate models with control systems. The user speci­
fies high-level goals and the control system computes the 
forces and torques that the simulated muscles or motors 
should exert to cause the model to perform the desired 
task. In this paper we describe control systems for rigid­
body models of humans performing four tasks: pumping 
a swing, riding a seesaw, juggling, and pedaling a uni­
cycle. We designed the control systems with the goal 
of producing natural-looking motion, and we discuss the 
techniques that we used to achieve this goal. 
Keywords: Animation, Simulation, Control Theory. 

Introduction 

We would like to be able to au tomatically generate 
natural-looking motion for computer animations based 
on high-level input from the user. We have explored 
one solution to this problem : combining control systems 
with physically accurate models. The user specifies a 
high-level goal ( "ride the unicycle from here to there") 
and the control system computes the forces and torques 
that will cause the simulated model to perform the de­
sired task . The combination of a carefully designed con­
trol system and a realistic physical model can produce 
natural-looking motion that has much in common with 
the motion of the animal or human on which it was mod­
eled. 

Physical simulation has been used successfully for gen­
erating realistic motion of passive systems (Barzel and 
Barr 1988; Hahn, J. 1988; Terzopoulos and Fleischer 
1988; Terzopoulos and Witkin 1988; Baraff 1989, 1991; 
Pentland and Williams 1989; Kass and Miller 1990; Nor­
ton et al 1991 ; Wejchert and Haumann 1991). Passive 
systems are those that are acted upon by the environ­
ment but have no internal source of energy. Bouncing 
balls, leaves blowing in the wind, and raindrops falling 
into puddles are all passive systems. To the extent that 
the computer program accurately models the physical 
system and the environment, the resulting motion will 
be natural. In contrast to passive systems, the systems 

tPresent address: Department of Aeronautics and Astro­
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described in this paper, active systems, contain simulated 
muscles or motors that provide an internal source of en­
ergy and allow the systems to act on the environment. 
Humans, animals, robots, and vehicles are all active sys­
tems. Simulation of active systems requires not only a 
physically realistic model of the system being animated 
but also a control system or computer algorithm that 
activates the muscles or motors in such a way that the 
system performs the desired task. 

Because the internal workings of biological control sys­
tems are much less well understood than the physical 
systems themselves, the simulation of active systems is, 
in general, more difficult than that of passive systems. 
Active systems have been animated by using springs and 
dampers as the control system (Miller 1988), by program­
ming a control system for a simplified model of the sys­
tem being animated (Bruderlin and Calvert 1989), and by 
simulating the actions of the oscillators found in simple 
biological control systems (McKenna and Zeltzer 1990). 

The design of control systems has not yet been au­
tomated for systems of the complexity of those that we 
would like to animate. Others have begun to address 
the question of automatic generation of motion in the 
context of optimization problems and optimal control 
theory (Witkin and Kass 1988; van de Panne, Fiume, 
and Vranesic 1990) . The potential generality of these 
approaches makes them among the most interesting new 
methods for animation of dynamic systems. The poten­
tial liability is the growth of the search spaces when ap­
plied to more complex systems. 

Our approach to hand designing these control systems 
builds on previous work in the control of legged robots 
(Raibert and Hodgins 1991; Hodgins 1991; Hodgins and 
Raibert 1990; Raibert 1986). This work provides us with 
a number of techniques that aid in the design of control 
systems for dynamic tasks: state machines for structur­
ing the control laws, low-level control through springs and 
dampers, and symmetry of the motions as a principle for 
the design of the higher level control algorithms. 

In this paper we describe control systems for rigid­
body models of humans performing four tasks: pumping 
a swing, riding a seesaw, juggling, and pedaling a uni­
cycle. In each case, the simulated models are composed 
of rigid links connected by rotary or sliding joints. The 
models are derived from measurements of living humans 
and cadavers (Meredith 1969a,b ; Dempster and Gaugh­
ran 1965). Each model has enough degrees of freedom 
to perform the stipulated task but only a small fraction 
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Figure 1: The user specifies the desired behavior at a high 
level. The control algorithms compute forces and torques that 
should be applied at each joint based on the state of the sys­
tem and the d esired behavior. The internal forces at the joints 
and external forces from the environment are applied to the 
links of the model. The equations of motion are integrated 
forward in time to produce the new state of the system. 

of the number found in humans. The equations of mo­
tion for each model were generated with a commercially 
available package (Rosenthal and Sherman 1986). The 
package generates efficient subroutines for the equations 
of motion of the model (O(n) where n is the number of 
links) using a variant of Kane's method and a symbolic 
simplification phase. 

A state machine provides the underlying structure for 
the control system for each animation but allows the con­
trol laws to change when the dynamics of the system or 
the user's commands change. For example, the dynam­
ics of the seesaw change when the legs of a rid er touch 
the ground and the control laws must change to match . 
Similarly, the control laws change when the user switches 
from controlling the position to controlling the velocity of 
the unicycle. Each state has specific control laws and the 
transitions between the states are determined by changes 
in the state of the system or by changes in the input to 
the control system. 

Proportional-derivative control is used for low-level po­
sition control in most of the simulations. The torque ex­
erted at a joint is a function of the error in position and 
the relative velocity between the links on either side of 
the joint: 

where T is the control torque , B is the relative joint angle 
between the links, Bd is the rest position of the spring , and 
iJ is the relative velocity between the links. The gains, kp 
and kv depend on the mass of t he links and the desired 
stiffness and damping of the joint. This servo has th e 
same effect on the system as a spri ng and damper where 
the rest position of the spring is controlled by the control 
system. 

Animations are produced through high-level interac­
tions with the control system. For example , the user 
specifies the forward speed of the unicycle, how long the 
juggler should use one pattern before switching to an­
other, or the maximum height the swing will achieve. At 
each simulation time step, the control system computes 
forces or torques for each joint based on the state of the 
system and the requirements of the task. The equations 
of motion of the system are integrated forward in time, 
and the resulting motion is displayed in a simple graph­
ical model and recorded for later use in an animation . 
The layout of the animation system is shown in figure 1. 

Figure 2: Model used to animate the motion of. a human 
pumping a swing. All joints rotate about the y aXIs a nd the 
motion of the model is constrained to the x-z plane. The an­
gle of the swing , the knee and the elbow are marked to a id in 
the interpretation of figure 5. 

The details of the individual models and control systems 
are describ ed below. 

Pumping a Swing 

To pump a swing the control actions of the human must 
be coordinated with the fore-aft motion of the swing. Fig­
ure 2 shows the model used to simulate a human pumping 
a swing. The links of the model- cylinders, truncated 
cones, and ellipsoids- are connected by rotary joints at 
the wrists, elbows, shoulders, waist, hi ps, knees , and an­
kles. The swing is modeled as two rods connected by a 
pi vot joint located where the hands attach to the swing . 
A second pivot joint attaches the bottom of the lower 
body to the end of t he lower swing rod. This joint rotates 
freely, and the angle between the body a nd the lower rod 
of the swing is controlled by the el bow, shoulder, and 
wrist joints. The grip of the hands on the swing joint 
is modeled by a pair of orthogonal springs and dampers . 
The motion of the swing and the human are constrained 
to the fore-aft plane. 

Swinging has been studied for two simple models: a 
point mass that slides up and down a rigid rod and a 
system that switches between a double and a compound 
pendulum (Tea and Falk 1968; Burns 1970; Gore 1970; 
Gore 1971; McM ullen 1972). These models are shown in 
figure 3. Our model is more complex than either of these, 
but the simpler models provide some physical intuition 
about how the control system can move the joints to 
increase the amplitude of the swinging motion. 
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Point Mas. on a Rigid Rod Double Pendulum Compound Pendulum 

Figure 3: T wo simplified models of ptunping. T he left m ost 
model , a point m ass on a rigid rod, can be ptunped by sliding 
the mass up the rod at the lowest point of the cycle and down 
at the high est in a pattern like that shown by the dashed 
line . This p tunping a ction decreases the moment of inertia 
of the sys tem when all the energy is kinetic and increases it 
when a ll the energy is potential. T he double/compound pen­
dulum m odel incr eases the amplitude of the swing by let t ing 
the second pendultun fall backwards at the highest point of 
the sw ing . When the fall of the second pendulum is arrested 
and the model becom es a compound pendulum, the angular 
velocity of the first p endulum is increased causing t he swing 
to go higher on the next cycle. The motion of a htunan on a 
swing is similar to the motion of the double /compound pen­
dulum in that the arms are relaxed at the back of the swing 
so that the b ody falls backward and acts like a double pendu­
ltun until it is caught by the ex tended arms. When the arms 
stop the motion of the body, the sys t em becom es a compound 
pendultun again but with increased angular velocity. 

The state of the control system for pumping depends 
on the angle and velocity of the swing . The transitions 
between t he s tates occur when the swing passes through 
the lowest point of the cycle and when it nears the highest 
point . The state machine is illustrated in figure 4. The 
control laws for each state specify the desired angles and 
the gains for each servo . 

The control system uses a proportional-derivative 
servo or spring/damper system to control each joint. 
When the swing is moving forward the desired angles 
cause the body to lean back and the legs to extend . As 
the swing moves backwards, the desired angles cause th e 
arms to move the body forward towards the lower rod 
and the legs to bend . The top graph of figure 5 shows 
the angle of the swing as the cont rol system pumps for 
twenty seconds , coasts for ten seconds , and pumps again 
for ten seconds . The middle graph shows the angle of the 
knee joint as the legs are swung back and forth . The bot­
tom graph shows the angle of the elbow joint as it pulls 
the body forward and allows the body to fall backwards . 

Riding a Seesaw 

The seesaw animation has two riders on opposite ends of 
a plank. The control system varies the rotation of the 
plank by changing how hard each of the riders pushes 
off against the ground. The model for the seesaw ani­
mation is shown in figure 6. The collision model for the 
leg and the ground consists of two orthogonal pairs of 
springs and dampers. The springs are stretched between 
the touchdown and current positions of the end of the 
leg. When the lower end of the leg leaves the ground, the 
springs are disconnected. Like the hands in the swing 
model, the lower arms are attached to the handles of the 
seesaw with springs and dampers . 

l 
~ 

Figure 4: State machine used to control the pumpin~ mo­
tion. The state is determined by the angle and velOCIty of 
the swing. T h e state behind pivot and traveling forward 
has the same control laws as the state ahead of pivot and 
traveling forward and serves only to prevent false transi­
tions b efore the swing has reached its maximtun forward po­
sition. For the same reason, ahead of pivot and traveling 
backwards has the same control laws as behind pivot and 
tt'aveling backwards . 

The control for the seesaw uses two independent state 
machines, one for each rider . The seesaw with two riders 
is much like a quadruped bounding in place, and the con­
trol algorithms are similar to those used for the control of 
a bounding qu adruped (Raibert and Hodgins 1991) . The 
state machine for the control of the seesaw is shown in 
figure 7. The transitions between the states occur when 
the legs touch or leave the ground. 

The control laws consist of proportional-derivative ser­
vos for each joint. The set points and gains depend on the 
state. During flight , the leg is moved to an appropriate 
position for touchdown. During compression, a spring 
at the knee joint stores energy and causes the system 
to bounce passively. During extension, the knee is ex­
tended to add energy to the bouncing oscillation of the 
system. The height of the oscillation can be varied by 
changing the extension of the knee. 

Juggling 

To animate juggling, the control system moves the wrist , 
shoulder, and elbow joints of a model so that the hands 
catch and throw balls . The user directs the animation by 
specifying the juggling pattern (cascade, shower, or foun­
tain) and the length of time that the balls are held in the 
hand (dwell time) or flying through the air (flight time). 
The control system perturbs the throws so as to main­
tain the stability of each pattern and produce transitions 
between the patterns. 

Figure 8 illustrates th e model used in the juggling sim­
ulation . The hands are not anthropomorphic but are of 
approximately the same size and density as human hands. 
Collisions are d etected between each ball and the surfaces 
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Figure 5: The top graph shows the angle of the top rod of the 
swing with respect to vertical. The control system pumped 
the swing for twenty seconds, coasted for ten seconds, and 
pumped again for ten seconds. The vertical dashed lines indi­
cate when the task changed from pump to coast. The middle 
graph shows the movement of the knee joint as the legs are 
swung back and forth. The bottom graph sh?ws the elbow 
joint as it pulls the body forward and allows It to fall back­
wards. The dashed lines in the lower two graphs indicate the 
desired angle for the knee and elbow. The elbow is pulled 
away from the desired angle by the weight of the body when 
the body is leaning back. 

of the fingers, thumbs, and palms and are modeled by a 
spring normal to the plane of the surface and by two 
dampers aligned with the surface and perpendicular to 
each other. Collision forces are applied to both the hand 
and the ball when the ball is in contact with the hand. 

Control System 

The basis of all juggling patterns are accurate throws and 
robust catches. The control system causes the ball to be 
thrown by generating a desired trajectory for the hand 
in cartesian coordinates that will accelerate the ball and 
the hand to the desired velocity by the time they reach 
the release point. The control system computes torques 
that will cause the hand to match the speed of the ball as 
it falls and then close around the ball after contact. This 
method of catching was implemented for a one degree 
of freedom juggling robot by Biihler, Koditschek, and 
Kindlmann (1989). 

The control system has four states: meet, deceler­
ate, accelerate, and follow. In each state the control 
system generates a desired trajectory for the hand that 
will cause it to move to the desired position and arrive 
with the desired velocity and acceleration. Using inverse 
kinematics, the desired hand position is transformed to 
desired positions for the joints of the upper and lower 
arm and wrist. Proportional-derivative control coupled 
with a simplified version of the forward dynamics cause 

Ground Model 

Figure 6: The model for the seesaw animation. The ground 
model is two orthogonal pairs of springs and dampers. The 
ends of the arms are also attached to the handles of the seesaw 
with springs and dampers. 

each joint to track the trajectory. 
During the meet state, the hand moves up to meet the 

falling ball. The control system generates a polynomial 
trajectory that will cause the hand to meet the ball at 
the desired catching position with a velocity that matches 
the velocity of the ball and an acceleration equal to grav­
ity. Matching the descent velocity of the ball reduces the 
chance that the ball will bounce out of the hand before 
the finger and thumb close to constrain it . 

When the ball is in the hand, the control system is 
in either the decelerate or accelerate state. During 
these states the control system chooses a trajectory that 
reverses the motion of the hand and ball in the z direction 
and moves it towards the desired release position. When 
the hand nears the release position, the finger and thumb 
open and the hand follows the ball briefly (0.05 sec) in x 
and y while decelerating in z to prevent collisions which 
would disturb the trajectory of the ball. After the ball 
leaves the hand, the control system generates a trajectory 
that will cause the hand to meet the next ball. 

Juggling Patterns 

Jugglers commonly use three different three-ball pat­
terns: the cascade, shower, and fountain (Buhler and 
Graham 1984; Beek 1989) . The three patterns are shown 
in figure 9. In the cascade, each hand throws the balls 
across to the other hand and each throw passes under 
the arriving balls. In the shower, the balls move roughly 
in a circle with the throw from one hand passing above 
the throw from the other hand . In the fountain, each 
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Figure 7: The state machine for one seesaw rider. The transi­
tion from flight to compression occurs when the leg touches 
the ground. The transition from compression to exte~­
sion occurs when the knee joint begins to extend. The transI­
tion from extension to flight occurs when the leg leaves the 
ground . 

hand juggles separately, throwing and catching the balls 
without passing them to the other hand. 

To produce these three juggling patterns we chose re­
lease pos itions, catch positions, and flight times for each 
pattern . The catching and throwing routines were the 
same for all patterns . 

Transitions between Patterns 

The control system perform s transitions between pat­
terns by waiting until the first ball in a pattern is caught 
and then setting the throw and catch positions and the 
flight times to those used in the new pattern . Two feed­
back laws make the transitions robus t : phase correction 
and collision avoidance. 

The ph ase of each ball is the time in the cycle at which 
it is caught . In a three-ball cascade or shower , catching 
the first ball signals the beginning of a cycle, the second 
ball is caught 1/3 of the way through the cycle, and th e 
third 2/3 of the way through. Phase correction is per­
formed by adjusting the dwell time so that the next time 
the b all is caught it will be closer to the correct ph ase. 
In the fountain pattern, the two hands operate indep en­
dently and the phase correction algorithm is used to keep 
both the balls and the hands operating in phase. 

T he feedback law for collision avoidance is used when 
errors in phasing or the changing patterns of the throws 
would cause two balls to collide. On each throw, the 
control system uses the ballistic equations for the ball s 
to predict if the ball in the hand will collide with either 
of the balls in the air . If a collision is expected , the throw 
position is moved by twice the ball radius in x to prevent 
the collision . 

Balancing on a U nicycle 

To maintain balance a unicycle rider must push on th e 
pedals in such a way as to correct errors in balance and 
forward speed . T he user directs the animation by speci­
fying a desired velocity or a desired position . 
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Figure 8: The rigid-body model used in the juggling anima­
tion. The model has eleven links with a total of fifteen degrees 
of freedom. The parameters for the mass, moment of ine~tia, 
and dimensions of all the links except the hands were obtained 
from Dempster and Gaughran (1965) . The hands are of ap­
proximately the same size and density as the human hand 
measured in Dempster and Gaughran (1 965). 

The model contains a wheel, a seat , and a body with 
two legs (figure 11). The legs push on the pedals through 
a pair of orthogonal springs and dampers. The springs 
allow the legs to push down and sideways on the ped als 
but not to pull up . The contact model between the wheel 
and the ground is also a pair of springs and dampers. 
T his model allows the wheel to roll but does not allow it 
to slip . 

Control 

Unlike the other animations described in this paper, the 
unicycle co ntrol problem is continuous and there are no 
impacts that cause the dynamics of the system to change . 
The unicycle wheel is always touching the ground, and 
the control laws do not depend on t he state of the system . 
As a result , the state machine is used only to handle 
changes in the control laws wh en the user switches from 
position control to velocity control. 

T he desired torque at the whee l is a fun ction of the 
error in forward speed and the angle of the stem: 

T = k",1jJ + k;p~ + k:i:(Xd - x) 

where T is the desired torque at the wheel , 4> is the angle 
of the stem relative to vertical , ~ is the velocity of the 
a ngle of the stem, Xd is the desired speed of the unicycle, 
x is the actual speed, and k"" k;p, and k:i: are gains. 

T here is no motor at the hub , and the desired torque 
at the wheel is produced by moving the hip and kn ee 
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Figure 9: Ball mo tion in cascade , shower , and founta in pat­
terns . 

joints so that the legs press down on the pedals with the 
appropriate force. Each leg is assigned a percentage of 
the desired torque based on the sign of the desired torque 
and the current pedal position: 

. h 1 1 . {) welg t = - + - sin u 
2 2 

The other leg has a weighting of 1 - weight. When 
the torque is positive and the pedals are horizontal 
(8 = ±7r/2) the front leg has a weighting of one and 
the rear leg has a weighting of zero. When the pedals are 
vertical , both legs have a weighting of one- half and th e 
force is divided evenly between the two legs. The desired 
force along the axis of the leg is increased by a preload 
to ensure that the legs always push down on the pedals 
and remain on the pedals. 

The desired force at the pedal is converted to desired 
torques at the knee and hip by taking th e kinematics of 

FooVPedal lnteraclioll 

Ground Model 

Figure 11: Schemat ic drawing of the model used in the uru­
cycle animat ion . The model consists of a whee l, a seat, a nd 
a body with two legs divided into upper and lower segments. 
The body is at t ached to the seat by a pivot j o int. T he in­
teraction between the lower legs and the mass less pedals is 
modeled by a pair of orthogonal spring/dampers. The springs 
allow the legs to push down and sideways on the pedals but 
not to pull up . T he ground model for the unicycle wheel is a 
pair of orthogonal spring/dampers. T he x spring is stretch ed 
b etween the p oint m arking the distance that the wheel has 
rolled and the point on th e ground where the wheel is touch­
ing. T he point to which the wheel has rolled is Xo + 21frB 
where xo is the starting location , 7' is the radius of the wheel, 
and B is the nunlber of r evolutions of the wheel. The point 
at which the wheel touch es the ground is assumed to be the 
p oint direct ly beneath the hub. This mod el d oes not a llow the 
wheel to slip. 

the leg into account and assuming massless legs: 

T knee = -llf.~ 

Thip = - ul (sin(Cl')fz + cos(Cl')fx ) -Ilfx 

where Tkn ee is the desired torque at the knee, Thi p is the 
desired torque at t he hip , 11 is the length of the lower leg , 
ul is the length of the upper leg, Cl' is the angle of the 
kn ee, and f x and f z are the desired forces between the 
pedal and the lower leg in the coord inate system of the 
lower leg. 

The user interacts with the animation of a unicycle 
rider by specifying a desired speed or a d esired position . 
The desired position is converted to a desired speed: 

where Xd is the desired speed, x is th e current position , 
Xd is the desired position , and kx is a gain . T he desired 
speed is limited by a maximum desired speed. Figure 12 
shows the behavior of the system as it starts from rest 
and cycles to a specified location . 

The control for the unicycle simulation has constant 
gains. Vos (Vos 1989; Vos and von Flotow 199 0) states 
that the gains must be adjusted based on the s ta te of 
the sys tem for good performance of a three-dimensional 
robot unicycle with a motor at th e hub and a horizontal 
tu rntable for yaw control. When th e simulation is ex­
tend ed to t hree dimensions and the operatin g range of 
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Figure 12: T h e top graph s hows the position of the unicy­
de as it moves towards the goal. T he bottom graph shows the 
forward speed. The dashed lines indicate the desired position 
and velocity. 

the simulation is extend ed , we may also find this to be 
true but constant gains provide adequate performan ce for 
the two-dimensional model. 

Discussion 

We have presented descriptions of the models and control 
sys tems for four animations: a swing, a seesaw, a juggler , 
and a unicycle. In each case, the control system is built 
upon a state machine and th e transitions between th e 
states are determined by changes in th e state of the sys­
tem or changes in the input commands . The current state 
determines which control laws should be used to control 
the system. The interactions with the environment and 
many of the low-level control laws a re implemented with 
springs and dampers. T he state machines and some of 
the control laws are hand designed for each animation. 

If properly designed , a control system will produ ce 
natural-looking motion when it is used to activate a phys­
ically realistic model. The combination of a physically 
realistic model and a control system can easily produce 
bad motion too , by viol a ting joint or torque limits or by 
performing the task in an unexpected way or with ex­
traneous motions. This problem is pa rticularly apparent 
in underconstrained problems like the swing. There are 
many ways to pump a swing but only a small fraction 
produce motion that resembles the movements made by 
a human pumping a swing. 

Our experiments during the design of these animations 
suggest that several features are required for the genera­
tion of natural-looking motion : 

• The model must contain the key features of the sys­
tem being modeled . If th e model is too simple, 
th e motion may not appear natural. We originally 
modeled the swing as a single rigid rod (no joint 
where the hand is attached) and discovered that the 
setpoints had to be adjusted very carefull y for th e 
swinging motion to increase in amplitude. With the 
extra degree of freedom , the control is much more 
robust and the motion appears more natural. We 
also compared a unicycle animation that was pow­
ered by the motion of the legs with one in which 

the co ntrol was provided by a torque source at the 
wheel and the legs were positioned kinematic ally. 
T he resulting motions differed because t he motor 
could exert a uniform torque in all pedal positions 
while the legs could not . 

• T he model should include the control parameters. 
In designing and tuning a control system , we found 
it easy to set the gains too hi gh so that the sim­
ulation produ ced jerky motion. A strength model 
s hould be part of t he physical mod el and control 
commands that require the physical system to go 
beyond those limits should be filtered. Lee et al 
(1990) implemented such a system for the task of 
lifting a load. 

• Biological data can provide information about set­
points and co ntrol ac tions. In an und erconstrained 
problem like th e swing , choosing th e control ac tions 
is not easy. A wide range of actions cause the swing 
to gain amplitude but on ly a much smaller range are 
commonly used by humans on a swing. We studied 
measurements of people pumping a swing to learn 
about th e joint angles that were used and the tran­
sition points of the control system. More rigorous 
comparison of simulation data with biological data 
can also be used to show to what extent the simu­
lated motion rese mbles the biological motion . 

• Perfectly smooth motion is not natural. Steady­
state simulations often produce motion that is too 
repetitive . Each of the phase plots of juggling shown 
in figure 9 contains data from several repetitions of 
the pattern, but' there is little variation from one 
toss to the next . This too-perfect motion appears 
"robot-like" wh en played back through a graphical 
model. We need to take advantage of all oppor­
tunities for adding interest to th e motion : changes 
in high-level commands from the user , disturbances 
from the environment , and the addition of noise 
within the system. 

We have not addressed the qu estion of au tomatic gen­
erat ion of control systems. Large portions of each of the 
control systems desc ribed here were designed by hand 
with the aid of principles gleaned from our experience in 
controlling robots. We are interested in exploring other 
approaches to the problem of generating control systems, 
perhaps by formalizing the principles th a t were ou tlin ed 
here to allow the automatic generation of control system s 
for limited domains or by applying techniques from op­
timal control theory to design the control systems with 
less input from the human designer. 

By approaching the problem of motion generation from 
the perspective of physical realism , we have gained rules 
that make it possible to automatically generate motion 
through simulation. Within this fram ework we can gener­
ate many different motions that accomplish a single task 
by varying the physical system and the control strategies. 
For example, an adult pumps a swing differently than the 
eight-year-old child we modeled and a skilled unicyclist 
would use different gains and perha ps even different con­
trol laws than a beginne r. Even greater variety could 
be produced by violating physical laws. In hand-drawn 
animations emotion and humor a re often communicated 
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through exaggerated motions that violate physical laws. 
Eventually, we would like to take advantage of this part 
of the design space; however , we feel th at a better under­
standing of techniques for the generation of physically 
correct motion is needed first . 
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