
273

Beyond Keyframing: An Algorithmic Approach to Animation

A. James Stewart
Department of Computer Science

University of Toronto

Abstract

The use of physical system simulation has led to realis
tic animation of passive objects, such as sliding blocks
or bouncing balls. However, complex active objects like
human figures and insec ts need a control mechanism to
direct their movements . We present a paradigm I.hat
combines the advantages of both physical simulation and
algorithmic specification of movement . The animator
writes an algorithm to control the object and runs this
algorithm on a physical simulator to produce the anima
tion . Algorithms can be reused or combined to produce
complex sequences of movements, eliminating the need
for keyframing. We have applied this paradigm to control
a biped which can walk and can climb stairs. The walking
algorithm is presented along with the results from testing
with the Newton simulation system .

CR categories: 1.3.7 [Computer Graphics): Three di
mensional graphics and realism - animation; 1.6.3 [Sim
ulation and Modeling) : Applications

Keywords: physical simulation, human figure anIma
tion, ani1l1ation control , constraints , dynamics

Introduction

This paper describes a paradigm for the control and ani
mation of complex active objects such as the human fig
ure . In this approach the animator develops an algorithm
which controls the object by specifying certain inl,uitive
variables as a function of time and of world state. The
algorithm is able to continuously monitor the world st.ate
as it is being automat.ically updated by an underlying dy
namics simulation system, and the algorithm is able to
react when it sees changes in the world state.

For example, in the case of biped walking, the animator
might write an algorithm that controls the angle of the
knees at one point in the animation , and that controls
the trajectory of the foot at another point. The algorithm
might monitor the world state and, when it notes an event
such as a foot touching the ground, stop controlling the
trajectory of the heel and start controlling th e angle of
the knee.

J ames F. Cremer
Computer Science Department

Cornell University

Most animators would probably be comfortable with
the idea of "programming" a human figure to walk . The
algorithmic approach to animation allows this to be done
with ease. This is demonstrated by the walking algorithm
presented below .

Other Dynamics Work in Graphics

In some of the first work in this area, Armstrong and
Green (1) present the equations of motion for tree
structured linkages of rigid bodies and discuss an efficient
method of solving them .

Witkin and Kass (27) have combined physical sim
ulation and keyframing to produce realistic animation of
their jumping Luxo lamp. With their approach the an
imator uses space time constraints to specify several key
points for selected variables at specific times. Combin
ing spacetime constraint equations with the Lagrangian
equations of motion and discretizing over time yields a
system of equations that are solved to produce the mo
tion . Our algorithmic approach differs in that the con
straints can be added or removed "on the fiy" as the
algorithm sees changes in the world state which might
not be predictable.

Hen and Wyvill [1 5) desc ribe a dynamics simulation
system which allows easy user control through a simula
tion language and several high level control primitives.
Our work is similar in that the user can defin e and con trol
arbitrary variables, but we concentrate more on develop
ing algorithms to cont.rol complex objects in an intuiti ve
manner.

van de Panne, Fiume, and Vranesic (25) build
state-space controllers to provide control torques tha t
achieve desired goal states from arbitrary initial states.
Such controllers can be concatenated to produce move
ment , including cyclic movement like walking.

Other approaches to combine control and physical sim
ulation have been explored : Wilhelms (26) and Barzel
and Barr (3) blend kinematic and dynamic analysis ,
Moore and Wilhelms (22) and Baraff (2) discuss the
collision and contact problems, Isaacs and Cohen (1 8)
incorpora te inverse dynamics in their simulation system ,
and Brotman and N etravali (5) use dynamics and op
timal control to interpolate between key fram es .

Graphics Interface '92

274

Other Work in Walking and Control

The algorithmic approach is meant as a general method
by which to control complex mechanisms. In this paper
we use the walking problem as an example of an applica
tion of the algorithmic approach. Some other approaches
to walking are briefly described here .

Kearney, Hansen, and Cremer [19], in an ap
proach very similar to ours , examine the control of me
chanical systems as a constraint programming problem.
Bruderlin and Calvert [6] have developed an effective
goal directed approach to dynamic walking in which the
animator specifies a few high-level walking parameters .
McKenna and Zeltzer [20] develop a gait controller
and low-level motor programs to generate legged motion .
Zeltzer [28] analyzes various approaches to the control
of complex animated objects and considers their integra
tion. Raibert and Hodgins [24] describe control sys
tems for several legged creatures . Brooks [4] produces
complex walking behavior in a physical , insect-like robot
from a distributed network of low-level finite state ma
chines.

Other Work in Robotics

Some further insights on control can be gained from ex
amining the literature in the field of robotics. While this
field deals with controlling real, physical objects , some of
the techniques can be applied to animation.

Researchers in robotics have taken various approaches
to reduce the complexity of control programs for physi
calobjects. The computed torque method for robot arms
(see Craig [8]) can be viewed as simplifying control by
reducing the gripper to a unit mass . The control pro
gram can ignore the dynamics of t.he robot arm, only
concerning itself with the position of th e end effector as
a function of time .

In building his one-legged hopping machin e, Raib
ert [23] partitioned control along three intuitive degrees
of freedom: hopping , forward speed and body post.ure.
This resulted in surprisingly simple cont.rol programs for
the hopping robot . For multi-legged machin es, Raibert
introduced the idea of a "virtual leg" which was defined
in terms of the robot 's physical legs . This again led to
simplified control programs.

Both the computed torque method and Raibert's vir
tualleg demonstrate that a proper choice of co ntrol vari
ables can lead to simplified control programs. The prob
lem with this approach is that there is often no simple
closed-form mapping of these control variables onto the
forces and torques needed to control the object. In some
cases a complete system of equations must be numerically
solved to make this mapping . This is called "inverse dy
namics" and is typically rejected by robotics researchers
as being too expensive to use in real-time control. For
the purposes of animation , however , it is ideal. Our ap
plication of inverse dynamics will be described in the next
section.

The Algorithmic Approach

In the algorithmic approach , the animator 's algorithm
selects a small set of intuitive variables with which to
control the object over the course of the simulation . The
algorithm can control predefined variables, such as the
forces and torques at the joints, or the instantaneous
translational and rotational accelerations of the various
component.s of the object. The algorithm can also control
variables that it defines as linear combinations of these
predefined variables.

For example, the algorithm could, with the appropri
ate subroutine call to the und erlying simulation system,
define the acceleration of the center of mass of an object
as

acm = ~Lmj .a.,

where mj is the mass of the it" component of the object (a
constant), and ai is the translational acceleration of the
ith component . Then at each time step of the simulation ,
the algorithm could supply a value for acm .

The underlying simulation syst.em , called New /.on , is a.
general purpose ph ysical simulat.or. G iven a descrip t.ion
of a complex objec t (in , say, a compute r file) , Newto n
will au t.omat.ically generat.e t.h e corres pondin g sys t. em of
New ton- Euler eq uations of motion which desc ribe th e in
stantaneous behavior of the object . Newto n can then
integrate these eq uations of motion over time to pro
duce the animation . Newton also automatically updates
t.he system of eq uations as kin ematic relationships in the
simulation change (one such change would occur as the
biped's foot touches the ground).

The animator's algorithm interacts with Newton in the
following ways:

• The algorithm can add arbitrary equations and vari
ables to Newton's system of motion eq uations. In
the example above, the algorithm added a variable,
ac "" and a eq uation defining that variable in terms
of other variables of the system . T he algorithm can
remove equations that it. prev iously add ed to th e
system of motion eq uations.

• The algorithm can se t. the value of a variable at any
t.im e st.ep of the simulat.ion. In the example above,
the algorithm could supply a value for the a cm vari
able at each time step.

• It may be that the algorithm manipulates Newton '05

system of motion equat.ions s uch the system becomes
underconstrained, admit.t.ing many solut.ions. In t.his
event. , the algorithm call tell Newton, through an
appropriat.e su brou t.ine call , to selec t. a mot.ion that
instantaneo usly minimizes so me quadrati C' fun c t.ion
of t.he variables of the syst.em.

• The algorithm can observe the world state and act
upon it . For example, a walking algorithm might
observe that the heel has touched the ground and
react by moving into a new state of its execution
(like a finit.e-state machine).

Graphics Interface '92

275

At each time step of the simulation, Newton evaluates
the current system of equations to determine values for
any unknown variables, including the translational and
rotational accelerations of the individual components of
the object. Newton integrates these accelerations to pro
duce the state at the next time step, and this process is
iterated.

Format of a Control Algorithm

A control algorithm can be considered as a set of finite
state machines. Each machine has an initial state and a
transition between states is made when some user-defined
predicate become true. l

In the algorithm of Figure 1 there is a single ma
chine having initial state START and having one transi
tion START -> CM-ACCEL. The transition is made imme
diately, and defines a new unknown variable, Tern, causes
an equation2 to be added to the system of motion equa
tions, defines a function f which will be called whenever
Newton needs a value for Tern, and defin es a quadratic
minimization function . Note that the object which is be
ing simulated must be defined elsewhere.

initial-states { START}

transition START -> CK-ACCEL vhen TRUE

begin
nev-unknovn 11" " Tem

add-equation" Tent = -iJ L mi Ti 11

add-function" rem = f(time) "
add-quadratic" Q = Lr; + LW; "
end

Figure 1: A Simple Control Algorithm

Overview of Newton

The walking algorithm described in this paper has been
designed and tested using the Newt.oIl simulation sys
tem [9] developed at Cornell University. The devel
opment of Newton was inspired by th e need for more
general-purpose, flexible simulation systems.

Extensive mechanical engineering research has led to
many developments in physical system simulation. The
ADAMS [7] and DADS [14] systems are examples of large
state-of-the-art. systems from th e mechanical engineering
domain. Such systems are sophisticated in many ways:
they support efficient formulations of mechanism dynam
ics, they use fancy numerical techniques for solving equa-

1 For the sake o f clarity the algorithms will be described in
a Pascal-like notation (however, they are currently written in
Lisp).

2We use quotation marks to indicate that the actual equa
tions must be represented in some internal manner.

tion systems, they often handle object flexibility and elas
ticity, and so on. The recent work by graphics and anima
tion researchers (discussed above) has generally been less
sophisticated but has placed greater emphasis on anima
tion of interesting high-degree-of-freedom mechanisms.

Still, none of these systems combines the full range of
features required to make dynamics simulation as power
ful and useful as it could be. Typically they have almost
ignored geometric considerations and represented objects
simply as point masses with associated inertias and co
ordinate systems. Geometric modeling techniques have
matured enough to allow object representations used by
dynamic simulations to include a complete geometric de
scription usable by a geometry processing module. Fur
thermore, impact , contact, and friction are typically han
dled by current systems in an ad hoc or rudimentary man
ner, if at all. In some cases, for instance, any possible
impacts must be specified in advance; in others, a kind
of "force field" technique is used, in which between every
pair of objects there is a repelling force that is negligible
except when objects are very close together. In addition,
the desire to manipulate high-degree-of-freedom objects
suggests that. a module for specification of cont.rol algo
rithms should be a significant part of a dynamics system.

Newton Architecture

Using Newton, a designer can defin e complex three
dimensional physical objects and mechanisms and can
represent object characteristics from various domains .
An object consists of a number of "models ," each re
sponsible for organization of object characteristics from
a particular domain. In most simulations the basic do
mains of geometry, dynamics , and controlled behavior
are modeled. A dynamic modeling system, for example ,
is responsible for maintaining an object 's position , veloc
ity, and acceleration, and for automatically formulating
the object's dynamics equations of motion. A geometric
modeling system is responsible for information about an
object's shape, distinguished features on the object, and
computation of geometric integral properties such as vol
ume and moments of inertia. It also detects and analyzes
object interpenetrations so that an interference modeling
system can deal with collisions between objects.

Newton has three main components: the definition and
representation module, the analysis module and the re
port system. The definition module analyzes high level
language descriptions of Newton entities and organizes
the corresponding data structures. The analysis compo
nent implements the top-level control loop of simulations
and coordinat.es the working of various analysis su bsys
terns. The report system handles generation of graphical
feedback t.o users during simulat.ions as well as recording
of relevant information for later rege neration of anima
tions.

Graphics Interface '92

276

Dynamic Analysis in N ewton

A physical object is modeled as a collection of rigid bodies
related by constraints . Newton-Euler equat ions of mo
tion are associated with each individu al rigid body. At
the time an object is created the equations are of the form

mr = 0

Jw +w x Jw = 0,

where m is the mass , r is the second time derivative of
the position (Le . the acceleration) , J is the 3 x 3 iner
tia matrix, and wand w are the rotational velocity and
acceleration , respectively.

A specification that two objects are to be con
nected with a spherical hinge is met by the addi
tion of one vectorial constraint equation and the ad
dition of some terms to the motion equations of the
constrained objects. For a holonomic constraint such
as this one, the second derivat.ive of t.he constraint
equation can be used along with the modified mo
tion equations to solve for object accelera t.ions and
reaction forces. Thus , the equ ations above become

Cl X Fh n 19<

-Fh;ng e

where C; is the vector from object j 's center of mass to
the location of the hinge a nd Fhtrl ge is the co nstraint force
that keeps the objec ts togethe r. No te th at the las t equ a
tion above is the second time derivative of the holonomic
constraint equation TI + C l = T2 + C2 for s phe rical joints.
Other kinds of "hinges" commonly used in Newton in
clude revolute or pin joints, prismatic joints , springs and
dampers , and rolling contacts .

If gravity is present during the simulation the sys
tem will automatically add gravitational force terms to
the objects' translational motion equations. The system
keeps track of the constraint.s responsible for the vari
ous terms in the motion equations. Thus, constraints,
and their corresponding motion equ ation terms, can be
removed at any time without necessitating complete red
erivation of the syst.em of motion equations.

Using this method of dynamics formul a tion, closed
loop kinematic chains are handled as sim ply as open
chains. Though the formul a tion does lead to a large sel.
of equations, the matrices a re very sparse and oft en sym
metric. Thus , acceptable effi ciency is achieved by th e use
of sparse matrix solution techniques .

Event handling, impact and contac t

N ewton, unlike many other simulation systems , can au
tomatically and incrementally reformulate t.h e motion
equations as exceptional events occ ur during simulations.

Figure 2: Changing Kinematic Relationships

One kind of exceptional event is a change in kinematic
relationship between objects. Figure 2 shows a block that
was initially sliding along a t. a ble top . After some time
the edge of the table is reached and the contac t rela
tionship changes from a plane- plane contac t. to a plane
edge contact . Still la ter the contac t is broken altogether.
These changing contact rela tionships are au tomatically
detected by Newton. T he system of motion equations
and the rela ted const raint. equa tions are au tomatically
maintained by Newton to refl ec t th ese changing rela tion
ships .

Ne wton's event handler is primarily responsible for de
tec tion and resolution of impacts, for analysis of con
tinuous cont.ac ts between objec ts, for the corresponding
maintenance of temporary hinges th a t model unila teral
constraints between objects in contact , and for handling
of events specifi ed by control programs that. necessita te
changes in the constraint set. For exa mple, the walking
algorit.hm might t.ell th e eve nt. handler 1.0 notify it. when
the biped 's foot touches the ground so t hat it can change
the constraint equ a tions.

The geometric modeling subsys t.em is responsible for
detecting and an aly zing impacts and interpenetra tions .
In the usual method of handling impacts, the dynamic
analysis module formulates impulse-momentum equ a
tions in a manner completely analogous to th e formu
la t.ion of t.h e basic dynamics equations , and solves these
equations to produce the instantaneous veloci ty changes
caused by the impact . The details of Newton 's methods
for handling impact, contact a nd othe r exce ption al events
a re given elsewh ere [1 6. 17 , 11. 10) .

Event d efinition and control

Support for cont rol progra mming is provided by allow
ing users 1. 0 defin e th eir own eve nt. t.ypes. Events provide
t.h e mecha nism fo r state t.r ansit ions in control p rograms.
Event. defini t ion consists of a specification of how to de
tect th e event (incl uding information about how acc u
ra tely th e tim e of event. occurrence should be isola ted)
and how to resolve it.

Graphics Interface '92

277

procedure position-with-PD(equation-name, object,
x-desired, delta-time)

var x, v, a: quantity
T: real

begin
x = get-position-quantity(object)
v = get-velocity-quantity(object)
a = get-acceleration-quantity(object

T = - delta-time / log(.01)

add-named-equation(equation-name,
" a + ~ v + ;, (x - x-desired) = 0 ~')

end

Figure 3: PD Controller Used in Positioning

Low-level Controllers

In designing algorithms with Newton we found ourselves
frequently using PD (proport.ional-derivative) controllers
and curve-fitting controllers to control the "trajectory" of
many of the defined quantit.ies. In controlling the biped,
for example, quintic interpolation was used to plot the
trajectory of the heel, and a PD controller was used to
orient t.he foot before it struck the ground. A small li
brary of these controllers is used in the biped algorithm,
and will be described here.

PD controllers are used in t.he biped algorithm to con
trol orientation, position and joint. angle. Each controller
adds an equation to the system of motion equations which
defines the second derivative of the quantity in terms of
the first derivative and the quantity itself.

The procedure in Figure 3 adds an equation which pro
duces accelerations to move an object to wit.hin 1% of a
position x-desired within a given time delta-time. The
equation continues to affect the object's motion until it is
explicitly removed by the control algorit.hm. The quan
t.ities x, v and a are data st.ructures representing state
variables of the controlled object. These data structures
are used by the add-named-equation function to create
the appropriate equation.

The Biped Algorithms

We have developed two algorithms t.o control a biped: one
for straight-line walking and one for walking up stairs. An
abbreviated version of the walking algorithm is shown in
Figure 8.

The simulated biped consist.s of a t.orso, t.wo legs wit.h
knee joints and two feet with toe joints. This model
was adapted from a description of McMahon [21] and is
shown in Figure 4 . The hips are three degree of freedom
spherical joints, the ankles are two degree of freedom uni
versal joints, while the knees and toes are one degree of
freedom revolute joints, making a total of fourteen de-

Figure 4: Simulated Biped Model

grees of freedom. The biped is about 180 centimeters
tall, weighs 85 kilograms, and has moments approximat
ing those of a human being.

Walking Algorithm

For ease of exposition, the walking algorithm of Figure 8
is an abbreviated version of our actual algorithm. We
have hidden many of the lower level procedures (in par
ticular, those which compute the trajectory of the heel).
The actual algorithm is written is Lisp; a simulation lan
guage like that of Herr and Wyvill [15] will be imple
mented in the future.

The algorithm has three states: START, SWING and
DOUBLE-SUPPORT. Consider the START -> SWING transi
tion in Figure 8. After this transition (that is, during
the SWING phase) the torso is forced to remain in a fixed
orientation by t.he TORSO-ORIENTATION constraint. The
swing foot follows a trajectory defined by an equation
called SWING-HEEL-TRAJECTORY which was determined by
the procedure move-heel-to-target, the stance leg is
stiffened with set-angle-wi th-PD, the foot is oriented
for landing with orient-wi th-PD, and the angle of the
toe is set with set-angle-with-PD.

In the DOUBLE-SUPPORT phase, the constraints on the
swing foot are removed, the names of the swing and
stance legs are swapped, and the torso is constrained to
accelerate slightly forward, which helps the trailing heel
to lift ..

The largest number of constraints are applied in the
SWING phase , during which eleven scalar equations have
been added to Newton '05 system of motion equations .
Since the biped has fourteen degrees of freedom , it re
mains IInderconstrained at all times. A quadratic cost
function Q is defined in order to fully determine the mo
tion of t.he biped (a motion is chosen to minimize Q).
The cost function is a weighted sum of the translational

Graphics Interface '92

III Gauges

400 ."'~L.Ft hip tor..... 'OO."'~'i"'t h i . tor

Z"". Z7e .

150. 160.

25 . 0 ZS. O

- 100. S - l OO. S
0 , 0 O.S 1 .0 1 .& 2,0 0 , 0 0 . 5 1 . 0 t. e 2.0

4000'~" L.ft,,,,, ... ,~ 'OOO'lL&" 'I"'t ,,,,, ... ,~~
JOOO . 3000.

2000. 2000.

1000. 1 000.

0 , 0 .. 0,0 ..
0 , 0 O. t! 1.0 1,1!5 2. 0 0,0 O, S 1 . 0 I.!! 2 . 0

, ."r~' T~~_ ','~. T~" "th
W 1~

0. 9 1.4

0. 4 1.~

0,0 s 1 . 1. .J ..
0,0 o,e 1 ,0 1.e 2, 0 0 , 0 0 .3 0 ,6 0 .9 1 .2

Figure 5: Newton Statist ical Output

and angular accelerations, and of t he difference between
the torso translational acceleration and some accelera
tion defined by a fun ction F which tries to keep t he torso
mid-way be tween the two feet.

A slightly more complex walking algorithm was actu
ally implemented and tes ted wi th the Newton simul: tion
system. Figure 6 shows ten fr ames in which the biped
completes a full cycle. The full simulation consiste,! of
twenty seconds of straight-line walking on a flat surface.

Stair Climbing

Anoth er version of the algorithm was developed for sta:r
climbing. The principal differences between the walk
ing and climbing algorithms were: a more complicated
fun ct ion to determine the trajectory (it has to avoid the
steps), a "loose constraint" holding the torso upright ,
which allowed the torso to sway in a natural man neE (this
is explained below) , and various parameter changes (for
example, the foot strike orientation will be different when
climbing stairs than when walking).

Figure 7 shows six frames (side view and back view)
in which the biped lifts the right foot . Note that th e
torso sways slightly (the degree of sway can be changed
trivially) and that th e torso moves from side to side to
be over the supporting foot.

Discussion

The walking algorithm of Figure 8 looks almost too sim
ple to be true. While a lot of the und erlying procedures
have not been described in this paper, the real reason
for this simplici ty is that Newton automatically handles
almost all of the underlying dynamics, and , if we choose,
can also automatically handle the detection and resolu-

278

tion of impact and contact. 3

Due to the simplicity of our current biped model , the
algorithms are forced to use too many constraints to
achieve the desired motion. In particular , the trajec
tory of the heel must be exactly specified , yielding mo
t ion which can sometimes appear unnaturally stiff. Ex
periments have shown that the best way t o avoid this
stiffness is to "loosely constrain" the heel trajectory by
adding a weighted term to the minimization function Q.
This weighted term is the square of the difference between
the actual toe acceleration and a computed acceleration
which guides the toe along the desired tr ajec tory.

Future Work

We will experiment with elastic tendons in the hope that
the swing phase will not have to specify an explicit tra
jectory for the heel. Instead , no torqu e would be applied
in the swing leg; it would be pulled forw ard by the stored
energy of the stretched tendons. This might approximate
"ballistic walking" as describ ed by McMahon[21J .

The algorithms will be extended to include downstairs
walking and turning on a level surface . Once a suite of
such algorithms has been developed , we will be able to de
fin e a set of high level commands such as "walk forward"
and "step up" . With these commands, the animation of
walking bipeds should be a simple task for the animator .

Summary

vVe have presented an algorithmic approach to control.
This approach allows the animator to choose intuitive
degrees of freedom by which to control an object . The
control algorithm adds and removes constraint equations
"on the fly" as th e world state changes; a pf'iori knowl
edge of the exact moment of each state change is not
required.

With the algorithmic approach , all consideration of
dynamics and impact is left to the Ne wton simulation
system. The burden on the animator is further re
duced by allowing und erdetermined specification of mo
tion through the use of constrained optimization tech
I1lques.

We have presented an algorithm to control a simulated
biped , along with results from its execut ion on the Ne w
ton simulation system . The algorithm has the ad vantage
of being intuitive , simple to program , and reusable.

3Por the sake of efficien cy, two additional finite state ma
chines - one for each foot - are used t o deal with impact
and contact , rather than a llowing Newton t o do so in a more
general , and hence m ore expen sive, manner . These finit e state
machines are hidden from the animator .

Graphics Interface '92

279

0 0 0 0 0
ffi Lt rh ill []

~ DD D IJ {J IJ ~D
d?? = c:p c:-n = =

0 0 0 0 0
lb !J0 /J0 IJ0 5lJ
~ DO {) D {) D ~D
= , ,FP = t:::;;;I;;! ~ co =

~ALKING - ri ht foot leads off

Figure 6: Walking Cycle

:- SimulatIon

000 0 0 0
&, = orFf, = Ort;z, = It, = ~ = l? =
C'!n I Do I Cc I I I I,I-IC-L--
I I I I I .----1..-1 -

ODD 0 0 0
~A~,~~,AA

Figure 7: C limbing Cycle

Graphics Interface ' 92 ~

280

const time-in-air 0.5 s
foot-strike-orientation = 10° about (0 0 1)
torso-orientation -10° about (0 0 1)

let F - Kp (rtor. o - ~(rlf oot + r r f oor)) + K u (T tor>o - ~(Tlf oot + Tr f oor))

initial-states - { START}

transition START -> SWING when TRUE

begin
add-quadratiC< Q)
orient-wHh-PD(
move-heel-to-target (
set-angle-with-PD (
orient-with-PD(
set-angle-with-PD (
end

TORSO-ORIENTATION,
SWING-HEEL-TRAJECTORY ,
STANCE-KNEE-ANGLE ,
SWING-FOOT-ORIENTATION,
SWING-TOE-ANGLE,

TORSO, torso-orientation, .2 s)
swing-heel)
stance-knee , 175° , 0.1 s)
swing-foot, foot-strike-orientation, time-in-air)
swing-toe , 0° , time-in- air)

transition SWING -> DOUBLE-SUPPORT when hit s -ground (s wing-foot)

begin
remove-equations(SWING-HEEL-TRAJECTORY , SWING-FOOT-ORIENTATION , SWING-TOE-ANGLE)
swap-s wing-and-stance ()
accelerate-torso (TORSO-ACCELERATION)
end

transition DOUBLE-SUPPORT -> SWING when leaves-ground (swing-foot)

begin
remove-equation(TORSO-ACCELERATION)
remove-equation (STANCE-KNEE-ANGLE)
move-heel-to-target (SWING-HEEL-TRAJECTORY ,
set-angle-with-PD (STANCE-KNEE-ANGLE,
orient-with-PD(SWING-FOOT-ORIENTATION ,
set-angle-with-PD (SWING-TOE-ANGLE,
end

swing-hee l)
stance-knee, 175° , 0 . 1 s)
swing-foot , foot- s trike-ori entation , time- i n- a i r)
swing-toe, 0° , time-in-air)

Figure 8: Abbrevia.ted Walking Algori t. hm

Graphics Interface ' 92

281

References

[I} W. W. Armstrong and M. W. Green. The dynamics
of articulated rigid bodies for purposes of animation.
The Visual Computer, 1:231-240, 1985.

[2} D . E. Baraff. Analytical methods for dynamic simu
lation of non-penetrating rigid bodies. In Computer
Graphics (SIGGRAPH 89), pages 223-231, 1989.

[3} R . Barzel and A . H. Barr . A modeling system
based on dynamic constraints. In Computer Graph
ics (SIGGRAPH 88), pages 179-188. ACM , August
1988.

[4} R . A. Brooks. A robot that walks: emergent be
haviors from a carefully evolved network . In Pro
ceedings of th e 1989 IEEE International Conference
on Robotics and A utomation, pages 692- 694c, M ay
1989.

[5} L. S. Brotman and A. N. Netravali. Motion inter
polation by optimal cont.rol. In Compute,' Gmph
ics (SIGGRAPH 88), pages 309-315 . ACM, August
1988.

[6} A . Bruderlin and T. W. Calvert. Goal-directed , dy
namic animation of human walking. In Computer
Graphics (SIGGRAPH 89), pages 233- 242, 1989.

[7} M. Chace. Modeling of dynamic mechanical systems.
Presented at the CAD/CAM Robotics and Automa
tion Institute and International Conference, Tuscon ,
Arizona , February 1985.

[8} J . J. Craig. Introduction to Robotics: Mechanics and
Co ntrol. Addison Wesley, 1986.

[9} J . F . Cremer. An Architectw'e for General Put'pose
Physical System Simulation - Int egrating Geome
try, Dynamics, and Con trol. PhD th esis . Co rn ell
University, May 1989.

[10} J . F. Cremer . An a"chitectw'e for gen eml purpose
physical s ystem simulation - Int egra ting geometry,
dynamics, and co ntrol. PhD thesis , Cornel! U ni
versity, 1989. also as Cornell technical repor t TR
89-987.

[11} J . F . Cremer and A . J . Stewart. Using th e newton
simulation system as a test bed for control. In Pm
ceedings of th e 3,'d IEEE Int erna tional Symposium
on Intelligent Co ntrol, 1988 .

[12} R . Featherstone. The dynamics of rigid body sys
tems with multiple concurrent contacts. In O . D.
Faugeras and G. Giralt , editors, Robotics Resea,'ch:
The Third Int ernational Symposium, pages 191- 196.
The MIT Press, 1985.

[13} J. K . Hahn . Realistic animation of rigid bodies . In
Computer Graphics (SIGGRAPH 88), pages 299-
308 . ACM , August 1988.

[14} E . J . Haug and G . M. Lance. Development.s in dy
namic system simulation and design optimization in
the center for computer aided design : 1980-1986.
technical report. 87-2, Universit.y of Iowa, Febru ary
1987.

[15} C, Herr and B. Wyvill. Towards generalised mo
tion dynamics for animation . In Graphics Int erfa ce,
pages 49-59, 1990.

[16} C. M. Hoffmann and J. E . Hopcroft . Simulation
of physical systems from geometric models. IEEE
Journal of Robotics and Automation, RA-3(3) :194-
206, June 1987 .

[17} C. M. Hoffmann , J . E . Hopcroft. , and M. S. Kara
sick. Towards implementing robust geometric com
putations. In A CM Annual Symposium on Co mpu
tational Geomelr'y, pages 106- 117 , June 1988.

[1 8} P. M. Isaacs and M. F. Cohen. Controlling dynamic
simulation with kinematic constraints, behavior con
straints and inverse dynamics. In Computer Graph
ics (SIGGRAPH 87), pages 215- 224. ACM , July
1987.

[1 9} J . IC Kearney, S. Hansen , and J . F. Cremer. Pro
gramming mechanical simulations . In Proceedings of
th e 2nd Eumgraphics Workshop on .4 nimation and
S imulation , pages 223- 243, September 1991 .

[20} M. McKenna and D. Zeltzer. Dynamic simulation of
aut.onomous legged locomotion . In Computer Graph
ics (SIGGRAPH 90) , pages 29-38, 1990.

[21} T. A. McMahon . Mechanics of locomotion. Th e
Int ernational Journal of Robotics Research, 3(2) :4-
28, 1984.

[22} M. Moore andJ.. .Wilhelms. Collision detection
and response for computer animation . In Co mputer
Graphics (SIGGRAPH 88), pages 289-298. ACM ,
August 1988.

(23) M. H. Raibert . Legged Robots That Balance. The
MIT Press, 1986.

"

[24} M. H. Raibert and J. K . Hodgins . Animation of
dynam ic legged locomot ion . In Computer G,'aphics
(SIGG RAPH 91), pages 349-358 , 1991.

[25} M. van de Panne, E. Fiume, and Z. Vranesic.
Reusable motion synthesis using stat.e-space con
trollers . In Computer Graphics (SIGGRAPH 90) ,
pages 225-234, 1990.

[26} J. Wilhelms. Using dynamic analysis for realis tic
animation of articulated figur es. IEEE Compute,'
Graphics and Applica tions , 7(6) :12-27 , 1987.

[27] A. Witkin and M. Kass . Spacetime cons traints. In
Co mputer Graphics (SIGGR A PH 88) , pages 159-
168. ACM , August 1988.

[28} D. Zelt.zer. Towards an integat. ed view of 3-d anima
tion. Th e Visual Co mputer, 1:245-259 , June 1985.

Graphics Interface '92 ~

