
282

A Minimalist Global User Interface 1

Rob Pike

AT&T Bell Lahorarories
MUlTay Hill. New Jersey 07974
rob@research.att.com

Abstract

Help is a combination of editor, window system,
shell. and user interface that provides a novel envi ronment for
the construction of textua l applications such as browsers,
debuggers, mailers , and so on. It combines an extremely lean
user interface with some automatic heuristics and defaults to

achieve significant effects w ith minimal mouse and keyboard
activity. The user interface is dri ven by a file-oriented pro­
gramming interface that may be controlled from programs or
even she ll scripts. By taking care of user interface issues in a
centra l utility, help simp lifies the job of programming appli­
cations that make use of a bitmap display and mouse .

Keywords: Windows, User Interfaces, Minimalism

Background

Ten years ago, the best genera lly available interface to

a compute r was a 24x80 character terminal with c ursor
addressing. In its place today is a machine with a high­
resolution sc reen. a mouse. and a multi-window graphical
user interface. That interface is essentially the same whether
it is running on a PC or a hi gh-end 3D graph ics workstation.
It is a lso a lmost exactly the same as what was available on the
earl ies t bitmap graphics displays.

The decade that moved menus and windows from the
research lab to more than ten million PC's. that changed com­
puter graphics from an esoteric specialty to a commonplace.
has barely advanced the state of the art in user interfaces. A
case can be made that the state of the art is even backsliding:
the hardware and software resources required to support an X
terminal are embarrass ing, yet the text editor of cho ice in uni­
versities on such term inals continues to be a character-based
ed itor such as vi or emacs , both holdovers from the 1970 ' s.
With the exception of the Macintosh, whose users have found
many crea ti ve ways to avoid being restrained (or insulted) by
the decision that they wou ld find more than one mouse button
confusing, the new generation of machines has not freed ils

IThis is a revision of a paper by the same title published in the Proceedings of
Ihe Summer 1991 USEN IX Conference. Nashville. 1991. pp. 267-279.

users from the keyboard-heavy user interfaces that preceded
them.

There are many reasons fo r this fa ilure - one that is
often overlooked is how uncomfortable most commerciall y
made mice are to use - but the most important mighl well be
that the interfaces the machines offer are just not very good.
Spottily integrated and we ighed down by layers of software
that provide features too numerous to catalog and too spec ia l­
ized to be helpful , a modern window system expends its
energy trying to look good , e ither on a brochure or on a dis­
play. What matters much more to a user interface is that it
fe el good. It should be dynamic and responsive, effic ient and
invi si ble [Pike88J; instead , a session with X windows some­
times feel s like a telephone conversation by satellite.

Where wi ll we be ten years from now? CRrs wi ll be
a thi ng of the past, multimedia will no longer be a buzzword ,
pen-based and voice input will be everywhere, and univers ity
students wi ll st ill be editing with emacs. Pens and touch­
screens are too low-bandwidth for real interaction: voice will
probably also turn out to be inadequate. (Anyway, who
would want to work in an env ironment surrounded by people
talking to their computers?) Mice are sure to be with us a
while longer. so we should learn how to use them well.

With these churlish thoughts in mind , I began a couple
of years ago to build a system. ca lled help, that would have
as effic ient and seamless a user interface as poss ible . I delib­
erate ly cas t aside all myoid models of how interfaces should
work: the goal was to learn if I could do better. I also erased
the usual divisions between components: rather than building
an application or an editor or a window system, I wanted
something that centra li zed a very good user interface and
made it uniform ly ava il able to al l the components of a sys­
tem.

Introduction

Help is an experimenta l program that combines
aspec ls of w indow systems . shells. and edi tors to address
these issues in the context of textua l applications. It is
designed to support software development . but falls short of
being a true programming env ironment. It is not a ' toolkit' : it

Graphics Interface '92

283

is a se lf-contained program, more like a shell than a library ,
that joins users and applications. From the perspective of the
app lication (compi ler, browser, etc.) , it provides a universa l
comm unication mechanism, based on familiar Uni x® file
operations , that permits sma ll applications - even shell pro­
cedures - to exploi t the graphical user interface of the sys­
tem and communicate with each other. For the user, the inter­
face is ex tremely spare, consisting only of text , scroll bars,
one simple kind of wi ndow, and a unique function for each
mouse button - no widgets , no icons, not even pop-up
menus. Despite these limitations, help is an effective envi­
ronment in which to work and, particu larly, to program.

The inspiration for help comes from Wirth 's and
Gutknecht's Oberon sys tem [Wirt89, Reis9 I J. Oberon is an
attempt to extract the sa lient features of Xerox's Cedar e nv i­
ronme nt and implement them in a sys tem of manageable size.
It is based on a module language, also ca lled Oberon, and
integrates an operating system, edi tor, window system, and
compi ler into a uniform environment. Its user interface is dis­
armi ng ly simple: by using the mouse to point at text on the
display, one indicates what subrout ine in the system to exe­
cu te next. In a norma l Unix she ll , one types the name of a file
to execute; in stead in Oberon one se lec ts with a particular
button of the mouse a module and subroutine within that
module, such as Edit . Open to open a file for editing.
Almost the entire interface follows from this simple idea.

The user interface of help is in turn an attempt to
adapt the user interface of Oberon from its language-oriented
structure on a sing le-process system to a file-oriented multi­
process system, Plan 9 [Pike90J. That adaptation must not
on ly remove from the user interface any specifics of the
underlying language; it must provide a way to bind the text on
the display to commands that can operate on it : Oberon passes
a character pointer; help needs a more gene ral method
because the inform ati on must pass between processes. The
method chosen uses the standard currency in Plan 9: fi les and
fi le servers.

The interface seen by the user

Thi s sec tion exp lains the basics of the user interface;
the following section uses this as the background to a major
example that illustrates the design and gives a feeling for the
sys tem in action.

Help opera tes onl y on tex t; at the moment it has no
support for g raphical o utput. A three-button mouse and key­
board provide the inte rface to the system. The fundamental
operations are to type text with the keyboard and to contro l
the screen and execute commands wi th the mouse buttons.
Text may be se lec ted with the left and middle mouse buttons.
The middle button se lects text defining the ac tion to be exe­
cuted; the left se lects the object of that ac tion. The right but·
ton controls the placement of windows. Note that typing does
not execute commands: new line is just a character.

Several interre lated rules were fo llowed in the des ign
of the interface. These rules are in tended to make the system
as effi c ient and comfortable as possible for its users . Fi rst.

hreritv: there should be no actions in the interface - button
clicks or other gestures - that do not directly affect the sys­
tem. Thus help is not a ' c lick-to-type' sys tem because that
c lick is wasted; there are no pop-up menus beca use the ges­
ture requi red to make them appear is wasted ; and so on . Sec­
ond , 110 retyping: it shou ld never be necessary o r even worth­
while to retype text that is already on the screen. (Many sys­
tems a ll ow the user to copy the text o n the screen to the input
stream, but for small pieces of text such as file names it often
seems easier to retype the text than to use the mouse to pick it
up, which indicates that the interface has failed.) As a corol­
lary , when browsing or debugging, rather than just typ ing
new text, it should be possible to work efficiently and com­
fortably without using the keyboard at a ll. Third, auroma­
Tion: le t the machine fill in the detail s and make mundane
decisions. For example , it sho uld be good eno ugh just to
point at a file name, ra ther than to pass the mouse over the
e ntire textual string . Finally, defaulTs: the most common use
of a feature should be the default. S imil ar ly, the small est
act ion should do the most useful thing. Complex ac tions
should be required on ly rare ly and when the task is unusually
difficult.

The help scree n is tiled with windows of edi table
text, arranged in (usually) two side-by-side co lumns. Figure
I shows a help screen in mid-sessi on. Eac h window has
two subwi ndows, a sing le Tag line across the top and a hody
of text. The tag typica ll y conta ins the name of the file whose
text appears in the body .

The text in each subwindow (tag or body) may be
edited using a simple cut·and-paste editor integrated into the
system. The left mouse button selec ts text; the selection is
that text between the point where the button is pressed and
where it is released . Each subwindow has its own selection .
One subwindow - the one with the most recent se lec tion or
typed text - is the location of the currenT seleCTion and its
selection appears in reverse video. The se lec tion in other sub­
windows appears in outline.

Typed text replaces the selec tion in the subwindow
unde r the mouse. The right mouse button is used to rearrange
w indows. The user points at the tag of a wi ndow , presses the
right button, drags the window to where it is desired, and
releases the button . Help then does whatever local rear­
rangement is necessary to drop the window to its new location
(the rule of automation). This may involve covering up some
w indows or adjusting the position of the moved w indow or
othe r windows. Help attempts to make at least the tag of a
window fully visible; if thi s is impossible, it covers the win­
dow completely .

A tower of small black sq uares , one per window,
adorns the left edge of each column. (See Figure I.) These
tabs represent the windows in the co lumn , visib le or invisib le.
in order from top to bottom of the co lumn , and can be clicked
with the left mouse button to make the corresponding window
fully v isible, from the tag to the bottom of the column it is in .
A similar row across the top of the columns allows the
columns to ex pand horizontally. These little tabs are an ade-

Graphics Interface ' 92

284

/*
* string routines
*/

. com!cs.bbk . ac . u
k!localhost!cs.bbk . ac . uk!mick Fri

Apr 12 14:48:23 EDT 1991
Subject : UNIX in song & verse

Rob ,

The UKUUG are collecting old-time
verses about UNIX before they

disappear from the minds of thos~

Figure I : A small help screen showing two columns of windows. The c urrent se lection is the black line in the bottom left window.

The directory / usr / rob / src / help has been Opened and. from there, the source files / usr / rob/ src / help / errs. c and

fi le. c .

quate but not espec ially successful solution to the problem of
managing many overl apping windows. The problem needs
more work ; perhaps the file name of eac h window should pop
up a longs ide the tabs when the mouse is nearby.

Like the left mouse button, the middle bUllon also
selects text , but the act of releasing the button does not leave
the text selected ; rather it executes the command indicated by
that tex t. For example, to cut some tex t from the screen, one
se lects the text with the left bUllon, then se lects with the mid­
d le bUllon the word Cut anywhere it appears on the display.
(By convention, capitalized commands represent built -in
functions.) As in any cut -and-paste editor, the cut text is
remembered in a buffer and may be pas ted into the text e lse­
where. If the text of the command name is not on the display,
one j ust types it and then executes it by selec ting with the
middle bUllon. Note that Cu t is not a ' bullon ' in the usual
window system sense; it is just a word, whe rever it appears,
that is bound to some action. To make things easier, h e lp
inte rprets a middle mouse button c lick (not dOl/hIe click) any­
where in a word as a selec ti on of the whole word (the rule o f
defaults) . Thus one may just selec t the text normally, the n
c lick on Cut w ith the middle bUllon, involving less mo use
ac tivity than with a typical pop-up menu . If the text for se lec­
tio n or execution is the null string, help invokes automatic
actions to expand it to a fil e name or similar contex t­
dependent block of text. If the se lec ti on is non-null , it is
a lways taken litera lly.

As an extra acce leration, help has two commands
in voked by chorded mouse buttons. While the left bUllon is
still he ld down after a selec ti on. c lick ing the midd le button
executes Cut; c licking the right bUllon executes Paste,

replac ing the se lec ted text by the contents of the cut bu ffe r.
These are the most common ed iting commands and it is con­
venient not to move the mo use to e xec ute them (the rules of
brev ity and defaults) . One may even c lick the middle and
then right bUllons, while holding the left down, to execute a
c ut-and-paste, that is, to remember the text in the c ut buffer
fo r later pas ting.

More than one word may be se lec ted fo r exec ut ion;
executing Open / u s r / r o b / l ib/p rofi le creates a new
window and puts the contents o f the fi le in it. (I f the fi le is
already open, the comm and just guarantees that its window is
visible.) Again, by the rule of automation, the new window's
location will be chosen by h e lp. The hope is to do some­
th ing sensible with a minimum of fuss rathe r than just the
right thing with user inte rvention. Thi s po licy was a de liber­
ate and di stinct break with most prev io us systems. (It is pre­
sent in Oberon and in most tiling w indow systems but help
takes it fa rther.) This is a contentious po int , but help is an
experimenta l sys tem . One indicati on that the policy is sound
is that minor changes to the he uri stics often result in dramati c
improvements to the fee l of the sys tem as a whole . With a lit ­
tle more work , it should be possible to bu ild a sys tem that
feels just right .

A typical shell window in a traditional window system
permits text to be copied from the typescript and presented as
input to the shell to achieve some sort of hi story functi on: the
abili ty to re-execute a prev ious command. He lp instead tries
to predict the future: to get to the screen commands and text
that will be useful later. Every piece of text on the screen is a
potential command or argument for a command. Many of the
basic commands pull text to the screen from the ti le system

Graphics Interface '92

285

I help/Boot Exit

••
• /usr/rob/lib/profile Close! Get! I • /help/edit/stf Put!1 Close! Get! • bind -e Shome/tmp /tmp • Open {~sr/rob/lib/profil~

bind - a Shome/ bin/re /bin Pattern
bind - a Shome/ bin/Seputype /bin Te xt " .uu Paste Snarf
fn * { H(! - S"* 0) S* 1 Wri!\ New
~* { if(! - SN - 0) $* 1
~!titi1HQjn.!1W li' ''Fiill

switeh(Sserviee){
case terminal

bind 'It k ' /net/dk
prompt=(' g* , , ')
site=plan9
exec 8 . 5 -i 8 . sstart N/lib/font/bit/pelm/9.0

case epu
bind 'tt k ' /net/dk M needed on a nonet terminal
bind - b /mnt/term/mnt/8 . s /dev
news
fortune

Figure 2: Executing Cut by sweeping the word while holding down the middle mouse button. The text being se lected for execut ion is

underlined.

help/Boot Exit

••
• / usr/rob/lib/profile Put!
• /usr/rob/sre/help/help. e
• linelude <u . h>
• linelude <libe . h>

.include <libg.h>
Minclude <libframe . h>
Hnclude "<1at . h"
linclude "fns.h "

int mouseslave ;
int kbdslave j

/usr/rob/ sre/help/dat . h

I
ltypedef struet Addr
typedef struet Client
typedef struet Page
typedef struet Proe
typedef struet String
typedef struet Te xt

Close!
Addrj
Client j
Page j
Proc ;
String j
Te xt j

IClose! Get!
Close! Get!

Get!

• • /help/edit/stf Put!1 Close! Get!
Op~n /usr/rob/sre/ help/help .q
Pa~rn "
Text ' ,
Cut Paste Snarf
Write New

Figure 3: Opening files. After typing the full path name of help. c. the se lec tion is automatical ly the null string at the end of the file

name. so just click Open to open that tile: the defau lts grab the whole name . Next. a fter pointing into dat . h. Open w ill get

/ usr/rob/src / help / dat.h .

with a minimum of fuss. For example. if Open is exec uted
without an argume nt , it uses the file name containing the most
recent selection (the rule of defaults). Thus one may just
point with the left button at a file name and then with the mid­
dle button a t Open to ed it a new fi le. Usi ng all four of the
rules above, if Open is applied to a null se lection in a file
name that does not begin with a slash (/). the directory name
is ex trac ted from the file name in the tag of the window and
prepended to the se lec ted file name. An elegant use of thi s is
in the handling of directories. When a directory is Opened.
help puts the its name, including a fina l s lash, in the tag and
just lists the contents in the body . (See Figure I .)

For example, by pointing a t dat . h in the source file
/usr/ rob/s rc /help/help. c and executing Open. a
new window is created containing the contents of
/usr/rob/src / help/dat.h: two button c licks. (See

Figure 3.) Making any non-null se lec ti on disables a ll such
automatic ac tions: the resulting text is then exactl y what is
selec ted .

That Open prepends the directory name g ives each
window a context: the directory in which the file resides. The
various commands, built-in and external, that operate on files
derive the directory in which to execute from the tag line of
the window. Help has no expl ic it notion of current working
directory; each command operates in the directory appropriate

to its operands.

The Open command has a fu rther nuance: if the file
name is suffixed by a colon and an in teger. for example
help.c:27. the window will be positioned so the indicated
line is visib le and se lec ted. This feat ure is reminiscent of
Robert Henry's errore I) program in 8erkeley Unix ,
although it is integrated more deeply and uni formly. A lso,

Graphics Interface '92

un like error, help 's syntax permits specifying general
locations , although on ly line numbers will be used in this
paper.

It is poss ible to exec ute any external Plan 9 command.
[f a command is not a bui lt-in like Open, it is assumed to be
an executable file and the arguments are passed to the com­
mand to be executed. For example, if one selects with the
middle button the text

grep ' - main' /sys/src/cmd/help/*.c

the tradi tional command wi ll be executed. Again, some
defau lt rules come into play. [f the tag li ne of the window

An example

286

containing the command has a fi le name and the command
does not begin with a s lash, the directory of the file wi ll be
prepended to the command. [f that command cannot be found
locally, it will be searched for in the standard directory of
program binaries. The standard input of the commands is

'connected to en empty file; the standard and error outputs are
direc ted to a special window, called Errors, that will be
created automatically if needed . The Errors window is a lso
the dest ination of any messages printed by the bui lt -in com­
mands.

The interplay and consequences of these ru les are eas­
ily seen by watching the system in action.

[n th is example [wi ll go through the process of fixing a bug reported to me in a mai l message sent by a user. Please par­
don the informa l first person for a wh ile; it makes the te lli ng easier.

When help starts it loads a set of 'tools', a term borrowed from Oberon , into the right hand column of its initi ally two­
column screen. These are files with names like / help / edit / stf (the stuff that the help editor provides),
/help/mail/ stf, and so on. Each is a plain text fi le that lists the names of the commands available as parts of the tool , col­
lected in the appropriate directory. A he l p window on such a file behaves much like a menu, but is rea lly just a window on a
plain fi le. The useful properties stem from the interpretation of the fi le applied by the ru les of help; they are not inherent to the
fi le.

I help/Boot Exit

••
• • /help/edit/ stf Close ! Get! • r" • Pattern " • Text ' ,

• Cut Paste Snuf
Write New
/help/cbr/stf Close! Get!

DOpen mk src decl uses *. c
/help/db/stf Close! Get! o ps pc regs br oke
st ack kstack nextkstack

/ help/mail/ stf Close! Get!

I
headers messages de lete reread s end

~

Figure 4: The screen after booting.

To read my mail, [first execute headers in the mai l tool , that is, [click the middle mouse button on the word headers in the
window containing the file / help / mail / stf. This executes the program / help / mail / headers by prefixing the direc­
tory name of the fi le /help/mail/stf, collected from the tag, to the executed word, headers. This simple mechanism
makes it easy to manage a collection of programs in a directory.

G raphics Interface '92

287

header~ help/Boo t E~it

••
• • /help/edit/stf Close! Get!

• ~ "'" • Pattern "

• Te xt ' ,

• Cut Paste Snarf

• Write New
/help/ cbr/stf Close! Get!

o Open mk src decl us es *. C
/help/db/stf Close! Get! o ps pc regs broke
stack ks tack ne ~ tkstack

/help/mail/stf Close! Get!
~ headers mess ages delete reread send

I ~

/mail/box/ rob/m box /bin/help/maill\
1 chk@alias. com Tue Apr 16 19 : 30 EOT
2 sean Tue Apr 16 19 : 26 EOT
3 attuni~! rrg Tue Apr 16 19 : 03 EOT 1991

4 knight~MRCO . CARlETON.CA@mitvma . mit . ed
u Tue Apr 16 19:01 EOT
5 deutsch~PARCPlACE.COM@mitvma.mit.edu
Tue Apr 16 18 : 54 EOT
6 howard Tue Apr 16 15:02 EOT
7 deut s ch~PARCPlACE . COM@mitvma . mit . edu
Tue Apr 16 12 : 52 EOT

Figure 5: A fter executing mail / he aders.

Header s c reates a new window containing the headers o f my mail messages, and labe ls it / mai l/b ox/ r o b / mbo x .
know Sean has sent me ma il ,so I point at the header of hi s mail Uust pointing with the left button anywhere in the heade r line
will do) and c lick on messa ge s.

I headers help/Boot Exit

••
• From sean Close ! I • /help/edit/stf Close! Get! • From sean Tue Apr 16 19 : 26 :14 EOT 1991 • ~ " .. i tried your new help and got this : • Pattern "

help 176153 : user TlB miss (load or fetch) bad vaddr:OxO • Te xt ' ,
help 176153: s tatus:OxfbOc pc:Oxl8df4 sp:Ox3f4e8 • Cut Paste Snarf

• Write New
I /help/cbr/stf Close! Ge t !

o Open mk s rc decl uses *. C
/help/db/ s tf Close! Get! o ps pc regs broke
stack kstack ne xtkstack

/help/mail/s tf Close! Get!
n header s mes s ages delete reread send

I ~

/mail/bo~/rob/mbox /bin/help/mail/l
1 chk@alias . com Tue Apr 16 19 : 30 EOT
2 ~ean Tue Apr 16 19 : 26 EOT
3 attuni~ !rrg Tue Apr 16 19 : 03 EOT 1991

4 knight~MRCO . CARlETON . CA@mitvma.mit . ed
u Tue Apr 16 19:01 EOT
5 deutsch~PARCPlACE .COM@mit vma.mit . edu
Tue Apr 16 18 : 54 EOT
6 howard Tue Apr 16 15 : 02 EDT
7 deut sch~PARCPlACE . COM@mitvma . m i t . edu
Tue Apr 16 12 : 52 EDT

Figure 6: A fter applying messages to the header line of Sean's mail.

A new ve rsion of help has crashed and a broken process lies about wa iting to be examined. (Thi s is a prope rty of Plan 9, not of
he l p .) I po int a t the process numbe r (I certa inl y shouldn ' t have to type it) and exec ute s tack in the debugger tool,

Graphics Interface '92

288

! help! db ! stf. This pops up a window containing the traceback as reported by adb. a primitive de bugger, under the aus­
~c~of!help !db ! sta c k.

1 headers help/Boot Exit

••
I From sean Close! 1 • /help/edit/stf Close ! Get!
~ From se an Tue Apr 16 19 : 26 : 14 EDT 1991 • Open • i tried your new help and got this : • Pattern "

help 176153 : user TLB miss (load or fetch) badvaddr=OxO • Text "
help 176~53 : status=OxfbOc pc=Ox18df4 sp=Ox3f4e8 • Cut Paste Snarf

/usr/ rob/src/help/ 176153 stack Close !I • Write New
/help/cbr/stf Close! last exception: TLB miss (load or fetch) Get!

/sys/src/libc/mips/strchr.s : 34 strchr+N68? MOVW 0(R3) , R5 D Open mk src decl uses •. C

strchr(c=13c , s=IO) called from strlen+11c / sys/src/l i bc/port /help/db/stf Close! Get!
/strlen . c : 7 o ps pc regs broke strlen(s=IO) called from textinsert+130 text . c :32 stajij;:~ kstack ne xtkst ack textinsert(sel=ll , t=HOe60 , S=NO, qO= l d , full:N1) called fro
m errs+Ne8 errs . c : 34 /help/mail/stf Close ! Get!

n = nd7cc ~Iheaders messages delete reread send
errs(s= NO) called from Xdie2+114 exec . c:252

p = 140d88
Xdie2() called from 100kup+lc4 exec . c : l0l
100kup(s=140be8) called from execute+N50 exec .c: 207

/mail/box/rob/mbox /bin/help/mailll i = If
n : Uc5bf 1 chk@alias . com Tue Apr 16 19 :3 0 EDT

execute(t=N3 ebbc , pO: N2 , p1: N2) called from control+N430 ctrl 2 ~ean Tue Apr 16 19 : 26 EDT
.c:331 3 attun ix!rrg Tue Apr 16 19: 03 EDT 1991
control() called fr om control ctrl.c : 320

t = 13ebbc 4 knight%MRCO .CARLETON .CA@mit vma.mit . ed
op = NO u Tue Apr 16 19 : 01 EDT
n = 10 5 deutsch'PA RCPLACE . COM@mitvma .mit . edu
p = 10 Tue Apr 16 18:54 EDT
dclick = 10 6 howard Tue Apr 16 15:02 EDT
pO = N2 7 deut sch%PA RCPLACE .C OM@mitvma .mit . edu
obut = MO Tue Apr 16 12:52 EDT

Figure 7: After app lying db! stack to the broken process.

Notice that this new window has many fi le names in it. These are extracted from the symbol table of the broken program. I can
look at the line (of assembly language) that died by pointing at the entry ! sys ! src! libc ! mips !strchr. s: 34 and exe­
cuting Open, but I'm sure the problem lies further up the call stack. The deepest routi ne in help is text insert, which call s
strlen on line 32 of the file text. c. I point at the identifyi ng text in the stack window and execute Open to see the source.

headers help/Boot Exit

••
• I~-=F_r_om_s_e_a_n--=_--;-_C_I-:o-::s_e-:-! -=--'=--:-:--==--:c=,___-----------l. the lp/ edit/ s t f Cl 0 se! Ge t !
• From sean Tue Apr 16 19 : 26: 14 EDT 1991 • pOPa"~ern
• i tried your new help and got this: • ..,..
• help 176153: user HB miss (load or fetch) badvaddr:O xO • Te xt

help 176153 : status:OxfbOc pc=Ox18df4 s p=Ox3f4e8 • Cut Paste Sna r f
~~/~u-s-r/7r-o~b-/~s-r-c~/~h-el~p-/~----~17~6~1~5~3~s~t-a-ck~--~C~I-o-s-e~!I-------------i.~_:W~r-i~te__;_~N_:e~w~--~,___~--~~----______ I

last exception : TLB miss (load or fetch) /help/cbr/stf Close! Get!
/sys/src/libc/mips/strch r.s:34 strchr+ N68 : MOVW 0(R3) , R5 D Open mk src decl uses · .C
s trchr(c=13c , s=IO) called from strlen+ l lc / sys/src/libc/port /help/db/stf Close! Get!
/strlen . c: 7 0 ps pc regs br oke
st rlen(s=I O) called from textinsert+ N30 ~e x t .c : 32 stack kstack nextkstack
te xtinsert(sel=ll, t=N40e60 , S=NO, qO=IO , full=ll) called fro
m errs+ le8 errs . c : 34 /help/mail/stf Close! Get!

n = '3d7cc ~Iheaders messages delete reread send
errs(s=I O) called from Xdie2+N 14 exec .c :252

p = 140d88
Xdie2() called from 100kpu+lc4 exec.c :l01

/usr/rob/src/help/text.c Close! Get! /mail/box/rob/mbox /bin/help/mailll
if(sel)

newsel (t) .
n = s trl en «charo)s) ;
strinsert(t , s , n , qO) ;
pO = qO-t- >or g ;
if(pO < 0)

t->org += fl j
else if(pO <= t->nchars)

frinsert(t , &s , pO) ;
t->qO = qO ;
if(!full)

Figure 8: After Opening text. c at line 32.

1 chk@alia s . com Tue Apr 16 19 : 30 EDT
2 ~ea n Tue Apr 16 19 : 26 EDT
3 attunix! rrg Tue Apr 16 19 :03 EDT 1991

4 knight'M RCO . CA RL ETON.CA@mitmva.mit.ed
u Tue Apr 16 19:01 EDT
5 deut sch'PARC PLACE. COM@mitvma .mit .edu
Tue Apr 16 18 : 54 EDT
6 howard Tue Apr 16 15: 02 EDT
7 deutsch'PARCPLACE .C OM@mitvma.mit,edu
Tue Apr 16 12 : 52 EDT

Graphics Interface '92

289

The problem is coming to li ght : s, the argument to strlen, is zero, and was passed as an argument to text insert by the
routine errs, which apparently also got it as an argument from Xdie2, I close the window on text. c by hitting Close! in
the tag of the wi ndow. By convention, commands ending in an exclamation mark take no arguments; they are window opera­
tions that apply to the wi ndow in which they are executed. Next I examine the source of the suspiciously named Xdie2 by
pointing at the stack trace and Open ing again . (See Figure 9.)

headers help/Boot Exit

••
• From sean Close! I

• i tried your new help and got this:
• ~ From sean Tue Apr 16 19 : 26 : 1Q EDT 1991

• help 176153 : user TLB miss (load or fetch) badvaddr=oxO
help 176~53 : status=OxfbOc pc=OxI8df~ sp=Ox3f4e8

/usr/rob/src/help/ 176153 stack Close!1
textinsert(sel=Ml , t= M40e60 , s=*O , qO= Md , full=*I) called
m errs +Me8 errs . c :3 ~

n = nd7cc
errs(s=MO) called from Ndie2+Ml4 e x ec.~: 252

p = M40d88
Xdie2() called from 100kup+ Mc ~ exec . c:l01
100kup(s=M~Obe8) called from exe cute+ M50 eNec . c:207

i = If
n = Hc5bf

execute(t=*3ebbc , pO=M2 , pl= *2) called from control+*430
.c:331

/usr/rob/src/help/exec . c Close! Get!
void
Ndie2(int argc , char *argv[] , Page *page , Text *curt)
!

el'l' s ((uchal'-)n);

/ *
.. Exact match
+/

Page.
findopenl(Page . p , char *name)

Figure 9 : After Opening exec. c at line 252.

• • • • • • fro

ctrl

/help/edit/stf Close! Get!

r~ Patt rn "
Text l l

Cut Paste Snarf
Write New
/help/cbr/stf Close! Get!
Open mk src decl uses * . C
/help/db/stf Close! Get! o ps pc regs broke
stack kstack nextkstack

/help/mail/stf Close! Get!
headers messages delete reread send
I

/mail/box/rob/mbox /bin/help/mailll
1 chk@alias . com Tue Apr 16 19 : 30 EDT
2 ~ean Tue Apr 16 19 : 26 EDT
3 attuni x!rrg Tue Apr 16 19 : 03 EDT 1991

~ knight*MRCO . CARLETON . CA@mitvma .mit . ed
u Tue Apr 16 19 : 01 EDT
5 deutsch*PARCPLACE . COM@mitvma .mit . edu
Tue Apr 16 18 : 5~ EDT
6 howard Tue Apr 16 15:02 EDT
7 deutsch*PARCPLACE . COM@mitvma .mit.edu
Tue Apr 16 12 : 52 EDT

Now the problem gets harder. The argument passed to errs is a variable, n , that appears to be global. Who set it to

zero') I can look at all the uses of the variable in the program by pointing at the variable in the source text and executing
uses *.c by sweeping both 'words' with the middle button in the C browser tool, / help /cbr / stf. Uses creates a new
window with all references to the variable n in the file s / usr / r ob/ src / help / * . c indicated by file name and line number.
The implementat ion of the C browser is described below; in a nutshell , it parses the C source to interpret the symbol s dynami­
cally. If instead I had run the regular Un ix command

grep n / usr / rob / src/help/*.c

I would have had to wade th rough every occurrence of the letter n in the program.

Graphics Interface '92

290

1 headers help/Boot Exit

••
• From sean Close! 1 • /help/ edit/stf Close! Get!

• ~ From sean Tue Apr 16 19: 26: 14 EOT 1991 • r" • i tried your new help and got this : • Pattern " • help 176153: user TLB miss (load or fetch) badvaddr=O xO • Text ' ,
help 176~53: status=OxfbOc pc=ONI8df~ sp= Ox3f~e8 • Cut Paste Snarf

/usr/rob/ src/help/ 176153 stack Close !I • Write New

• / help/ cbr/stf Close! Get! textinsert(sel=*I, t =*40e60, s=*O, qO=*d , full=U) called fro
m errs+*e8 errs.c:3~ J Open mk src decl uses *.C

n = *3d7cc /hel p/db/stf Cl os e ! Get~
/usr/ rob/ src/help/ exec.c Close! Get! 1 o ps pc regs br oke

void stack kstack nextkstack
Xdie2(int argc , char *argv[l, Page *page, Text *curt) /help/mail/stf Close! Get!
! Dlheaders messages de l ete reread se nd

errs((uchar* 1I!l) :
1

/usr/rob/src/help~ Close!
/ * . / dat . h:136 *' Exact match exec.c:213
*/ exec.c:252

Page- help . c:35
findopenl(Page *p, char *name) 1
!

char *5;
int n;
Page *q;

Again:
if(p == 0)

return P:

Figure 10: After finding all uses of n.

The first use is c learly the declaration in the header file. It looks like help. c: 35 should be an initializa tion . I Open help . c
to that line and see that the va ri ab le is indeed initialized . (See Figure I I; a few lines o ff the top of the window on he lp. c is the

opening declaration of main ().) Some o ther use of n must have c leared it. Line 252 of exec. c is the ca ll ; I know that ' s a

read, not a wri te. of the variable. So I point to exec. c: 213 and exec ute Open.

headers help/Boot Exit

••
• From sean Close! 1 • /help/edit/stf Close! Get!

• i tried your new help and got this : • Pa~ern
• help 176153 : user TLB miss (load or fetch) badvaddr=OxO • Text

Snarf

• ~ From sean Tue Apr 16 19: 26 : 14 EOT 1991 • Open

• help 176~53: status=OxfbOc pc=OXl8df4 sp=Ox3f~e 8 • Cut Paste
/ us r/ rob/ src/ hel p/ 176153 s tack Cl os e !I . I""--:W.,.r_i :-te--:--:-N-:e,...w-,,_-=,..----:-_,,-,...,... ____ _
-',t-e-x-:-'t ':-i n-s-e":'r-'t"""'(-s'--e-o-l=-*""I":',--'t-=7*74-=-0 e-6"'0'""",-s-=7*-=-0-, -q-'O'"""=-:*-:d"", ~f -u l'"'lo'-=-:*""""'I-c)-C -a l""lc-e-d~f-r--lo .1 / h e 1 p/ c b r / s t f Cl 0 se! Get!
m errs+*e8 errs .c:34 DOpen mk src decl uses *.C

n = *3d7cc /help/ db/ stf Close! Get!
/usr/rob/src/help/exec.c Close! Get! D ps pc regs broke
void stack kstack nextkstack
Xdiel(int argc , char *argu[l, Page . page , Te Nt .curt) /help/mail/stf Close! Get!
! D lheaders messages delete reread send

11 = 0;

/us r/rob/src/ help/help . c Close! Get!
Oir d:
Rectangle r :

n = "a test stnn!C..:I-______________ --'1

if(access("/mnt/help/new ", 0) == D)!

1
fn = 0:

fprint (2 , "help : already running\n ") ;
exits("running ") ;

ARGBEGIN !
case 'f':

Figure 11 : The writing of n on line exec. c : 213.

/usr/rob/src/help~ Close!
./dat. h : 136
e*c.c : 213
exec . c:252
help .c:35

Here is the jackpot of this contrived example. Sometime before Xdie2 was executed. Xdie 1 cleared n. I use Cut to remove

the offending line, write the file back out (the word Put! appears in the tag of a modified window) and the n execute mk in

G raphics Interface '92

291

/ help/ebr to compile the program (a total of three c licks o f the middle button). Il:ould now answer Sean ' s mail to te ll him
that the bug is fi xed. I' ll stop now. though, because to answer hi s mail I'd have to type something. Through thi s entire demo I
haven ' t ye t touched the keyboard.

1 header s help/Boot Exit

••
• From sean Close! 1 • /help/edit/stf Close! Get! • • Open • i tried your new help and got thi s: • Pattern " •
~ From sean Tue Apr 16 19: 26: 14 EDT 1991

help 176153 : user TlB miss (load or fetch) badva ddr=D NO • TeNt " • help 176~53: status=O NfbOc pc=O N18df4 sp=Ox3 f4e8 • Cut Paste Snarf

• /us r/rob/src/help/ 176153 stack Close !I • Write New

Ili 'textinsert(Sel=*l , t=*40e60 , s=*o , qO=*d , full=U) called fro • /help/cbr/stf Close! Get!

m errs+*e8 errs . c:34 D Open mk src decl uses *.C
n = *3d7cc /help/a'fiystf Close! Get!

/us r/rob/src/help/eNec .q Close! Get! o ps pc regs broke
stack kstack nextkstack

Xdiel(int argc , r" char *argv[1 , Page *page , Te xt *curt) /help/mail/stf Close! Get!
! o teaders messages delete reread send
11

/usr/rob/src/help~ Close !
/u sr/rob/src/help/mk IClose! ./dat . h : 136
vc -w exec . c e>4ec . c : 213
vi help .v clik.v ctrl .v dat .v errs .v exec.v file .v page .v pic exec.c : 252
k.v proc .v scrl.v te xt .v util .v xtrn v /mips/lib/libframe . a - help.c : 35

1
19 -lregexp -ldmalloc

Figu re 12: After the program is compil ed.

Thi s demonstration illustrates several things besides
the general fl avor of help. Most important . by fo ll ow ing
some simple rules it is possible to bu ild an ex treme ly effic ient
and producti ve user inte rface using just a mouse and screen.
Thi s is illu strated by how help makes it easy to work wi th
flies and comm ands in multiple directories. The rules by
which help constructs fil e names from context and by which
the utiliti es derive the context in which they exec ute sim pli fy
the management of programs and other sys tems constructed
from scatte red components. A lso, the few common ru les
about text and fi le names all ow a variety of app licati ons to
interac t through a sing le user interface. For example. none of
the too l prog rams has any code to interac t direc tl y w ith the
keyboard or mouse. Instead help passes to an applica tion
the file and charac ter offset of the mouse pos iti on. Using the
interface described in the nex t sec tion. the applicati on can
then examine the tex t in the window to see what the use r is
po inting at. These operations are easily encapsul ated in s im­
plc shell scripts. an example of which is g iven be low.

The interface seen by programs

As in Sy,. the Plan 9 window system [Pike9 11, help
provides its c lient processes access to its structure by present­
ing a tile se rv ice, alt hough help's file struc ture is very dif­
fere nt. Eac h help window is represented by a se t of files
stored in numbered directo ri es. The number is a unique
identifier, sim il ar to Un ix process id ·s. Each direc tory con­
tains ti les such as tag and body, wh ich may be read to

recover the contents of the corresponding subwindow, and
etl , to whi ch may be written messages to effect changes
such as insertion and delet ion of text in contents of the win­
dow . The help d irectory is conventiona lly mounted at
/ mnt / help, so to copy the text in the body of window num­
ber 7 to a fi le, one may execute

cp / mnt / help /7/body file

To search for a tex t pattern ,

grep pattern / mnt / help / 7 / body

An ASC II ti le / mnt / help / index may be examined to
connect tag fi le names to wi ndow numbers. Each line of thi s
tile is a window number, a tab, and the first line of the tag.

To create a new window, a process just opens
/ mnt / help / new / etl , which places the new window
automatica lly on the sc reen near the current se lected text, and
may then read from that file the name of the window created,
e.g. / mnt / help / S. The position and size o f the new win­
dow is chosen by help.

Another example

The d irectory / help / ebr contains the C browser we
used above . One of the prog rams there is ca lled deel ; it
finds the dec larat ion of the va ri able marked by the se lected
text. Thus one po ints at a va ri able wi th the left button and
then executes deel in the window for the file
/ help /ebr/st f. Help ex~ure s / help /ebr / deel

Graphics Interface '92

using the context rules for the execuled text and passes it the
context (w indow number and location) of the selecled text
through an environment variable, helpsel.

Decl is a shell sc ript. a program for the Plan 9 she ll,
re [Ouff90j. Here is the complete script :

eval '{help/parse -cl
x='{cat /mnt / help/new/ctll
{

echo a
echo $dir /' Close I'
help / buf > / mnt /help /$x/ctl

cpp $cppflags $file I
help/rcc - w -g - i$id -n$line I
sed lq

I > / mnt/help/$x/bodyapp

The first line run s a small program, help/parse, that
exam ines $helpsel and establishes another se t of environ­
ment variables, file , id, and line , describing what the
user is pointing at. The nex t creates a new window and sets x
to its number. The first block writes the directory name to the
tag line: the second runs the C preprocessor on the original
source file (i t should arguabl y be run on, say,
/ mnt /he lp / 8 / b ody) and passes the resulting text to a
special version of the compiler. This compiler has no code
generator: it parses the program and manages the symbol
table , and when it sees the declaration for the indicated
identifier on the appropriate line of the fil e, it prints the file
coordinates of that dec laration. Thi s appears on standard out ­
put , which is appended to the new window by writing to
/ mnt / help /$x/bodyapp. The user can then point at the
output to direct Open to display the appropriate line in the
source. (A future change to help wi ll be to close this loop
so the Open operation also happens automatically.) Thus
with only three button c licks one may fetch to the screen the
declaration, from whatever file in which it resides, the dec la­
ration of a variable, function, type, or any othe r C object.

A couple of observations about this example. First.
help provided all the user interface. To turn a compiler into
a browser involved spending a few hours stripping the code
generator from the compiler and then writing a half dozen
brief shell scripts to connect it up to the user interface for di f­
ferent browsing functions. Given anothe r language. we
would need only to modify the compiler to achieve the same
result. We would 11 01 I/eed 10 wrile al/Y user il1lelface soji­
ware. Second, the resulting application is not a monolith . It
is in stead a small suite of tiny she ll scripts that may be tuned
or toyed with for other purposes or experiments.

Other applications are s imilarly designed. For exam­
ple, the debugger interface , / help / db . is a directory of ten
or so brief she ll scripts , about a dozen lines each, that connec t
adb to help. Adb has a notori ously cryptic input language;
the commands in / help /db package the most important
fu nctions of adb as easy-to- use operations that connect to the
rest of the sys tem while hiding the rebarbative syntax. People
unfamiliar with adb can eas il y use help's interface to it to
examine broken processes. Of course. thi s is hardl y a fu ll ­
featured debugger. but it was written in abo ut an hour and

292

illustrates the principle . It is a prototype, and help is an
easy- to-program environment in which to build such test pro­
grams. A more sophi sticated debugger could be assembled in
a similar way, perhaps by leav ing a debugging process resi­
dent in the background and hav ing the help commands send
it requests.

Discussion

Help is a research prototype that explores some ideas
in user interface des ign. As an experiment it has been suc­
cessful. When someone first begins to use help, the profu­
sion of windows and the different ground rules for the user
interface are disorienting. After a couple of hours, though,
the sys tem seems seducti ve, even natural. To return at that
point to a more traditional environment is to see how much
smoother help really is. Unfortunately, it is sometimes nec­
essary to leave help because of its limitations.

The time is overdue to rewrite help with an eye to
such mundane but important features as undo, multiple win­
dows per file , the ability to handle large files gracefully, sup­
port for traditional she ll windows, and syntax for she ll -like
functionality such as I/O redirection. Also, of course, the
restriction to textua l applicati ons shou ld be e liminated .

One of the orig inal problems with the sys tem - inade­
quate heuristics for automat ically plac ing windows - has
been fixed s ince the first vers ion of this paper. The rule it fol­
lows is first to place the new window at the bottom of the col­
umn containing the selec tion. It places the tag of the window
immediately be low the lowest visible tex t already in the col­
umn . If that would leave too little of the new window vis ible,
the new window is placed to cover half of the lowest window
in the column. If that would st ill leave too little visible, the
new wi ndow is positioned over the bottom 25% of the column
and minor adjustments are made so it covers no parti al line of
ex ist ing tex t, which may entail hiding some windows entire ly.
This procedure is good enough that I haven ' t been encour­
aged to refine it any further , although there are probabl y
improvements that could still be made. A good rule to follow
when designing or tuning interfaces is to attend to any clumsi­
ness that draws your attenti on to the interface and distracts
from the job at hand. I be li eve the heuri stic for plac ing win­
dows is good enough because I don ' t notice it ; in fact I had to
read the source to help to recall what it was.

Help does not explo it the multi-machine Plan 9 envi­
ronment as well as it could . The most obvious example is
that the applicat ions run on the same machine as help itse lf.
This is probably easy to fi x: h e lp cou ld run on the terminal
and make an invis ible call to the CPU server, sending
requests to run applications to the remote shell-like process .
Thi s is similar to how nmake I Fowl90j runs its subprocesses.

If imitation is the sincerest form of flattery, the design­
ers of Oberon's user interface wi ll (I hope) be honored by
help. But Oberon has some aspects that made it difficult to
adapt the user interface directly to UN IX-like sys tems such as
Plan 9. The most important is that Oberon is a monolithic
system intimately tied to a module-based language . An

Graphics Interface '92

Oberon tool, for instance, is essentially just a listing of the
entry points of a module. In retrospect, the mapping of this
idea into commands in a Unix directory may seem obvious,
but it took a while to discover. Once it was found , the idea to
use the directory name associated with a file or window as a
context, analogous to the Oberon module, was a real
jumping-off point. Help only begins to explore its
ramifications.

Another of Oberon 's difficulties is that it is a single­
process system. When an application is running, all other
activity - even mouse tracking - stops. It tumed out to be
easy to adapt the user interface to a multi-process system.
Help may even be superior in this regard to traditional shells
and window systems since it makes a clean separation
between the text that executes a command and the result of
this command. When windows are cheap and easy to use
why not just create a window for every process? Also,
help's structure as a Plan 9 file server makes the implemen­
tation of this sort of multiplexing straightforward.

Help is similar to a hypertext system, but the connec­
tions between the components are not in the data - the con­
tents of the windows - but rather in the way the system itself
interprets the data. When information is added to a hypertext
system, it must be linked (often manually) to the existing data
to be useful. Instead, in help, the links form automatically
and are context-dependent. In a session with help, things
start slowly because the system has little text to work with .
As each new window is created, however, it is filled with text
that points to new and old text, and a kind of exponential con­
nectivity results. After a few minutes the screen is filled with
active data. Compare Figure 4 to Figure II to see snapshots
of this process in action. Help is more dynamic than any
hypertext system for software development that I have seen.
(It is also smaller: 4300 lines of C.)

The main area where help has not been pushed hard
enough is, in fact , its intended subject: software development.
The focus has been more on the user interface than on how it
is used. One of the applications that should be explored is
compilation control. Running make in the appropriate direc­
tory is too pedestrian for an environment like this. Also, for
complicated trees of source directories, the make files
would ' need to be modified so the file names would couple
well with help ' s way of working. Make and help don't
function in similar ways. Make works by being told what tar­
get to build and looking at which files have been changed that
are components of the target. What's needed for help is
almost the opposite: a tool that , perhaps by examining the
index file, sees what source files have been modified and
builds the targets that depend on them. Such a program may
be a simple variation of make - the information in the
makefile would be the same - or it may be a whole new
tool. Either way, it should be possible to tighten the binding
between the compilation process and the editing of the source
code; deciding what work to do by noticing file modification
times is inelegant.

293

There have been other recent attempts to integrate a
user interface more closely with the applications and the oper­
ating system. ConMan and Tcl [Haeb88,Oust90] are note­
worthy examples, but they just provide interprocess commu­
nication within existing environments, permitting established
programs to talk to one another. Help is more radical. It
provides the entire interface to the screen and mouse for both
users and programs. It is not an extra layer of software above
the window system; instead it replaces the window system,
the toolkits, the command interpreter, the editor, and even the
user interface code within the applications.

Perhaps its most radical idea, though, is that a better
user interface can be one with fewer features. Help doesn ' t
even have pop-up menus; it makes them superfluous. It has
no decorations, no pictures, and no modes, yet by using only
a bitmap screen and three mouse buttons (one of which is
underused) it provides a delightfully snappy and natural user
interface, one that makes regular window systems - includ­
ing those I have written - seem heavy-handed. Help
demonstrates that the ideas of minimalism, uniformity, and
universality have merit in the design of human-computer
interfaces. In the years to come, as the machines and their
input methods become more complex, those principles will
have to be followed ever more assiduously if we are to get the
most from our systems.

Acknowledgements

Sean Dorward wrote the mail tools and suggested
many improvements to help. Doug Blewett, Tom Duff, Stu
Feldman, Eric Grosse, Dennis Ritchie, and Howard Trickey
made helpful comments on the paper. Brian Kemighan's
heroic efforts to force this paper through troff deserve par­
ticular thanks.

References

[Duff90] Tom Duff, "Rc - A Shell for Plan 9 and UNIX sys­
tems ", Proc. of the Summer 1990 UKUUG Conf., London,
July, 1990, pp. 21-33
[FowI90] Glenn Fowler, "A Case for make", Softw. - Prac.
and Exp. , Vol 20 #S I, June 1990, pp. 30-46
[Haeb90] Paul Haeberli, " ConMan: A Visual Programming
Language for Interactive Graphics" , Comp. Graph., Vol 22
#4, Aug . 1988, pp. 103-1 10
[Oust90] John Ousterhout, "Tcl: An Embeddable Command
Language" , Proc. USENIX Winter 1990 Conf., pp. 133-146
[Pike88] Rob Pike, "Window Systems Should Be Transpar­
ent ", Comp. Sys., Summer 1988, Vol 1 #3, pp. 279-296
[Pike90] Rob Pike, Dave Presotto, Ken Thompson, and
Howard Trickey, "Plan 9 from Bell Labs" , Proc. of the Sum­
mer 1990 UKUUG Conf. , London, July, 1990, pp. 1-9
[Pike91] Rob Pike, "8 1'0 , the Plan 9 Window System" ,
USENIX Summer Conf. Proc., Nashville, June, 1991, pp.
257-265
[Reis91] Martin Reiser, The Oherol1 System, Addison Wesley,
New York, 1991
[Wirt89] N. Wirth and J. Gutknecht, " The Oberon System " ,
Softw. - Prac. and Exp., Sep 1989, Vol 19 #9, pp 857-894

Graphics Interface '92

