
294

A Multi-Layer Graphic Model for Building
Interactive Graphical Applications

Jean-Daniel Fekete

LRI - CNRS URA410
Bat 490

Universite de Paris-Sud
F-91405 ORSA Y Cedex

+33 (1) 69 41 6591

Abstract
In this article, we present a model for building interactive
graphical applications based on multi-Iay~r grap~ics. With ~is
model, a variety of components of an mteractlve graphical
editor (transient objects like the selection rectangle, selected
objects, grids, cursors), as well as the handling of input events,
are realized in a more straightforward way.
We show how an interactive graphical application can use
layered graphics in a simple and effective way to represent
direct manipulation, some graphic constraints and event
handling using various input devices. By clarifying the status
of abstract elements of an interactive application, the model
encompasses a significant part of the dynamic aspect of the
interaction.

Resume
Dans cet article, nous presentons un modele base sur le
graphique multi-couches pour le developpement d'applications
graphiques interactives. En utilisant ce modele, il est possible
d' attribuer un statut clair a de nombreux elements composant
un editeur graphique interact if (les objets «fugaces» comme le
rectangle utilise pour selectionner, les objets selectionnes, les
grilles d'alignement ainsi que les curseurs).
Nous montrons comment une application graphique interactive
peut tirer profit du modele graphique multi-couches pour
decrire simplement la manipulation directe, certaines
contraintes graphiques ainsi que la gestion des evenements
produits par divers peripheriques d'entree. En attribuant un
statut clair aces composantes abstraites des applications
graphiques interactives, le modele aide a la construction d 'une
partie importante de la description du comportement
dynarnique de l'interaction.

KEYWORDS: User Interface Design, Interface Metaphors,
Input Devices.

Introduction
Building interactive graphical programs is still a difficult task.
Some toolkits [14, 11] propose a framework for building task­
specific editors, but the kind of editors they can produce are
stereotypical in several aspects:
• they only consider keyboard and mouse input,
• their graphic model is tied to the PostScript model,
• their interaction is based on stereotypical graphic objects like

button boxes and menus,

2001 S.A.
45, rue Carnille Desmoulins

F-94230 CACHAN
+33 (1) 454610 00

jdf@!ri.lri.fr

• they offer only stereotypical mouse- and keyboard-based
manipulations.

We believe that these limitations are currently too strong
because of new, easily available input devices; both 2D
(Wacom pressure sensitive styli, touch screens with multi
touch sensitivity, eye trackers) and 3D (data gloves, flying
mice, 3D styli). Since the list of devices recognized by current
toolkits is "hardwired" into the toolkit, almost no support is
provided for application programmers to handle these new
kinds of devices for input and to support graphic feedback for
their actions.
We propose here a model based on multi-layered graphics and
multi-layered input handling.
This model is also suitable for describing traditional mouse­
and keyboard-based interactive programs, simplifying the
handling of interaction, the handling of transient shapes, of
selected graphic objects, of constraint representations (e .g. a
grid) and of device feedback. . .
Most graphical toolkits distinguish two levels for dlsplaymg
graphics: a virtual surface where the graphics are drawn and
one or several viewports which show some part of the virtual
surface (see fig. 1).
In this model, the graphics on the virtual surface are produced
by a graphic controller, a module which transforms an
abstract data structure into a graphic data structure which can
be displayed. Passing from the graphic data structure to the
virtual surface is done by a renderer module (see fig . 2).
Projecting the virtual surface onto a visible viewport is done
through a transformation and a clipping zone. This model is
used by most graphical systems and the mechanisms to

Virtual surface Visible Viewport

figure 1: the two levels of graphics in toolkits

Graphics Interface '92

Grid Drawing Selection

.............. ~
............

Figure 3: the multi-layer graphic model.

implement it can be found in windowing systems like X [12],
the Macintosh Toolbox [2], and by graphical toolkits like
InterViews [9], ET ++ [15] or Garnet [11].
This model is well adapted to the display of graphics but is of
little help for interaction. For instance, transient objects, like
handles or sliding shapes, have no clear graphic status. They
do not belong to the graphic data structure so their display and

Virtual drawing
surface

.':-.
. -:-:':' .

Visible surface

Renderer /!"

Graphic structure

1 : .. 1:.: .. .
Graphic controller :::::'.,.' _______ __ ...,

Abstract structure

Figure 2: Transformation stages used by graphical toolkits

295

management is done by an internal part of the toolkit. This
internal part is hard to adapt to new interaction and appearance
styles.

The Multi-Layered Graphic Model
We propose a model where the visible surface can display
several virtual surfaces, like stacked transparent celluloids (see
figure 3); a virtual surface supports a graphical structure. The
same virtual surface can be shown on several different visible
surfaces, at different levels. This is an extension to the multi­
view concept.
This model is useful to specify both the display of graphics
and the handling of events. Layers are drawn from the bottom
(background) to the top (foreground) whereas events are
handled from the topmost layer to the bottommost. In the
following sections, we discuss the use of layers in typical
applications, the handling of graphics, event handling, the
status of various components in our model and finally an
example of its use.

Layers
While using the Xtv toolkit developed at LRI [3], experiments
with several interactive graphical layouts led us to distinguish
between the following layers:
• Background/model layer: this layer displays a background

image. Conceptually, areas covered by no other layer
contain the background image. Window systems usually
handle this layer in a special way. X, for instance, has a
background image (generally a solid color) for each
window. In programs like lllustrator™, this layer can
contain a drawing which is then used as a template for the
main drawing, like with tracing paper. In our model, this
layer shows "default" graphics and handles events ignored
by the other layers.

• Graphical constraints visualization layer: this layer usually
displays a grid or other graphical formalism for
representing geometrical constraints.

• Application data layer: this layer, as in figure 1, displays the
graphical objects representing the application's internal
objects. Event handling in this layer is described later .

• Selected objects layer: this layer displays the selection, using
shapes (e.g . handles) expressing the kinds of
manipulations available. Event handling in this layer
supports direct manipUlation.

• Lexical operations representation layer: this layer displays
shapes expressing the status of input devices, like cursors,
as well as transient shapes (e .g. "zoom animation".)

Obviously, this list is not exhaustive; other layers can be found
for specific applications. It does, however, apply to many
applications (MacDraw, Illustrator, Idraw, etc.)
The model can manage many visible surfaces (multi-views):
each virtual surface can be seen by any number of visible
surfaces and each visible surface can display a virtual surface
at any level.
Hence, the selection in a given view can differ from the
selection in another view. The constraint grid can appear in
one view and not in another, and be different in a third. A view
can use a visible surface as a model whereas another uses it as
the application data layer. See the example application at the
end of the paper.

The Transformation Model
As explained in the previous section, the display of a virtual
surface on a visible surface is done with a transformation and

Graphics Interface '92

296

ftj
i··"j"" .. ··T ..

: 1

Origm . . ::
Axes of coordinates ~l..L , ...

body
Transformation • :

L.t. .! ...
,Itj: 1

:: :
r·.T." r ·

leg
Figure 4: composition of structured graphic objects.

through a clip. The graphic structure is displayed on the visible
surface analogeously to the way structured graphics packages
(GKS [6], PRIGS [7]) build complex objects: by composition
of simple objects, geometrically transformed (see figure 4).
In the mono-surface model, the visible surface is responsible
for scrollmg and zoommg in 2D, or changmg the view pomt m
3D (these operations are sometimes called non-semantic
manipulations.) The transformation is therefore associated to
the visible surface.
Our model retains similar properties but requires that some
objects are aware of the transformation applied to them and
can manage it explicitly when being drawn on the visible
surface. Specifically, objects can behave m three ways to
redraw themselves with a specific transformation:
• use the transformation for all components uniformly,
• use the transformation for positionmg but not for dimensions

(lines width, handles width, ...),
• don't use the transformation at all.
By construction, the application data layer uses the trans­
formation for all components, smce the transformation model
has been chosen for this purpose. The selection and grid
objects use the second behavior; they usually draw Imes usmg
a constant width of one pixel. The third is sometimes used to
present graduated rules or display information like locator
coordmates.

ImplementatIon Issues
With the mono-layered model, most toolkits use a "lazy"
redisplay mechanism: when a part of the visible surface should
be updated, a function is called for the visible surface with the
region to repaint as an argument. The toolkit is then
responsible for redrawing the region. This mechanism is used
either because that part has been made visible or because the
graphics under it have changed (i .e . an object is created,
modified or removed.) In the latter case, the data structure is
updated and, for each visible surface where the virtual surface
appears, the region to update is cleared and the redisplay
mechanism is triggered.

In order to keep the simplicity of this mechanism with the
multi-layer model, graphic objects should be able to actively
control their drawing process to bypass the standard
visualizmg transformation. As explained in the previous
paragraph, the redisplay algorithm calls a drawmg function
with a region to draw as an argument. In our model, the
visualization transformation should also be passed as a
parameter to the drawmg function of each layer.
It should be noted that when a graphic structure is modified
and the redisplay algorithm is notified that an area should be
updated, the area cannot be computed just once for the abstract
surface and propagated to each visible surface where it
appears, because, here again. the treatment of the
transformation has to be taken mto account for each visible
surface m order to compute the exact area.
The lazy redisplay mechanism used by the MacIntosh toolbox.
as well as InterViews. ET ++ and Xtv. can be easilly adapted to
our model.
Note that no assumtions are made about the graphic model
used to draw m the application data layer. The multi-layered
model can be used with bitrnap graphics with an alpha value.
enhanced bitrnap graphics (supportmg zoom), bitrnap graphics
with some structured primitives (QuickDraw [2]. X). device­
mdependant 2 l!2D pamting (PostScript [1]) or 3D (PRIGS).

Handling of 3D
Note also that the model is, to some extent. suitable for
mteractive manipUlation of 3D graphics. Most 3D editors use a
"wire frame" representation of 3D structures. The vertices are
displayed usmg a transformation and manipulated usmg some
2D or 3D locator. The virtual surface contains 3D objects
(virtual volume would be a better name) and the visible
surfaces present a projection - through a visualizing
transformation - of the virtual volume. The list of layers
given for a conventional 2D graphical application still applies
for a 3D editor:
• the background usually displays a solid color (either black or

grey).
• the graphical constraints visualization layer can display a 3D

grid or a trajectory.
• the application data layer displays the 3D objects.
• the selected objects layer displays handles of selected

vertices or objects,
• the lexical operations representation layer displays the

representation of the mput device (the projection of a 3D
mouse for mstance).

The model cannot be used when objects are edited with their
hidden surfaces removed because the cursor and selection
should be consistent with the 3D structure. This case is,
however, very unusual.

Handling of Events
A major benefit of multi-layer graphics is the simplicity of
interaction handling. Each layer handles only those events for
which it has expressed mterests; control is distributed. When it
receives an event, a layer can either:
• ignore it and pass it to layers below,
• handle it,
• handle it, then pass it to layers below.
• handle it, transform it and then pass it to layers below.
For example, figure 5 describes how events are handled by
each layer if the selection mode works as follows:

Graphics Interface '92

297

ayer IEvent Behavior
~xical: lPointerMoveDown If a selection rectangle

exists on the lexical
ayer, set its moving

corner to the mouse
position.
Else, pass the event.

PointerUp If a rectangle exists on
ithe lexical layer, delete
ithe rectangle, then, pass
la new event called
~electRect containing
ithe rectagle boundings.
IElse, pass the event.

Selection: PointerMoveDown f the selection was
[being moved, move it
~ith the pointer.
lIT it was not moving and
la ghost is under the
pointer, move it with
~e pointer.
IElse, pass the event.

Data: PointerDown ~ an object is under the
pointer, select it (create
~ ghost for it).
Else, pass the event.

SelectRect ~elect the objects inside
the rectangle.

Background: Pointer Down dear the selection, then
create a rectangle on the
exicallayer at the

mouse position.

Figure 5: description of the selection

• When the mouse is clicked outside any object, the selection
is cleared.

• If the mouse is then dragged, a selection rectangle is drawn
and follows the mouse.

• If the mouse button is released, objects inside the rectangle
are selected and the rectangle is deleted.

• When the mouse is clicked on a graphic object, it becomes
selected.

• If the mouse is clicked over a selected object and then
dragged, a ghost! of the selection follows the pointer.

• When the mouse buttons are released, the ghosts are deleted
and the objects they represent are moved to the new
position.

Figure 5 also shows the declarative aspect of event handling
with our model. Note that the selection rectangle is created by
the background layer, because it is a default action, performed
when no other layer handles the event more specifically.
For exotic devices, the lexical layer can also represent more
sophisticated feedback than the traditional cursor. In our
animation program for instance, we use a pressure sensitive
wireless Wacom digitizer where the hot spot is represented as
a cross and the pressure as a circle, with a radius proportional
to the pressure. A sketching program using the digitizer to
draw like a pencil would simply add some actions to the layers
above (see figure 6).

! We call ghost a transient graphic object which represents the
selection of a graphic object within the main data layer.

... ayer IEvent lBehavior
~xical: pigitMoveUp lDraw a cross (in Xor)

Fentered at the hot spot
land pass the event.

pigitDown praw the cross and put
ithe position and the
IPressure in a new list.

PigitMoveDown IErase the cross, draw a
~e from the previous
point to the current poin
~sing the current
pressure to compute its
~idth, draw the cross at
ithe current point and
~d the point and
pressure to the list. Pass
tile event.

DigitUp Erase the cross, mark
the area where the lines

were traced as an area to
redisplay, then, pass a

new event called
DigitTrace containing

the list.

Data: DigitTrace Create an object with
the list of points and

select it.

Figure 6: adding actions for a pressure sensitive digitizer.

Logical Status of Layers
Most toolkits use a model inspired from the Smalltalk Model­
View-Controller [8] (MVC) model: ET ++ uses MVC, inter­
Views calls it SUbject-View, Garnet uses a one-way constraint
system. The idea of these models is to distinguish between
object and representation and to provide a mechanism to keep
them coherent. The PAC (Presentation, Abstraction,
Controller) model of [4] is a generalization of this concept of
separation. By using it, we can further clarify the notion of
layer in our model.
In graphical applications, some abstract structure is to be
displayed (see fig. 2). The graphic structure is considered as
the presentation of the abstract structure. The graphic
controller is responsible for keeping the graphical structure
coherent with the abstract structure. It is also responsible for
receiving input events and handling them according to the
graphic semantics of the application. In most interactive
graphic applications, the controller of this layer performs only
"hit detection", that is, receives input events and determines
which object they designate. The manipUlation - either direct
or through menus - is usually performed on selected objects .
With our model, we can describe the relationship between the
graphic structure and the representation of its selection (its
ghost) by a similar process (see fig . 7) . The handles
representing the selection are a presentation of the state "being
selected" of the graphic structure.
As shown in the previous section, the ghost appears in the
selected objects layer. In our model, the ghost is considered as
a view of the graphical data structure representing the object in
the main data layer. Most of the time, only geometric

Graphics Interface '92

298

~~~~rr.'. · .. .............................. . 

Presentation 

........................... ........... <:~~ t ........ ~ 
.:.:.:-............. . 

:.:. ~t~~?· 
Abstraction 

Figure 7: relationship between a graphic and its selection. 

information is required to draw a ghost. The graphical aspect 
of the ghost can therefore be defined independantly of the 
application. Of course, in an object-oriented implementation, 
the ghost may be specialized to display some application­
specific information. 
The controller is responsible for maintaining the graphical 
coherence between the graphic structure of the main data layer 
and its ghost. It also interprets input events and handles direct 
manipulation. During direct manipulation, the controller 
maintains a corresponding graphic echo and can try to affect 
the manipulation by constraining input events (e.g . mouse 
move). The constraints here can be either lexical, syntactic or 

Data layer 

Graphical constraints 
visualization layer 

Figure 8: PAC relations between layers. 

semantic, depending mainly on performance issues. Lexical 
constraints (like grid alignment constraints) are independant of 
the graphic data structures and of the semantics of the abstract 
data structure beeing manipulated. Syntactic constraints (like 
non-()verlapping constraints) depend on the graphical structure. 
Semantic constraints (like hilighting only valid targets when 
interactively connecting two components of a graphic 
structure) depend on the graphic structure and the semantic 
structure. 
Once the manipulation is terminated, the controller can modify 
the abstract data structure or ignore the effects if the 
manipulation is not considered valid. 
This above structuration shows a recursive P AC organization 
(see figure 8) . 
The P AC model is also applicable to the graphical constraints 
visualization layer, which displays a presentation of some 
constraints. For example, if we use a simple grid alignment, 
the abstaction is composed of four values: the grid spacing and 
the offset from the origin. From this abstraction, the grid can 
be displayed. The abstraction is then used during the direct 
manipulation phase to align the input device events to grid 
values (see figure 9). 
Finally, with the P AC model, the lexical operations 
representation layer displays some presentation of device 
states (the mouse cursor, for instance). 
Each layer contains the presentation and handles the 
interaction/or a specific category 0/ abstractions. 

Example of Use in an Application 
With the multi-layer model, we have built a computer aided 
cartoon animation editor. The Unidraw toolkit, which offers a 
rich set of objects, has been modified for this purpose. 
An animator can use both a mouse and a pressure sensitive 
Wacom stylUS with multiple levels of pressure. The layers it 
uses are shown in figure 10. 

•

·:::::rr:::TT:; 
..... U LLi a 
...... .1 .. L.:::'.I L .J 

I1x 

Offset x 

l1y 

Offset y 

Presentation 

Abstraction 

Figure 9: PAC model for a grid alignment constraint. 

Graphics Interface '92 



299 

~ JOE fC 

Figure 11: Interface of an Editor using the Layers model. 

B",kground Grid DrawiD, 

'~~t~tl3~5f . ::':''':''1:'''''' "-. 
".K~l' <~~'~" " " "" ." " " """ 

' - .i ' . + " ' - , ~ , f " 
Figure 10: layers of a 20 animation graphic editor. 

Compared with a conventional 20 graphic editor, we have 
added the Digitizer echo layer which displays a cross centered 
at the hot spot of the stylus, with a width equal to the selected 
drawing line width. When the stylUS touches the digitizer, a 
circle appears with a radius proportional to the pressure 
applied, as shown in figure 11 . 
The graphic editor can show multiple views of the same 
drawing (in the main data layer). Each view also contains the 
Digitizer echo layer. This feature is useful when working on a 
small area of a drawing, which is usually zoomed on one view 
but not on another. The cursor provides the visual insurance 
that the two views display the same drawing. 
The background layer can contain other drawings, greyed out. 
This feature is meant to emulate the use of tracing paper. 

Related Work 
The multi-layer model is not completely new; previous 
systems have used multiple layers for graphic output or event 
handling. However, no model generalizes this notion as ours 
does. 
Some window systems offer support for stacked windows, 
either for graphic output or for event handling. NeWS [13] has 
a special type of window called "overlay canvas" which is 
used to display transient data. Overlay canvases optimize the 
redisplay by relaxing the drawing model of PostScript. They 
usually use either an overlay plane of the screen on the root 
window when the hardware offers such a device, or draws all 

the shapes using Xor raster operations. Overlay canvases offer 
just one level of layering, which is a strong limitation. 
The X window system offers transparent input-only windows 
for event handling. As their name implies, no graphic output 
can be done on such windows. 
The HyperCard [5] system has a two layer model for handling 
graphics and events, which is very close to our model. 
However, HyperCard is not extensible and can not be 
considered as a complete toolkit. 
It is also interesting to notice that some real devices do provide 
multi-layered graphics, like heads-up displays on military 
planes. 

Future work 
We are currently working on a graphic editor for designing 
interactive graphical applications, using this model to express 
event handling graphically. 

Conclusion 
The multi-layered multi-view model simplifies both the 
management of graphical output and the description of event 
handling for interactive graphical applications. It clarifies the 
realization of objects appearing in a graphical application, like 
selection, cursor, grid or selection rectangle. It also permits a 
clear description of event handling for a variety of input 
devices. We believe this model can unify the handling of a 
variety of problems that are currently solved with ad hoc 
approaches. 

Acknowledgments 
The model described in this article is an extension to the 
model used in the Xtv toolkit developped at the University of 
Orsay Paris-Sud by the Human-Interface group of the LRI. 
Thanks to all its authors. Thanks also to Michel Beaudouin­
Lafon, Stephane Chatty and Chris Weikart for their comments 
and suggestions. 

Bibliography 
[1] Adobe, PostScript Language Reference Manual, Addison 

Weseley, Reading Mass., 1985. 
[2] Apple Computer, Inside Macintosh, Volume I, Addison 

Weseley, Reading Mass., 1986. 
[3] M. Beaudouin-Lafon, Y. Berteaud, S. Chatty, Creating 

Direct Manipulation Applications with Xtv, Proc. 
European X Window Conference (EX), Nov. 1990. 

[4] J. Coutaz, Interface Homme-Ordinateur : Conception et 
Realisation, Dunod, 1990. 

[5] G. Harvey, Understanding HyperCard for Version 1.1, 
Sybex Books Publishers, 1988. 

[6] International Organization for Standardization, Information 
processing systems - Computer Graphics - Graphical 
Kernel System (GKS) functional description, ISO IS 7942, 
July, 1985. 

[7] International Organization for Standardization, Information 
processing systems - Computer Graphics - Programmer's 
Hierarchical Interface to Graphics (PRIGS) functional 
description, ISO DP 9592, October 1986. 

[8] G. Krasner, S. Pope, A Cookbook for using the Model­
View-Controller user interface paradigm in Smalltalk-80, 
JOOP, August/September 1988, pp. 26-49. 

[9] M. A. Linton, 1. M. Vlissides and P. R. Calder, Composing 
User Interfaces with InterViews. IEEE Computer, 
February 1989, pp. 8-22. 

Graphics Interface '92 ~ 



300 

[10] X Toolkit Library - C Language Interface, X protocol 
Version 11, MIT, 1987. 

[11] B. A. Myers et ai, Garnet: Comprehensive Support for 
Graphical, Highly Interactive User Interface, IEEE 
Computer, November 1990, pp. 71-85. 

[12] R. W. Scheifler, I. Gettys, The X Window System, ACM 
Transactions on Graphics 5(2), April 1986, pp. 79-109. 

[13] SUN Microsystems Inc. : NeWS Manual ; SUN 
Microsystems Inc., 2250 Garcia Avenue, Mountain View, 
CA 94043. 

[14] 1. M. Vlissides, M. A. Linton, Unidraw: A Framework for 
Building Domain-Specific Graphical Editors, ACM­
Transactions on Information Systems, 8, 3, July 1990, pp. 
237-269. 

[15] A. Weinand, E. Gamma, R. Marty, ET++ - An Object­
Oriented Application Framework in C++, in ACM­
OOPSLA'88 proceedings, San-Diego, SIGPLAN Notices, 
23,11, November, 1988, pp. 46-57. 

Graphics Interface '92 


