
53

A Framework for Describing and Implementing
Software Visualization Systems

John Domingue
Blaine A. Price!
Marc Eisenstadt

Human Cognition Research Laboratory
The Open University

Milton Keynes, UK, MK7 6AA
Phone: +44 908 65-3800 (Fax: -3169)

Internet e-mail: j.b.domingue@open.ac . uk

Abstract

In recent years many prototype systems have been
developed for graphically visualizing program execution
in an attempt to create a better interface between software
engineers and their programs. Several classification­
based taxonomies have been proposed to describe
computer program visualization systems and general
frameworks have been suggested for implementation. In
this paper we provide a framework for both describing
existing systems and implementing new ones. We
demonstrate the utility of automatic program visualization
by re-implementing a number of classic systems using
this framework.

Resume

Recemment on a developpe beaucoup de systemes
prototype pour visualiser graphiquement l'execution d'un
programme afin de creer une meilleure interface entre les
createurs de logiciel et leurs programmes. Plusieurs
taxonomies basees sur une classification ont ete
proposees pour decrire des systemes de visualization de
programmes et des cadres generaux ont ete proposes pour
leur realisation. Dans ce papier nous fournissons un cadre
dans lequel on peut decrire des sytemes actuels et executer
de nouveaux systemes. On montre l'utilite de visualization
automatique de programmes en re-executant quelques
anciens systemes dans le cadre de ce prototype.

Keywords: Program Visualization, Algorithm
Animation, CASE, Debugging Aids, Software
Visualization, Software Engineering

! Also affiliated with: The Dynamic Graphics Project, Computer
Systems Research Institute, The University of Toronto,
Toronto, Canada M5S lAl

Introduction:
What is Software Visualization?

The tools traditionally used by software engineers to help
monitor and analyse program execution have been plain
ASCII-text based debugging environments which usually
allow the user to trace the currently executing code, stop
and start execution at arbitrary points, and examine the
contents of data structures. Although they can be
understood by experts, these tools have a limited peda­
gogic value and by the. early 1980's the work of Baecker
and Sherman (1981) and Brown (1988) showed how
algorithms could be animated with cartoon-like displays
that show a high level abstraction of a program's code and
data (Brown referred to this as "algorithm animation").

A concurrent development in the mid-1980's was the ap­
pearance of systems which displayed graphical representa­
tions that were more tightly coupled with a program's code
or data and showed more or less faithful representations of
the code as it was executing. Although the displays were
not as rich as the custom built algorithm animations,
these systems were closer to the tools that software engi­
neers might use. These "program animators" together with
the algorithm animators became known as "program visu­
alization" systems. We prefer the more descriptive term
"software visualization" (Price, Small, & Baecker, 1992)
which encompasses both algorithm and program
visualization as well as the visualization of multi-program
software systems. In this paper we will use the term
software visualization (SV) to describe systems that use
visual (and other) media to enhance one programmer's
understanding of another's work (or his own).

Classifying SV Systems
One of the first taxonomies of SV was that of Myers
(1986) (updated later as (Myers, 1990», which served to
differentiate SV, visual programming, and programming­
by-example. In classifying SV systems, Myers used only
two dimensions: static vs. dynamic and code vs. data. The
first dimension is based on the style of implementation;

Graphics Interface '92

static displays show one or more motionless graphics
representing the state of the program at a particular point
in time while animated displays show an image which
changes as the program executes. The second dimension
describes the type of data being visualized, be it the
program source code or its data structures.

The taxonomies that have been proposed since Myers
have also used few dimensions, which seems to ignore that
fact that there are many styles for implementation and in­
teraction as well as different machine architectures and
ways of utilizing them. Price, Small, and Baecker (1992)
recently proposed a taxonomy which describes 6 broad
categories for classifying SV systems: scope, content,
form, method, interaction, and effectiveness. Each of
these categories has between three and seven
characteristics, for a total of thirty dimensions to describe
each system. This pragmatic classification system
provides a means for comparing the functionality and
performance of a wide range of SV systems, but it does not
provide a language or framework for implementing new
systems. Eisenstadt et a1. (1990) described nine qualitative
dimensions of visual computing environments which can
form the basis of a language for describing SV systems,
but these serve only to describe the attributes of systems
rather than drive their construction.

From Taxonomy to Framework and System:
"what goes on?"

Taxonomies are useful, but we need more if we are to pro­
vide a firm basis upon which to describe SV systems in
depth, let alone implement them. A framework for describ­
ing SV systems could provide extra leverage by being a
little more prescriptive, i.e. making a commitment regard­
ing how to approach the design and construction of SV
systems. In fact, it is not a very big step from specifying
such a framework to designing a system for building a SV
system (SV system-building system). An important differ­
ence is that the former activity is merely a paper exercise,
whereas the latter activity is intended to lead towards a
working tool. Indeed, the latter activity serves as a useful
forcing function: it encourages us to build re-usable li­
braries of software that we believe encapsulate important
generalizations about SV system-building. The proof of
the soundness of a design built in this way lies in the abil­
ity to use it both to reverse-engineer existing SV systems
and construct new systems with ease.

Programming Language Visualization vs
Algorithm Animation

Several of the noteworthy SV building systems and frame­
works focus on algorithm animation, which means that
the animations that they produce are custom designed and
each new program requires manual annotation to animate
it. Programs are animated in BALSA (Brown, 1988) by
adding calls to the animation system at "interesting
events" in the code. Systems implemented by Stasko
(1990) and London and Duisberg (1985) provide facilities

54

for smooth transitions in animations based on
"interesting event" calls.

In our work, we have focus sed on supporting the
construction of systems which visualize the execution of
programming languages. By visualizing a programming
language interpreter (or compiler) one also, in some
sense, automatically gets a visualization for any program
written in that language (thus achieving the automatic
goal suggested by Price, Small, & Baecker (1992».
Programming language visualization (PL V) and algorithm
animation (AA) overlap, but there are differences in the
approach. AA systems typically show a very high level
picture of a program's execution and the images that it
generates can be far removed from the data structures
contained in the program. The animations cover a narrow
set of programs (typically a single algorithm). PLVs on
the other hand have to deal with any program which can be
realised in the language. Thus PL V displays usually have
much simpler images than AA displays since they must be
highly generalized whereas AA displays can be custom
tuned. The problem for an AA system is to show the
characteristics (signature) of an algorithm as clearly as
possible. The problem for a PL V is to allow arbitrarily
large execution spaces to be examined in a
comprehensible fashion.

Our approach is to concentrate primarily on PL V, but to
provide generalizations which are applicable to AA as
well. In the rest of this paper we describe the design of a
SV system-building system (and framework) called Viz,
which we have implemented as a prototype running in
Common Lisp and CLOS on Sun workstations. Our Viz
implementation has already been used to reconstruct three
well known PL V systems: an OPS-5 visualization system
(based on TRI (Domingue & Eisenstadt, 1989», a Prolog
visualization system (based on TPM (Eisenstadt &
Brayshaw, 1988», and a Lisp tracer (based on the
Symbolics™ tracer). After describing the Viz architecture,
we explain how one of these reconstructions was
implemented. In order to explore the relationship between
Viz's PLY-oriented approach and AA-oriented systems we
have also used Viz to implement some of the animations
from Brown's BALSA (sorting) and Stasko's TANGO (bin­
packing). We conclude with a comparison of the termi­
nology used in BALSA, TANGO, and Viz to describe ab­
stractions and we highlight aspects of the Viz design.

Viz Architecture

In Viz, we consider program execution to be a series of
history events happening to (or perpetrated by) players.
To allow SV system builders considerable freedom, a
player can be any part of a program, such as a function, a
data structure, or a line of code. Each player has a name and
is in some state, which may change when a history event
occurs for that player. A player may also contain other
players, enabling groups of players to be formed. History
events are like Brown's "interesting events" in BALSA­
each event corresponds to some code being executed in the

Graphics Interface '92

55

Raw History calls Anno- program
Source tated inserted execution
Code

(Manual or
Source

history - -r- Automatic) .. calls sent - --

visualization ou ut

• • ••

Figure 1. The Architecture of Viz

program or some data changing its value. These events are
recorded in the history module, which allows them to be
accessed by the user and "replayed." Events and states are
mapped into a visual representation which is accessible to
the end-user (the programmers who need to use the SV sys­
tem, not the SV system builder). But the mapping is not
just a question of storing pixel patterns to correspond to
different events and states-we also need to specify differ­
ent views, and ways of navigating around them. The main
ingredients of Viz are:

• Histories: a record of key events that occur over
time as the program runs, with each event
belonging to a player; each event is linked to
some part of the code and may cause a player to
change its state (there is also some pre-history
information available before the program begins
running, such as the static program source code
hierarchy and initial player states).

• Views: the style in which a partiCUlar set of play­
ers, states or events is presented, such as using
text, a tree, or a plotted graph; each view uses its
own style and emphasizes a particular dimension
of the data that it is displaying.

• Mappings: the encodings used by a player to
show its state changes in diagrammatic or textual
form on a view using some kind of graphical
language, typography, or sound; some of a
player's mappings may be for the exclusive use of
its navigators.

• Navigators: the tools or techniques making up
the interface that allows the user to traverse a
view, move between mUltiple views, change
scale, compress or expand objects, and move
forward or backward in time through the
histories.

1.-__ ...1 history data View

.'
~o~ ... "

c,o~"
••

This framework is equally at home dealing with either pro­
gram code or algorithms, since a player and its history
events may represent anything from a low-level (program
code) abstraction such as "invoke a function call" to a
high level (algorithm) abstraction such as "insert a
pointer into a hash table."

Figure 1 shows the general architecture of Viz. The target
system source code is annotated to generate history calls.
When the system being visualized is a programming lan­
guage, hooks into the interpreter or compiler are used to
generate history events. As the code executes, the inserted
calls cause "interesting events" regarding players to be
recorded in the history module.

When the user runs the visualization, the view module
reads the history data at the request of the navigator. The
view module sets the layout of the history events and
sends local coordinates for each history datum through the
mapping module, which draws a graphical or textual repre­
sentation for each event. The screen images are then trans­
formed and presented on the screen by the navigator. The
user interacts with the visualization using the navigator,
which sends control signals to the view module to cause
all changes in the visualization, such as panning, zoom­
ing, local compression and expansion, and moving for­
ward and backward in time through the program execution
space.

Histories

The first task for the visualization programmer using Viz
is to decide what types of events may occur during program
execution, which elements in the program will be the
players and how the players change state. After defining
these, the programmer may insert create new player and

Graphics Interface '92

56

History

Players: LPlayer-5J
Set of all - • Players

LPlayer-l IPlayer-2J LPlayer-3 IPlayer-1 ... involved

States:
, ,r r ,

Pushdown State-A State-8 State-C State-D Stacks of
• timestamp • timestamp • timestamp • timestamp States
• event info • event info • event info • event info
• ptr to....:ode • ptr to CJ<le • ptr ~ code • ptr"to code

...

---/ / '\. ...
/ --........... / \

~ 11I111'II'iil~l,jllllll""'\I' i~~ ~lllljll~~IIIIIIII~1) u ~

;'8
~U

Methods for Searching, Navigating, and Filtering History Events I
~

Figure 2. A Prototypical history structure.

note even! calls in the code, which form the interface be­
tween a program and its visualization.

Figure 2 shows a prototypical history structure in the his­
tory module. This consists of a set of players and a se­
quence of history states. Each player has a name, a pointer
to its current history state and a pushdown stack of previ­
ous states. A player may contain other players, as shown
by player 5 in figure 2. This feature is useful in naviga­
tion. Each state has a times tamp, a pointer to the appro­
priate segment of source code and an event structure. As a
program executes, new players and history states are cre­
ated, and existing players are "moved" into new states,
pushing previous states onto a stack. The various states of
the players are caused by the different types of events.

The choice of players and event types together with the ju­
dicious placement of note even! calls in code determine the
execution model. Currently, we do not advocate any
methodology for creating the execution model, except to
point out that events are the "things that happen" in a
program causing a player or players to move into a partic­
ular state.

Views

A view can be thought of as a perspective or window on
some aspect of a program or algorithm, with (possibly)
many views making up a visualization. There are some
similarities between our views and the animation views,
adapted from the Model- View-Controller paradigm, de-

scribed by London and Duisberg (1985). The main
difference is that within the animation views, the layout,
handled by views in Viz, and appearance, handled by map­
pings in Viz, are handled together. Each view in Viz can be
thought of as embodying a style of formatting collections
of objects. Within Viz we have constructed a hierarchy of
views, including text, graph, table and tree based views,
each embodying a particular layout style, which can be
used or specialized by the SV builder.

A view requests data from the history module and sends it
to the mapping module, which decides the appearance. The
view module then tells the mapping module where to dis­
play the mapped data. This means that the view module is
concerned only with the position of the history data item,
not its appearance.

The view module is also responsible for managing the
compression (ellision) and expansion of elements in the
display based on user commands from the navigator. If the
user selects the compression of display elements, such as a
subtree in a tree hierarchy. then the view module groups
the players concerned into a new player which has its own
mapping to represent the compressed players. When the
navigator tells the view module that an element is to be
expanded, the view disbands that new player and displays
the individual mappings for the players.

Graphics Interface '92

57

Prol02 OPSS Lisp Sort Bin-Packin!!:

Player predicate instantia- rule form data item data item
tion (goal) bin

States pending goal; failing to match unevaluated; location attempting to fit;
succeeded; working memory; evaluated suceeded; new
failed; firing
failed on backtrack-
ing;
redo-goal

Events call; choose for firing call; assignment of attempt-fit
exit; return item to cell succeed-fit
fail -1st;

new-item fail-nth;
redo

Mappings _;22];11; blank; + -> italic; • 011 <- bold

11 11 : ; : (colour)

Views tree: players, play- table: players vs. pretty printed point plot: play- point plot using
(in order or ers current state; cycles, code: player's ers, rectangles: bin-
decreasing formatted text player's state @ current state player's value & players and cur-
granular- cycle current state; rent state
Itv) formatted text formatted text

Table 1: A Viz description of five example systems

Mappings
The goal of a mapping in Viz is to communicate the max­
imum amount of information about a player's state while
imposing the least possible cognitive load on the user.

In conjecturing a theory of effectiveness of graphical lan­
guages, Mackinlay (1986) noted Cleveland and McGilI's
observation that people accomplish the perceptual tasks
associated with the interpretation of graphical
presentations with different degrees of accuracy. Using
psychophysical results, Mackinlay extended Cleveland
and McGill's work to show how differen t graphical tech­
niques ranked in perceptual effectiveness for encoding
quantitative, ordinal, and nominal data. He found that the
position of the data item in the x-y plane is ranked first for
all three types of data, which is why we separate the view
layout from the mappings. The other techniques which
may be varied to create an effective mapping are (in de­
creasing order of effectiveness): colour hue, texture, con­
nection, containment, density (brightness), colour satura­
tion, shape, length (size), angle or slope (orientation),
and area (or volume) .

A mapping in Viz is attached to a particular type of player,
event or state, and view. Multi-method inheritance occurs
over the class of entity and view, allowing a Viz user to
formulate expressions such as "all entities in view-x are to

be displayed as a filled triangle", "entity-y is always dis ­
played as a white circle" and "entity-a is displayed as a cir­
cle in tree based views but as a square in all other views".
Mappings can be inherited, forming an inheritance hierar-

chy in much the same fashion as views. Our future work in
Viz will create a library of mappings .

Navigators
The Viz navigator module encapsulates the interface be­
tween the user and the visualization, although the methods
for performing the navigation tasks are found in the view
module, thus allowing custom navigation interfaces to be
built independently of the task.

Our prototype provides a replay panel (see the screen
snapshot in figure 3) for searching, which has buttons for
moving to the beginning or end of the animation, single­
stepping forward or backward, playing forward, fast-for ­
warding and stopping. Stepping in Viz involves notifying
the history and view modules of the change of focus (the
history module then selects the next appropriate event).
Horizontal and vertical scroll bars are provided for pan­
ning while simple zoom in and zoom out buttons provide
scaling. The user can select a fine grained view of a data
element by clicking on it.

Examples Defined in Viz

The descriptions of the three systems that we have imple­
mented using Viz are presented in table 1 along with the
two examples from BALSA and TANGO animations. The
table provides a summary of the players, states, events,
mappings, and views used in each visualization. Each row
represents a distinct Viz entity type and each column rep­
resents one of the visualizations. The player row list~ the
players which can take part in each example. The states

Graphics Interface '92

58

Figure 3: Screen Snapshot of Prolog Visualizer (greyscale from a colour screen)

row shows the possible states players can enter. The
events row shows the events which cause state changes .
The mappings row contains, in order, the icon mapping
for each state. The views row lists the names of the possi­
ble views in decreasing order of granularity. The connec­
tion between a view and the history is also shown. We
shall now explain the first column, the Prolog visualizer,
in detail.

A Prolog Visualizer
The Prolog visualizer is based on the Transparent Prolog
Machine (TPM) (Eisenstadt & Brayshaw, 1988). TPM uses
an AND-OR tree representation where the nodes represent
goals which are instantiated Pro log predicates, and the
arcs represent conjunctions or disjunctions of subgoals.

The players in the visualization are the instantiated Prolog
predicates or goals in the proof tree. The events, which are
adapted from the Byrd Box Model (Byrd, 1980), are: call
(trying to prove a goal), exit (a goal succeeding), fail -1st
(a goal failing the first time attempted), fail-nth (a goal
having succeeded earlier, later failing on backtracking),
and redo (re-attempting to satisfy a goal). There is a corre-

sponding state and mapping for each event type (shown in

respective order so :~:~m::] equals call, ...JeqUalS exit, etc.).

The Prolog interpreter takes a list of goals left to prove.
When no goals are left the environment is returned. The
algorithm (adapted from (Nilsson, 1984» for the inter­
preter is:

If there is nothing to prove
then return t he en v ironmen t ; el se

if t he f i rst - goal - left - to - p r ove
is true , then

note event : succeed, the goal th a t
was proved, env,
and p rove the
r emai n i ng g oals; e lse

note event : goal ,
first-goal-left - to - p r ove ,
env, and create a p l ayer for
the-first - goal - left - to - prove,
and

loop for each clause in t he da tabase
if the head of t h e c l aus e
matches the fi r st g oal t h e n

Graphics Interface '92

create a player for
each of the subgoals
in the clause

if we prove the new list of
goals (which is the
body of the match ed
clause appended to the
rest of the goals)
then return the n e w
en vironment else

note event : redo ,
first-goal - left - to - prove , env,

note event : failure,
first-goal - left-to-prove, env,
and

return failed-to-prove
first - goal - left-to-prove .

In the above, the algorithm is shown in italics while the
Viz event calls are shown in plain text.

Figure 3 shows a screen snapshot of the proof for the goal
?- desperate(?x) given the following Prolog database:

desperate(?x) :-
name-dropper(?x) ,
unemployed (?x) •

name-dropper (?x) : - knows (?x, ?y) ,
famous (?y) .

name - dropper (?x) kn ows(?y , ?x) ,
famous (?y) .

knows (joe , mick) .

knows (charles , fred) .

BALSA TANGO Viz

59

famous (mick) .

famous (charles) .
unemployed (fred) .

Bearing in mind that atoms beginning with "?" depict
variables in this approximation of Edinburgh-syntax
Prolog, the first five lines of the code above defmes a) the
relation that someone is desperate if they are name dropper
and unemployed; and b) a person is a name dropper if they
know someone who is famous or if someone famous
knows them. The rest of the code defmes five "facts" about
who knows who, who is famous and who is unemployed.

Because history events are invoked by inserting hooks
into our own Prolog interpreter, the Viz implementation is
straightforward once the machinery for players, views,
mappings, and navigators is in place. The simple imple­
mentation, as described here, can deal with non-trivial
cases of tricky backtracking and unification. Coping with
arbitrarily large proof trees requires the defmition of a
"collapsed predicate" player. The tree beneath a collapsed
predicate player would not be displayed unless requested
(by clicking on it with the mouse). The current set of col­
lapsed predicates would be chosen by the user. This col­
lapsed predicate set would correspond to the segments of
code the user deemed irrelevant and thus could be "black
boxed away". In order for collapsed predicates to be dis­
tinguishable, the mapping for a collapsed predicate player
would be a triangle. The collapsed predicate player would
in fact contain the players within its subtree. A request to
show the full sub-tree would result in the replacement of
the single collapsed predicate player with the players it
contained.

Comments

Interesting Algorithm Events and The BALSA and TANGO terms are virtually identical while Viz
(Algorithm) Operations Create events can be arranged hierarchically, and are designed to relate
Events Players to the code rather than the algorithm.

Modellers Image, States and In describing a visualization's internal representation, TANGO
Location, Players adds to the BALSA framework by providing 4 abstract data
Path, and types (geared towards animation); Viz's states and players are
Transition program execution level abstractions.

Renderers Animation Mappings BALSA provides a general mechanism for each view while
Scenes and Views TANGO provides reusable libraries of animation scenes; Viz

discriminates between the actual images that are mapped to the
screen and the style in which they are displayed (the view).

Navigators BALSA and TANGO don't specify any kind of user interface in-
teractions within the framework, nor techniques for dealing with
arbitrarily large programs.

Adaptor and History The Viz history is a structure for the collection of events, states,
Update and players generated during program execution. The history
Messages module includes various searching and filtering functions.

Table 2: A Comparison of Terminology

Graphic s Interface '92 ~

Additional Systems
To fully exercise our evolving framework across a range of
players, events, states, mappings, and views, we have
also used Viz to re-implement the textual visualization
provided by the Symbolics™ Lisp stepper/tracer which
uses layout to summarize the execution history of the Lisp
evaluator (the Viz implementation actually improves on
this by using colour and typography as well) and the table
based vizualization of an OPS-5 style rule interpreter. We
have also duplicated some of the well known AA examples
from BALSA (sorting) and TANGO (bin packing) to show
that the system can be used to easily construct custom al­
gorithm animations as well.

A Comparison of Viz, Balsa, and Tango
Terminology

Although each of the goals of Viz, BALSA, and TANGO are
somewhat different, the importance of the pioneering
work of BALSA and TANGO is such that a close compari­
son of terminology is warranted. Viz terminology is de­
signed to allow existing systems to be described as well as
implement new ones. Table 2 shows the systems in left ­
to-right chronological order, mapping the similar termi­
nology across systems where appropriate, and highlight­
ing differences accordingly in the "comment" column.

Conclusions

The main goal in designing Viz was to provide a descrip ­
tive mechanism for understanding and explaining the di ­
verse notations and methodologies underlying existing
software visualization environments . Our re-implementa­
tion based approach is in contrast to the current literature
(Eisenstadt et aI., 1990; Green, 1989; Green, 1990;
Myers, 1990; Price et aI., 1992) which focusses on cogni­
tive and notational dimensions and practical categories.
The amount of effort involved in our approach is of the
same order of magnitude as category or dimension based
approaches. Each of the example systems was constructed
within 1-2 days (this included many extensive alterations
to the ftrst version of Viz) and is of the order of 100 lines
of code.

By providing a descriptive abstraction for internally ex­
pressing the state of an algorithm (players, events, and
states) we have augmented earlier frameworks and added to
the common language for representing algorithm anima­
tion designs. Since Viz provides visualization facilities
for programming languages, we have provided a frame­
work for generalized visualization that is applicable to
software engineers since it provides visualizations that are
automatic and faithful to the execution model of the lan­
guage. The use of Viz to implement systems which differ
widely in terms of their scope, content, form, method, in­
teraction, and effectiveness, suggests that the framework
is sufftcient to design and implement a wide class of soft­
ware visualization systems.

60

Acknowledgements : This research was supported by
CEC ESPRIT-II Project 5365 (VITAL), the UK
SERC/ESRC/MRC Joint Council Initiative on Cognitive
Science and Human Computer Interaction Project
91/CS66, and NSERC. We wish to thank Ron Baecker,
Mike Brayshaw, Thomas Green, and Marc Brown for their
helpful comments on early drafts of this paper.

REFERENCES

Baecker, R. M. & Sherman, D. (1981). Sorting Out
Sorting. narrated colour videotape, 30 minutes,
presented at ACM SIGGRAPH '81. Los Altos, CA:
Morgan Kaufmann.

Brown, M. H. (1988). Algorithm Animation. New York:
MIT Press.

Byrd, L. (1980). Understanding the Control Flow of
Prolog Programs. In S. A. Tamlund (Ed.), The 1980
Logic Programming Workshop, (pp. 127-138).

Domingue, J. & Eisenstadt, M. (1989). A New Metaphor
for the Graphical Explanation of Forward Chaining
Rule Execution. In The Eleventh International Joint
Conference on Artificial Intelligence, (pp. 129-
134) .

Eisenstadt, M. & Brayshaw, M. (1988). The Transparent
Prolog Machine (TPM): an execution model and
graphical debugger for logic programming. J. of
Logic Prog ., 5(4), 1-66 .

Eisenstadt, M., Domingue, J., Rajan, T., & Molta, E.
(1990). Visual Knowledge Engineering. IEEE Trans.
on Software Engineering , 16(10), 1164-1177.

Green, T. R. G. (1989) . Cognitive Dimensions of
Notations . In A. Sutcliffe & L. Macaulay (Eds.),
People and Computers V (pp. 443460). Cambridge:
Cambridge University Press.

Green, T . R. G. (1990). The Cognitive Dimension of
Viscosity: a sticky problem for HCI. In D. Diaper,
D. Gilmore, G . Cokton, & B. Shackel (Ed.),
INTERACT '90 Conference on Computer· Human
Interaction, (pp. 79-86). Amsterdam: Elsevier.

London, R. L. & Duisberg, R. A. (1985). Animating
Programs using Smalltalk. IEEE Computer, 18(8),
61-71.

Mackinlay, J. (1986) . Automating the Design of
Graphical Presentations of Relational Information.
ACM TOGS, 5(2), 110-141.

Myers, B. A. (1986) . Visual Programming, Programming
by Example, and Program Visualization: A
Taxonomy. In M. Mantei & P. Orbeton (Ed.), CHI
'86 Human Factors in Computing Systems, (pp. 59-
66). New York: ACM.

Myers, B. A. (1990). Taxonomies of Visual Programming
and Program Visualization. JVLC, 1(1), 97-123.

Nilsson, M. (1984) . The world's shortest Prolog
interpreter? In J . A . Campbell (Eds.),
Implementations of Prolog (pp. 87-92). Chichester,
England: Ellis Horwood.

Price, B. A., Small, I. S., & Baecker, R. M. (1992). A
Taxonomy of Software Visualization. In The 25th
Hawaii International Conference on System
Sciences, Volume II (pp.597-606). New York: IEEE.

Stasko, 1. T . (1990). The Path-transition Paradigm: a
practical methodology for adding animation to
Program Interfaces. J. of Vis . Lang . and Comp .,
1(3), 213-236 .

Graphics Interface '92

