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Abstract 

In recent years many prototype systems have been 
developed for graphically visualizing program execution 
in an attempt to create a better interface between software 
engineers and their programs. Several classification­
based taxonomies have been proposed to describe 
computer program visualization systems and general 
frameworks have been suggested for implementation. In 
this paper we provide a framework for both describing 
existing systems and implementing new ones. We 
demonstrate the utility of automatic program visualization 
by re-implementing a number of classic systems using 
this framework. 

Resume 

Recemment on a developpe beaucoup de systemes 
prototype pour visualiser graphiquement l'execution d'un 
programme afin de creer une meilleure interface entre les 
createurs de logiciel et leurs programmes. Plusieurs 
taxonomies basees sur une classification ont ete 
proposees pour decrire des systemes de visualization de 
programmes et des cadres generaux ont ete proposes pour 
leur realisation. Dans ce papier nous fournissons un cadre 
dans lequel on peut decrire des sytemes actuels et executer 
de nouveaux systemes. On montre l'utilite de visualization 
automatique de programmes en re-executant quelques 
anciens systemes dans le cadre de ce prototype. 
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Introduction: 
What is Software Visualization? 

The tools traditionally used by software engineers to help 
monitor and analyse program execution have been plain 
ASCII-text based debugging environments which usually 
allow the user to trace the currently executing code, stop 
and start execution at arbitrary points, and examine the 
contents of data structures. Although they can be 
understood by experts, these tools have a limited peda­
gogic value and by the. early 1980's the work of Baecker 
and Sherman (1981) and Brown (1988) showed how 
algorithms could be animated with cartoon-like displays 
that show a high level abstraction of a program's code and 
data (Brown referred to this as "algorithm animation"). 

A concurrent development in the mid-1980's was the ap­
pearance of systems which displayed graphical representa­
tions that were more tightly coupled with a program's code 
or data and showed more or less faithful representations of 
the code as it was executing. Although the displays were 
not as rich as the custom built algorithm animations, 
these systems were closer to the tools that software engi­
neers might use. These "program animators" together with 
the algorithm animators became known as "program visu­
alization" systems. We prefer the more descriptive term 
"software visualization" (Price, Small, & Baecker, 1992) 
which encompasses both algorithm and program 
visualization as well as the visualization of multi-program 
software systems. In this paper we will use the term 
software visualization (SV) to describe systems that use 
visual (and other) media to enhance one programmer's 
understanding of another's work (or his own). 

Classifying SV Systems 
One of the first taxonomies of SV was that of Myers 
(1986) (updated later as (Myers, 1990», which served to 
differentiate SV, visual programming, and programming­
by-example. In classifying SV systems, Myers used only 
two dimensions: static vs. dynamic and code vs. data. The 
first dimension is based on the style of implementation; 
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static displays show one or more motionless graphics 
representing the state of the program at a particular point 
in time while animated displays show an image which 
changes as the program executes. The second dimension 
describes the type of data being visualized, be it the 
program source code or its data structures. 

The taxonomies that have been proposed since Myers 
have also used few dimensions, which seems to ignore that 
fact that there are many styles for implementation and in­
teraction as well as different machine architectures and 
ways of utilizing them. Price, Small, and Baecker (1992) 
recently proposed a taxonomy which describes 6 broad 
categories for classifying SV systems: scope, content, 
form, method, interaction, and effectiveness. Each of 
these categories has between three and seven 
characteristics, for a total of thirty dimensions to describe 
each system. This pragmatic classification system 
provides a means for comparing the functionality and 
performance of a wide range of SV systems, but it does not 
provide a language or framework for implementing new 
systems. Eisenstadt et a1. (1990) described nine qualitative 
dimensions of visual computing environments which can 
form the basis of a language for describing SV systems, 
but these serve only to describe the attributes of systems 
rather than drive their construction. 

From Taxonomy to Framework and System: 
"what goes on?" 

Taxonomies are useful, but we need more if we are to pro­
vide a firm basis upon which to describe SV systems in 
depth, let alone implement them. A framework for describ­
ing SV systems could provide extra leverage by being a 
little more prescriptive, i.e. making a commitment regard­
ing how to approach the design and construction of SV 
systems. In fact, it is not a very big step from specifying 
such a framework to designing a system for building a SV 
system (SV system-building system). An important differ­
ence is that the former activity is merely a paper exercise, 
whereas the latter activity is intended to lead towards a 
working tool. Indeed, the latter activity serves as a useful 
forcing function: it encourages us to build re-usable li­
braries of software that we believe encapsulate important 
generalizations about SV system-building. The proof of 
the soundness of a design built in this way lies in the abil­
ity to use it both to reverse-engineer existing SV systems 
and construct new systems with ease. 

Programming Language Visualization vs 
Algorithm Animation 

Several of the noteworthy SV building systems and frame­
works focus on algorithm animation, which means that 
the animations that they produce are custom designed and 
each new program requires manual annotation to animate 
it. Programs are animated in BALSA (Brown, 1988) by 
adding calls to the animation system at "interesting 
events" in the code. Systems implemented by Stasko 
(1990) and London and Duisberg (1985) provide facilities 
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for smooth transitions in animations based on 
"interesting event" calls. 

In our work, we have focus sed on supporting the 
construction of systems which visualize the execution of 
programming languages. By visualizing a programming 
language interpreter (or compiler) one also, in some 
sense, automatically gets a visualization for any program 
written in that language (thus achieving the automatic 
goal suggested by Price, Small, & Baecker (1992». 
Programming language visualization (PL V) and algorithm 
animation (AA) overlap, but there are differences in the 
approach. AA systems typically show a very high level 
picture of a program's execution and the images that it 
generates can be far removed from the data structures 
contained in the program. The animations cover a narrow 
set of programs (typically a single algorithm). PLVs on 
the other hand have to deal with any program which can be 
realised in the language. Thus PL V displays usually have 
much simpler images than AA displays since they must be 
highly generalized whereas AA displays can be custom 
tuned. The problem for an AA system is to show the 
characteristics (signature) of an algorithm as clearly as 
possible. The problem for a PL V is to allow arbitrarily 
large execution spaces to be examined in a 
comprehensible fashion. 

Our approach is to concentrate primarily on PL V, but to 
provide generalizations which are applicable to AA as 
well. In the rest of this paper we describe the design of a 
SV system-building system (and framework) called Viz, 
which we have implemented as a prototype running in 
Common Lisp and CLOS on Sun workstations. Our Viz 
implementation has already been used to reconstruct three 
well known PL V systems: an OPS-5 visualization system 
(based on TRI (Domingue & Eisenstadt, 1989», a Prolog 
visualization system (based on TPM (Eisenstadt & 
Brayshaw, 1988», and a Lisp tracer (based on the 
Symbolics™ tracer). After describing the Viz architecture, 
we explain how one of these reconstructions was 
implemented. In order to explore the relationship between 
Viz's PLY-oriented approach and AA-oriented systems we 
have also used Viz to implement some of the animations 
from Brown's BALSA (sorting) and Stasko's TANGO (bin­
packing). We conclude with a comparison of the termi­
nology used in BALSA, TANGO, and Viz to describe ab­
stractions and we highlight aspects of the Viz design. 

Viz Architecture 

In Viz, we consider program execution to be a series of 
history events happening to (or perpetrated by) players. 
To allow SV system builders considerable freedom, a 
player can be any part of a program, such as a function, a 
data structure, or a line of code. Each player has a name and 
is in some state, which may change when a history event 
occurs for that player. A player may also contain other 
players, enabling groups of players to be formed. History 
events are like Brown's "interesting events" in BALSA­
each event corresponds to some code being executed in the 
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Figure 1. The Architecture of Viz 

program or some data changing its value. These events are 
recorded in the history module, which allows them to be 
accessed by the user and "replayed." Events and states are 
mapped into a visual representation which is accessible to 
the end-user (the programmers who need to use the SV sys­
tem, not the SV system builder). But the mapping is not 
just a question of storing pixel patterns to correspond to 
different events and states-we also need to specify differ­
ent views, and ways of navigating around them. The main 
ingredients of Viz are: 

• Histories: a record of key events that occur over 
time as the program runs, with each event 
belonging to a player; each event is linked to 
some part of the code and may cause a player to 
change its state (there is also some pre-history 
information available before the program begins 
running, such as the static program source code 
hierarchy and initial player states). 

• Views: the style in which a partiCUlar set of play­
ers, states or events is presented, such as using 
text, a tree, or a plotted graph; each view uses its 
own style and emphasizes a particular dimension 
of the data that it is displaying. 

• Mappings: the encodings used by a player to 
show its state changes in diagrammatic or textual 
form on a view using some kind of graphical 
language, typography, or sound; some of a 
player's mappings may be for the exclusive use of 
its navigators. 

• Navigators: the tools or techniques making up 
the interface that allows the user to traverse a 
view, move between mUltiple views, change 
scale, compress or expand objects, and move 
forward or backward in time through the 
histories. 

1.-__ ...1 history data View 

.' ..... ... ... .. 
~o~ ... " 

c,o~" ....... ...... 
•• 

This framework is equally at home dealing with either pro­
gram code or algorithms, since a player and its history 
events may represent anything from a low-level (program 
code) abstraction such as "invoke a function call" to a 
high level (algorithm) abstraction such as "insert a 
pointer into a hash table." 

Figure 1 shows the general architecture of Viz. The target 
system source code is annotated to generate history calls. 
When the system being visualized is a programming lan­
guage, hooks into the interpreter or compiler are used to 
generate history events. As the code executes, the inserted 
calls cause "interesting events" regarding players to be 
recorded in the history module. 

When the user runs the visualization, the view module 
reads the history data at the request of the navigator. The 
view module sets the layout of the history events and 
sends local coordinates for each history datum through the 
mapping module, which draws a graphical or textual repre­
sentation for each event. The screen images are then trans­
formed and presented on the screen by the navigator. The 
user interacts with the visualization using the navigator, 
which sends control signals to the view module to cause 
all changes in the visualization, such as panning, zoom­
ing, local compression and expansion, and moving for­
ward and backward in time through the program execution 
space. 

Histories 

The first task for the visualization programmer using Viz 
is to decide what types of events may occur during program 
execution, which elements in the program will be the 
players and how the players change state. After defining 
these, the programmer may insert create new player and 
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Figure 2. A Prototypical history structure. 

note even! calls in the code, which form the interface be­
tween a program and its visualization. 

Figure 2 shows a prototypical history structure in the his­
tory module. This consists of a set of players and a se­
quence of history states. Each player has a name, a pointer 
to its current history state and a pushdown stack of previ­
ous states. A player may contain other players, as shown 
by player 5 in figure 2. This feature is useful in naviga­
tion. Each state has a times tamp, a pointer to the appro­
priate segment of source code and an event structure. As a 
program executes, new players and history states are cre­
ated, and existing players are "moved" into new states, 
pushing previous states onto a stack. The various states of 
the players are caused by the different types of events. 

The choice of players and event types together with the ju­
dicious placement of note even! calls in code determine the 
execution model. Currently, we do not advocate any 
methodology for creating the execution model, except to 
point out that events are the "things that happen" in a 
program causing a player or players to move into a partic­
ular state. 

Views 

A view can be thought of as a perspective or window on 
some aspect of a program or algorithm, with (possibly) 
many views making up a visualization. There are some 
similarities between our views and the animation views, 
adapted from the Model- View-Controller paradigm, de-

scribed by London and Duisberg (1985). The main 
difference is that within the animation views, the layout, 
handled by views in Viz, and appearance, handled by map­
pings in Viz, are handled together. Each view in Viz can be 
thought of as embodying a style of formatting collections 
of objects. Within Viz we have constructed a hierarchy of 
views, including text, graph, table and tree based views, 
each embodying a particular layout style, which can be 
used or specialized by the SV builder. 

A view requests data from the history module and sends it 
to the mapping module, which decides the appearance. The 
view module then tells the mapping module where to dis­
play the mapped data. This means that the view module is 
concerned only with the position of the history data item, 
not its appearance. 

The view module is also responsible for managing the 
compression (ellision) and expansion of elements in the 
display based on user commands from the navigator. If the 
user selects the compression of display elements, such as a 
subtree in a tree hierarchy. then the view module groups 
the players concerned into a new player which has its own 
mapping to represent the compressed players. When the 
navigator tells the view module that an element is to be 
expanded, the view disbands that new player and displays 
the individual mappings for the players. 

Graphics Interface '92 



57 

Prol02 OPSS Lisp Sort Bin-Packin!!: 

Player predicate instantia- rule form data item data item 
tion (goal) bin 

States pending goal; failing to match unevaluated; location attempting to fit; 
succeeded; working memory; evaluated suceeded; new 
failed; firing 
failed on backtrack-
ing; 
redo-goal 

Events call; choose for firing call; assignment of attempt-fit 
exit; return item to cell succeed-fit 
fail -1st; 

new-item fail-nth; 
redo 

Mappings _;22];11; blank; + -> italic; • 011 <- bold 

11 11 : ; : (colour) 

Views tree: players, play- table: players vs. pretty printed point plot: play- point plot using 
(in order or ers current state; cycles, code: player's ers, rectangles: bin-
decreasing formatted text player's state @ current state player's value & players and cur-
granular- cycle current state; rent state 
Itv) formatted text formatted text 

Table 1: A Viz description of five example systems 

Mappings 
The goal of a mapping in Viz is to communicate the max­
imum amount of information about a player's state while 
imposing the least possible cognitive load on the user. 

In conjecturing a theory of effectiveness of graphical lan­
guages, Mackinlay (1986) noted Cleveland and McGilI's 
observation that people accomplish the perceptual tasks 
associated with the interpretation of graphical 
presentations with different degrees of accuracy. Using 
psychophysical results, Mackinlay extended Cleveland 
and McGill's work to show how differen t graphical tech­
niques ranked in perceptual effectiveness for encoding 
quantitative, ordinal, and nominal data. He found that the 
position of the data item in the x-y plane is ranked first for 
all three types of data, which is why we separate the view 
layout from the mappings. The other techniques which 
may be varied to create an effective mapping are (in de­
creasing order of effectiveness): colour hue, texture, con­
nection, containment, density (brightness), colour satura­
tion, shape, length (size), angle or slope (orientation), 
and area (or volume) . 

A mapping in Viz is attached to a particular type of player, 
event or state, and view. Multi-method inheritance occurs 
over the class of entity and view, allowing a Viz user to 
formulate expressions such as "all entities in view-x are to 

be displayed as a filled triangle", "entity-y is always dis ­
played as a white circle" and "entity-a is displayed as a cir­
cle in tree based views but as a square in all other views". 
Mappings can be inherited, forming an inheritance hierar-

chy in much the same fashion as views. Our future work in 
Viz will create a library of mappings . 

Navigators 
The Viz navigator module encapsulates the interface be­
tween the user and the visualization, although the methods 
for performing the navigation tasks are found in the view 
module, thus allowing custom navigation interfaces to be 
built independently of the task. 

Our prototype provides a replay panel (see the screen 
snapshot in figure 3) for searching, which has buttons for 
moving to the beginning or end of the animation, single­
stepping forward or backward, playing forward, fast-for ­
warding and stopping. Stepping in Viz involves notifying 
the history and view modules of the change of focus (the 
history module then selects the next appropriate event). 
Horizontal and vertical scroll bars are provided for pan­
ning while simple zoom in and zoom out buttons provide 
scaling. The user can select a fine grained view of a data 
element by clicking on it. 

Examples Defined in Viz 

The descriptions of the three systems that we have imple­
mented using Viz are presented in table 1 along with the 
two examples from BALSA and TANGO animations. The 
table provides a summary of the players, states, events, 
mappings, and views used in each visualization. Each row 
represents a distinct Viz entity type and each column rep­
resents one of the visualizations. The player row list~ the 
players which can take part in each example. The states 
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Figure 3: Screen Snapshot of Prolog Visualizer (greyscale from a colour screen) 

row shows the possible states players can enter. The 
events row shows the events which cause state changes . 
The mappings row contains, in order, the icon mapping 
for each state. The views row lists the names of the possi­
ble views in decreasing order of granularity. The connec­
tion between a view and the history is also shown. We 
shall now explain the first column, the Prolog visualizer, 
in detail. 

A Prolog Visualizer 
The Prolog visualizer is based on the Transparent Prolog 
Machine (TPM) (Eisenstadt & Brayshaw, 1988). TPM uses 
an AND-OR tree representation where the nodes represent 
goals which are instantiated Pro log predicates, and the 
arcs represent conjunctions or disjunctions of subgoals. 

The players in the visualization are the instantiated Prolog 
predicates or goals in the proof tree. The events, which are 
adapted from the Byrd Box Model (Byrd, 1980), are: call 
(trying to prove a goal), exit (a goal succeeding), fail -1st 
(a goal failing the first time attempted), fail-nth (a goal 
having succeeded earlier, later failing on backtracking), 
and redo (re-attempting to satisfy a goal). There is a corre-

sponding state and mapping for each event type (shown in 

respective order so :~:~m::] equals call, ...JeqUalS exit, etc.). 

The Prolog interpreter takes a list of goals left to prove. 
When no goals are left the environment is returned. The 
algorithm (adapted from (Nilsson, 1984» for the inter­
preter is: 

If there is nothing to prove 
then return t he en v ironmen t ; el se 

if t he f i rst - goal - left - to - p r ove 
is true , then 

note event : succeed, the goal th a t 
was proved, env, 
and p rove the 
r emai n i ng g oals; e lse 

note event : goal , 
first-goal-left - to - p r ove , 
env, and create a p l ayer for 
the-first - goal - left - to - prove, 
and 

loop for each clause in t he da tabase 
if the head of t h e c l aus e 
matches the fi r st g oal t h e n 
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create a player for 
each of the subgoals 
in the clause 

if we prove the new list of 
goals (which is the 
body of the match ed 
clause appended to the 
rest of the goals) 
then return the n e w 
en vironment else 

note event : redo , 
first-goal - left - to - prove , env, 

note event : failure, 
first-goal - left-to-prove, env, 
and 

return failed-to-prove 
first - goal - left-to-prove . 

In the above, the algorithm is shown in italics while the 
Viz event calls are shown in plain text. 

Figure 3 shows a screen snapshot of the proof for the goal 
?- desperate(?x) given the following Prolog database: 

desperate(?x) :-
name-dropper(?x) , 
unemployed ( ?x) • 

name-dropper ( ?x) : - knows (?x, ?y) , 
famous (?y) . 

name - dropper (?x) kn ows(?y , ?x) , 
famous (?y) . 

knows ( joe , mick) . 

knows ( charles , fred) . 

BALSA TANGO Viz 
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famous (mick) . 

famous (charles) . 
unemployed ( fred) . 

Bearing in mind that atoms beginning with "?" depict 
variables in this approximation of Edinburgh-syntax 
Prolog, the first five lines of the code above defmes a) the 
relation that someone is desperate if they are name dropper 
and unemployed; and b) a person is a name dropper if they 
know someone who is famous or if someone famous 
knows them. The rest of the code defmes five "facts" about 
who knows who, who is famous and who is unemployed. 

Because history events are invoked by inserting hooks 
into our own Prolog interpreter, the Viz implementation is 
straightforward once the machinery for players, views, 
mappings, and navigators is in place. The simple imple­
mentation, as described here, can deal with non-trivial 
cases of tricky backtracking and unification. Coping with 
arbitrarily large proof trees requires the defmition of a 
"collapsed predicate" player. The tree beneath a collapsed 
predicate player would not be displayed unless requested 
(by clicking on it with the mouse). The current set of col­
lapsed predicates would be chosen by the user. This col­
lapsed predicate set would correspond to the segments of 
code the user deemed irrelevant and thus could be "black 
boxed away". In order for collapsed predicates to be dis­
tinguishable, the mapping for a collapsed predicate player 
would be a triangle. The collapsed predicate player would 
in fact contain the players within its subtree. A request to 
show the full sub-tree would result in the replacement of 
the single collapsed predicate player with the players it 
contained. 

Comments 

Interesting Algorithm Events and The BALSA and TANGO terms are virtually identical while Viz 
(Algorithm) Operations Create events can be arranged hierarchically, and are designed to relate 
Events Players to the code rather than the algorithm. 

Modellers Image, States and In describing a visualization's internal representation, TANGO 
Location, Players adds to the BALSA framework by providing 4 abstract data 
Path, and types (geared towards animation); Viz's states and players are 
Transition program execution level abstractions. 

Renderers Animation Mappings BALSA provides a general mechanism for each view while 
Scenes and Views TANGO provides reusable libraries of animation scenes; Viz 

discriminates between the actual images that are mapped to the 
screen and the style in which they are displayed (the view). 

Navigators BALSA and TANGO don't specify any kind of user interface in-
teractions within the framework, nor techniques for dealing with 
arbitrarily large programs. 

Adaptor and History The Viz history is a structure for the collection of events, states, 
Update and players generated during program execution. The history 
Messages module includes various searching and filtering functions. 

Table 2: A Comparison of Terminology 
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Additional Systems 
To fully exercise our evolving framework across a range of 
players, events, states, mappings, and views, we have 
also used Viz to re-implement the textual visualization 
provided by the Symbolics™ Lisp stepper/tracer which 
uses layout to summarize the execution history of the Lisp 
evaluator (the Viz implementation actually improves on 
this by using colour and typography as well) and the table 
based vizualization of an OPS-5 style rule interpreter. We 
have also duplicated some of the well known AA examples 
from BALSA (sorting) and TANGO (bin packing) to show 
that the system can be used to easily construct custom al­
gorithm animations as well. 

A Comparison of Viz, Balsa, and Tango 
Terminology 

Although each of the goals of Viz, BALSA, and TANGO are 
somewhat different, the importance of the pioneering 
work of BALSA and TANGO is such that a close compari­
son of terminology is warranted. Viz terminology is de­
signed to allow existing systems to be described as well as 
implement new ones. Table 2 shows the systems in left ­
to-right chronological order, mapping the similar termi­
nology across systems where appropriate, and highlight­
ing differences accordingly in the "comment" column. 

Conclusions 

The main goal in designing Viz was to provide a descrip ­
tive mechanism for understanding and explaining the di ­
verse notations and methodologies underlying existing 
software visualization environments . Our re-implementa­
tion based approach is in contrast to the current literature 
(Eisenstadt et aI., 1990; Green, 1989; Green, 1990; 
Myers, 1990; Price et aI., 1992) which focusses on cogni­
tive and notational dimensions and practical categories. 
The amount of effort involved in our approach is of the 
same order of magnitude as category or dimension based 
approaches. Each of the example systems was constructed 
within 1-2 days (this included many extensive alterations 
to the ftrst version of Viz) and is of the order of 100 lines 
of code. 

By providing a descriptive abstraction for internally ex­
pressing the state of an algorithm (players, events, and 
states) we have augmented earlier frameworks and added to 
the common language for representing algorithm anima­
tion designs. Since Viz provides visualization facilities 
for programming languages, we have provided a frame­
work for generalized visualization that is applicable to 
software engineers since it provides visualizations that are 
automatic and faithful to the execution model of the lan­
guage. The use of Viz to implement systems which differ 
widely in terms of their scope, content, form, method, in­
teraction, and effectiveness, suggests that the framework 
is sufftcient to design and implement a wide class of soft­
ware visualization systems. 
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