70

An Extended Cuberille Model for Identification and Display of
3D Objects From 3D Gray Value Data

Xiaoqing Qu and Wayne Davis
Department of Computing Science
University of Alberta
Edmonton Canada T6G 2H1

Abstract

This paper presents an extended cuberille model for the
identification, reconstruction, and display of 3D objects
from 3D gray value data. 3D edge clements are gradients
detected at voxels, and the orientations of gradients are
quantized to 26 directions. The edge elements are then
converted to the extended cuberille model. The model
has four volume primitives. Besides a cube, voxels are ex-
tended to include three other polyhedra so that voxel faces
are compatible with 26 gradient orientations. The mer-
its of the three representation schemes: space occupancy
enumeration, octree, and surface representation by the ex-
tended cuberille model are briefly discussed. To identify
border voxels, asymmetric Gaussian filters are applied to
compute second derivative at each voxel. Conditions are
defined for identifying border voxels based on the sign of
the second derivative. I'rom these conditions, there exists
exactly one layer of border voxels, and subsequent surface
tracking is therefore straightforward. Experimental results
of 3D surface identification, tracking, and display by the
extended cuberille model on test data and medical data
are given. Because there are only four types of external
voxel faces in the model, a surface of any object consists
of only the four types of external voxel faces.

1 Introduction

This paper presents an extended cuberille model for iden-
tification, reconstruction and display of 3D objects from
3D gray value data. In 3D identification, thresholding is
widely used but restricted. In a variety of applications,
not many objects can be identified by simple threshold-
ing. Identification based on 3D edge detection is a more
general method. Some 3D edge operators have been pro-
posed to detect edge elements [MR81] using gradients.

The problem of how to group detected edge elements
to reconstruct an integral object has not been discussed.
An integral object representation is a relatively new topic
[Man88]. It implies that if an object is represented by its
surface, the surface must be closed and without missing
faces. If the object is represented by a collection of voxels,
each voxel is a solid with a thickness so that the space
occupied by the object can be measured.

Edge elements have little geometrical information be-
cause their shape and size are undefined. As a result, they
cannot be used to construct an object. What is needed are
modeling primitives whose shape and size are defined and
whose orientations are close to their edge counterparts,
i.e., a model. Currently available models are: cuberille
[HL79] and a polyhedral model [LC87]. Both models use
thresholding to identify objects.

In the cuberille model, an object is frequently repre-
sented as a collection of cube shaped voxels. Volume ren-
dering algorithms can be seen in [Rey87]. An object can be
represented by voxel faces. Algorithms tracking a surface
of a binary image have been seen in [AFH81] and [GU89].
Because of the regularity of voxels, an object can also be
organized as an octree. Octree related algorithms include
tree generation algorithms [Sam80, YS83], set operation
algorithms [HS79], geometric transformation algorithms
[J T80, Mea82], and display algorithms [ZD91].

In the polyhedral model [LC87], a cube is made up of
eight voxels in eight vertices, that are either inside or out-
side determined by thresholding. The algorithm marches
cube by cube, creating triangle faces to model a piece of
surface within each cube. A surface made of triangle faces
can be displayed using a graphics package.

Some results use 3D edge detection to identify a sur-
face. The 3D boundary following algorithm by [CR&9]
constructs a 3D boundary by stacking 2D boundaries, that
are extracted using a graph search algorithm [Mar76].

In the following, the motivation to extend the cuberille
model for 3D edge detection and surface construction is
discussed.

Suppose the 3D edge operator [MR81] is applied to gray
value data. It detects edges by computing the gradient
at each voxel. The gradient at a voxel can be written
as a vector V. = (V,, V,, V.) with the three compo-
nents indicating intensity changes along three principal
axes. The magnitude of the gradient, approximated by
V] = |Va] + |Vy| + |V:|, indicates the possibility that
the voxel is an edge element. The larger the magnitude,
the more likely that it is an edge voxel. The direction of
the gradient vector determines the edge orientation. For
simplicity, the direction of a gradient is quantized to one
of 26 directions (see Fig 1.)

Suppose an edge is detected at a voxel with orientation

Graphics Interface ’92

0,1,-1)

(1,0,0)

(1-11)

Figure 1: Three of the 26 gradient directions

(1,1,1), as shown in Fig 2(a). The cuberille model would
represent the edge by three voxel faces whose average nor-
mal is (1,1,1), as shown in Fig 2(b). But it is natural
to represent the edge by a face whose normal coincides
with the edge orientation. For example, the triangle face
in Fig 2(c) would construct a smoother surface than the
three voxel faces. Of course, any other face with the same
normal could also be chosen as a face primitive. So the
problem is to choose a set of modeling primitives whose
normals reflect the 26 gradient directions and therefore
result in a smoother surface. To solve the problem the
Extended Cuberille model is developed in the next sec-
tion.

y
A
(L,L1)
B x I 4
z
(a)Gradient vector (b)The cuberille model (c)The extended cuberille

modcl

Figure 2: Different modeling primitives

2 The Extended Cuberille Model

To model voxels, the modeling volume primitives are ex-
tended to include three other polyhedra (sce Fig 3) so that
the voxel faces are compatible with the 26 gradient orien-

a0 49 0

(®)Type_2

(a)Type_1 (c)Type 3 (d)Type 4

Figure 3: The set of volume primitives

As shown in Fig 3, cutting a cube voxel through diago-
nals of top and bottom faces gives the second polyhedron
with a face orientation of (1,0,1). Cutting a cube voxel
through three vertices defines the third and the fourth
polyhedra, and gives a face oriented at (=1,1.1). Since
the last three polyhedra are not symmetric, it is assumed

71

that a volume primitive is invariant under 90 degree rota-
tions about any principal axis. Hence the faces of the set
of volume primitives give 26 orientations. Furthermore,
to be able to represent objects hierarchically, it is also as-
sumed that a primitive scaled by a power of two is also
the same. The formal definition is given in the following.

Let V be the set of four volume primitives shown in
Fig 3, i.e., V={type_1, type 2, type.3, type-4}. Let T
denote the transformation of 90 degree rotations about
the principal axes or power of two scalings. Thus T is an
equivalent relation on V and each type_k, k=1,2,3,4,1s
an equivalence class by T. Let I be the 3D coordinate set,
I C Z%, Z is the set of integers, and fis a map, f: I — Vv,
then

Definition 1 A vozel v; is a pair of (1,f(i)), where f(2)
is a volume primitive, i.c., f(i) €V, of minimum scale and
i are the coordinates, i €l.

Arguably, a cube could be cut other ways, as shown in
Fig 4, that could also result in 26 face orientations. But
the set V' is better than other choices for it is the smallest
set that is closed under the subdivision operation.

0 & 0

Figure 4: Another set of volume primitives

Theorem 1 The setV is closed under the subdivision op-
eration, and it has the least cardinality among those having
the same property.

Proof: It follows directly from subdiving the four vol-
ume primitives, as shown in Fig 5(a) to (d), that the V
set is closed under subdivision. It remains to be shown
that it has the least cardinality. Let U be any set of vol-
ume primitives whose type_3 and type_4 polyhedra are
obtained by cutting a cube voxel, but not passing through
face diagonals. Fig 5(e) shows different cuttings to get a
face normal (1,1, 1). Assume the edge of a face is cut at a
ratio u/(1 — u), as shown in Fig 5(f), then subdivision of
the cube results in a new polyhedra with edge cut ratio of
u/(0.5—u). If U is closed, it must include at least two sets
of polyhedra from the two ways of cutting to give the same
face orientation. The same argument holds for a type_2
polyhedron. It follows |U| > |V].

Since the set V is closed under subdivision, it is also
possible to represent objects by octrees.

The mathematical definition of an object in the ex-
tended cuberille model is given in the following:

Definition 2 An object S is a regularized union of vox-
els, S = U v, where U denotes the regularized union
operation.

The regularized set operations, see [Man88], defines A U*
B = ¢(i(AU B)), where ¢(AU B) and 1(A U B) denote the

closure and interior of AU B.

Graphics Interface "92 28>

72

(a) Type_1 (®) Type_2 (c) Type_3 (d) Type_4

u 0.5-u
[|

(f) Subdividing introduces
a new polyhedron.

u l-u

<!)

(e) Different cutting to get
a face with normal (1,1,1).

Figure 5: The set V is closed under subdivision.

The definition gives the constructive process: because
voxels can only touch in faces, edges or vertices, it implies
v;N*v; = ¢ for i # j. Thus U*v; removes all internal voxel
faces to make a solid object with one interior enclosed by
a surface.

There are also several ways to represent objects in the
extended cuberille model. In the next Section. the merits
of three representation schemes, the enumeration scheme,
octrees, and surface representation, are briefly discussed.

3 Merits of Representation Schemes

The spatial enumeration scheme in the extended cuberille
model lists all voxels whose spaces are either fully or par-
tially occupied by an object. The interior of an object is
filled by type_1 voxels because they are fully occupied. All
type_2 to type_4 voxels represent partially occupied space
and are therefore on the border of the object. Type_l
voxels could also be on the border if the surface passes
through at least one of its faces. For example, Fig 6(a) to
(c) show an mathematically defined object, its space enu-
meration representation in the extended cuberille model,
and its space occupied in the cuberille model. Although
the representation gives a smoother surface, it is not as
storage efficient as its counterpart in the cuberille model,
for it needs two arguments — coordinates, type or gradient
direction - to list a voxel.

(a) Defined object. (b) Space enumeration
in the extended cuberille

model.

(c) Space enumeration
in the cuberille model.

Figure 6: A mathematically defined object and its
representation.

An octree in the extended cuberille model may have
five types of leaf nodes. In addition to the cube shaped
black and white leaf nodes, type_2, tvpe_3 and type_4 leaf
nodes represent partially occupied space and are all black.

An octree representing the object in the previous example
is shown in Fig 7(d). Compared with the octree in the cu-
berille model (Fig 7(c)), the octree in the extended model
is more concise because it includes leaf nodes to represent
certain partially occupied space. Now consider two ex-
treme cases shown in Fig 8. For the object in Fig 8(a),
the octrees for the two models would be the same. For the
object in Fig 8(b), the subdivision around the border in
the cuberille model would reach the voxel level, whereas
there is no subdivision in the extended model, because
the root node is a leaf node. For the object with a surface
slope as shown in Fig 8(c), the subdivision in the extended
mode would, in the worst case, reach the voxel level. The
following conclusion results:

Theorem 2 To represent an object, the size of an octree
in the extended cuberille model is at most the size of an
octree in the cuberille model.

z

(a) Space subdivision. (b) The subdivided object.

1 S 182

01234567 01234567 0123456:1

(d) The octree in the
extented cuberille model.

(c) The Octree in the
cuberill model.

Figure 7: An octree represented object in the ex-
tended cuberille model.

i

/

Figure & Comparing tree size in two models.

-

(©)

(a) (b)

A surface representation lists all voxel faces on the sur-
face. Since any object is made up of four types of voxels,
and by examing Fig 3, there are only four types of voxel
faces, as shown in Fig 9. [t therefore follows:

Theorem 3 The four types of external voxel faces shown
in Fig 9 can close the surface of any object.

Since there are only four types of voxel faces in the ex-
tended cuberille model, it is expected that the implemen-
tation of a surface representation is not very complicated.
On the other hand, the surface of an object may not al-
wayvs be very smooth.

< : Graphics Interface 92

Figure 9: Four types of external voxel faces.

4 Converting to the Extended Cuber-
ille Model

This Section gives the implementation for converting edge
elements to modeling primitives in order to display an edge
image.

The characteristic of the extended cuberille model is
that each voxel has a face whose normal coincides with
the edge orientation. This face is termed a face prim-
itive. A voxel can therefore be referred to as either a
volume primitive or a face primitive. The next section
gives the implementation using a one-byte code to record
edge orientation.

4.1 The location/direction code

An edge specified by a gradient vector has both magni-
tude and orientation. The magnitude is stored as an in-
teger, and the orientation is converted to a one-byte loca-
tion/direction code, loc_dir code for short. Since there are
26 edge orientations, the orientation of an edge is recorded
in the lower six bits of its loc_dir code with one bit for each
z,—z,y, —y,z and —z direction. Each location/direction
code corresponds to a volume primitive. Fig 10 gives the
loc_dir code for the four volume primitives. Since type.3
and type_4 face primitives have the same normal, they are
distinguished by the fact that a'type_3 voxel is outside an
object and a type_4 voxel is inside. Bit six of the loca-
tion/direction code is the inside/outside bit. Because a
type-4 voxel is inside, bit six of its loc_dir code is set to
one.

The inside/outside question is tested with the edge di-
rection as follows: if v; and vy are the two voxel neigh-
bors in the 3 x 3 x 3 ucighborhood along the gradient
direction, then wvo, the central voxel, is inside if /(vo) >
[I(v1) + I(v2)]/2, otherwise it is outside. [I{v;). 1 = 1,2,
is the intensity value at voxel v, and it is assumed that
objects have larger intensity values than the background.

A type_l voxel is always set to inside. A type_2 voxel
can be set to either inside or outside. In the implementa-
tion, it is set to outside.

Bit 7 of the loc_dir code is used to mark a voxel visited
in the surface tracking algorithm (see Sec. 6).

Hence applying the 3D edge operator to a 3D ar-
ray results in an array of edge magnitudes and loca-
tion/direction codes.

4.2 Display an Edge Image

The location/direction code, along with the voxel coordi-
nates, specifies the type (shape), location and normal of
the corresponding face primitives. but not the size. This

Graphics Interface ’92

73

—X+y+Z

-’
X+Z —X+y+Z

LML OOWEH0 0L

oiz y x oiz y x oiz y x

(b) Type_2 (c) Type_3 (d) Type_4

face normal: X

locaton/ [TTTTTTT]

direction 5
oiz y x
(a) Type_1

Figure 10: The location/direction codes for the four
volume primitives.

section describes how to store and access the geometrical
information of face primitives so that an edge image can
be displayed.

A data structure, called TABLE, is created to save the
geometrical information of the four face primitives. The
first two levels of the table necessary to display an edge
image are depicted in Fig 11. The table has 128 entries,
corresponding to the lower seven bits of loc_dir codes. The
entry index specifies the type of face primitives stored in
the entry. Each table entry has two fields: a pointer, called
face, pointing to a BASIC_FACE structure where the in-
dexed face is stored, and a coordinate transformation ma-
trix. Since the lower seven bits are not fully used, some
entries are empty.

Index 0 1 21 22 65 66

Identit; denti :
NuLy NuLL Matrix | Matrix 2| Maurix
face | face 4 face) | face |

1 e I

—
%—/ BASIC_FACE
wpe 1 NP wpe 2 type 3 type 4
center_coors center_coors center_coors center_coors

h_of vertices: 4
‘ixJ ‘iyl *iz

n_of vertices: In_of vertices: 4

six] *iy] *iz

h of vertices: §

*ix [‘iyl *iz

six] *iy| *ie

Figure 11: The TABLE structure

A face primitive in an basic_face entry is defined by
three lists of vertex coordinates, *ix,*iy,*iz.
information such as the number of vertices, the center co-
ordinates of the face are also stored in the structure. To
display an edge, the edge loc_dir code is used to index a
table entry, and the face vertices pointed to by the face

Some other

pointer are read out and take a coordinate transformation
with the entry matrix so that the resulting face normal is
consistent with the edge orientation.

5 Border voxel identification

Once the edge clements are converted to modeling primi-
tives, the next problem is to identify border voxels so that
it is possible to reconstruct and display the surface.
Since the second directional derivative of an intensity
change has a steep slope around the zero crossing, that cor-

responds precisely to the peak of the gradient (see Fig 12),
Marr and Hildreth [MH80] suggested that zero-crossings
can be used to detect edge elements. To compute zero-
crossings, a Gaussian filter is used to smooth the noise.
Because the intensity change of an image is usually un-
known, the directional second derivative is taken against
the Gaussian filter. Hence zero-crossings are zero points
resulted from convolving the directional second derivative
of a Gaussian filter with image intensity. In this paper,
a border identification method based on signs of second
derivatives is proposed.

background

g (@ Inlensuy 1(v) defined
in g axis.

)

(b) Gradient of I(v).

I"(v)

8 (c) Sccond derivative of I(v).

Figure 12: The zero-crossing corresponds precisely to
the peak of the gradient.

Since intensity value has maximum change rate in the
gradient direction, it is reasonable to assume that in a
small neighborhood of a voxel, intensity doesn’t change
significantly in the perpendicular direction. This suggests
that an asymmetric 3D Gaussian filter can be used to
smooth the data. The long scale of the Gaussian filter
coincides with the gradient direction of a voxel, which is
one of the 26. Because of shorter scales in the other two
dimensions, computing 3D convolutions can be speeded
up.

Let I(z,y, z) be the intensity function at voxel v(r,y, =),
and Gy be the second derivative of an asymmetric Gaus-
sian filter in the gradient direction ¢ of voxel ¢. De-
note w(z,y, z) the result of the discrete convolution of
Gy(z,y, z) with I(x,y, z).

w(.r,y.:):C';’(.r.y..:)*I(.r.y.:). (1)
To compute the discrete convolution. a {v;n,(,b} coordi-
nate system is established at every voxel v. The axis @ at
v is always set in the gradient direction of v, one of the
26, so the system {v;n,t,b} changes from voxel to voxel.

Transform the coordinate system {0;2,y,z} to {v:in,t, b}
and express the above convolution in terms of (n,t,b) as

w(n,t,b) ZZZ('"{;A I(n—i.t—).b=k). (2)

At the origin v,

w(0,0,0) = w(x,y.).

74

Zero-crossings are those voxels whose w(z,y,z) = 0.
Asymmetric Gaussian filters for 26 gradient directions
have been designed (see [QD92]).

The w(z,y,z) in (2) is defined on voxels of integer
coordinates and is undefined between voxels. Because
of the discrete nature of voxels, not many voxels have
w(z,y,z) = 0. Observe Fig 12, however, that for a bright
object surrounded by a darker background and for those
voxels v(z,y, z) close to the border, w(z,y, z) is negative
inside the object and positive outside. There exists ex-
actly one layer of voxels on which w(z,y,z) is negative
and changes sign for neighbors in the g-direction. This
layer is called the negative layer. Similarly, there exists
exactly one positive layer of voxels. It is possible to define
either the negative layer or the positive layer as the border.
Since the negative layer is part of the object, the border is
defined as the negative layer of voxels. zero-crossing vox-
els can be treated as either positive or negative, and are
also included in the border set.

Therefore, for a bright object surrounded by a darker
background, if v(z,y, z) is a border voxel, it must simul-
taneously satisfy the following inequalities:

w(z,y,z) <0,

o(r —1, y, 2) <0, wx+1,y,2) >0, if Viu#0,
(x

(

w(r, ,2) <0, w(x,y+1,z) >0, ifV, #0, o
wl,l/,-—l)<0 w(r,y,z+1) >0, if V. #0.

Similarly, for a dark object surrounded by a brighter back-
ground, the border voxels can be defined as the positive
layer of voxels. The gradient components V. V, V. of
a voxel v are saved in its loc_dir code and can be easily
tested.

The inequalities (3) are conditions to identify border
voxels. Obviously, there is only one layer of voxels that
will satisfy the conditions. This makes subsequent surface
tracking straightforward. A surface tracking algorithm is
given in the next section.

6 The Surface Tracking Algorithm

The surface tracking algorithm traverses border voxels,
converts the voxels to face primitives defined in the ex-
tended cuberille model, and connects the faces in a closed
surface.

An example is given in Fig 13 (a) to (e) to show how an
object is coverted to a surface. The object is a 4 x 4 x 4
cube defined by thresholding. According to conditions (3),
however, the object border is the set of voxels shown in (b).
The border voxels are converted to the extended cuberille
model in (c), where each border voxel is represented by
a face primitive. Because each voxel is converted to one
face primitive, the resulting surface in (c) is not closed.
Therefore there is one more step to fill missing faces to
close the surface, as shown in (e).

The surface tracking algorithm is outlined
in Iig 14. It has basically two tasks: calling procedure
Border face_tracking() in line 6 to traverse all the bor-
der voxel faces, and calling procedure Close_surface() in
line 7 to connect border voxel faces to close the surface.

J@ , Graphics Interface *92

(a) An object defined by thresholding. (b) The object border voxels

defined by conditions (3).

mrvv K

-

(c) Converted to the extended
cubrille model.

(d) The embedded graph. (e) Surface closure.

Figure 13: An example to show the surface tracking
steps.

Surface_tracking(object)

char *object;

{
read_data(object);
edge_detector();
zero_crossing();
init_lists();
make_table();
Border_face_tracking();
Close_surface();

N O s WN -

Figure 14: The surface tracking algorithim

Before tracking the border voxel faces, from lines 1 to
line 3, the procedure read.data() reads the data named
object to an 3D unsigned character array scene. The
procedure edge_-detector() applies a 3D edge operator
to the data array, resulting in an 3D unsigned charac-
ter array grad_loc.dir of location/direction codes, and a
3D short integer array mag of gradient magnitudes. The
loc_dir code of a voxel reflects the face normal that is
necessary information for display. The gradient magni-
tude is used as a rough threshold to assist in border voxel
identification. The procedure zero_crossing() computes
w(z,y, z) at every voxel v(r,y. z). resulting in a 3D short
integer array w. Implementations of these procedures are
straightforward, hence no details will be given here.
init_lists() and

In lines 4 to 5, procedures

make_table() initialize all associated data structures,
such as queune, lists, tables, etc.. used by the
Border_face_tracking() and Close.surface() proce-

dures.

As shown in Fig 13(d), if border voxels and the ad-
jacency relations between voxels can be modeled as a
graph, in which nodes arc border voxels and edges are
adjacency relations between pairs of voxels, a standard

Graphics Interface ’92

75

breadth-first search can be used for tracking border vox-
els. The Border_face_tracking() procedure is outlined
in Fig 15.

int
Q_CELL

X,¥,2Z;
*current_voxel;

Border_face_tracking()
{
unsigned char index;

get_start_face;

span_start_face();

while(current_voxel=de_queue_front() {
x=current_voxel->x;
y=current_voxel->y;
z=current_voxel->z;
index=grad_loc_dir[x] [yl [z] & "MARK;
Neighbor_face(index);
add_to_display_table(x,y,z,index); }

O 00N O WN -

Figure 15: The border face tracking procedure.

The underlying data structure is a queue, where each
queue cell has three integers, x,y,z, for recording the co-
ordinates of a border voxel.

In the procedure, the micro get_start face in line 1
reads the coordinates of a start border voxel, and the pro-
cedure span_start_face() in line 2 searches its adjacent
border voxels, marks them and queues them.

The while loop in line 3 starts tracking border voxels.
A queue cell is obtained from the queue as the current
voxel. In line &, procedure Neighbor face() is called to
search for the current voxel’s adjacent border voxels. It
scans all adjacent voxels, testing if any satisfies the condi-
tion (3). Meanwhile if a border voxel is unmarked, mark
it and queue it. After the procedure Neighbor face()
returns, add_to_display_table() is called to add the cur-
rent voxel coordinates, x y z, and its loc_dir code, index,
to a structure array to display the voxel face later. While
the queue is not empty, the loop continues to the next
cell in the queue. The while loop stops once the queue is
empty.

The time complexity of Border face_tracking() de-
pends on the while the procedure call
Neighbor_face(). It is analyzed below. The data to start

loop and

tracking are three 3D arrays, grad_loc_dir, grad mag, and
w. Bit seven of grad_loc.dir is designated for mark-
ing, hence checking and marking a voxel visited can be
done in constant time. As a result, the time to execute
Neighbor_face() depends on the number of adjacent vox-
els that a border voxel could have. Since each unmarked
border voxel is placed in the queue once, the while loop
is executed only once for every border voxel. Denote the
number of adjacent voxels that a border voxel has as k, and
the total number of the border voxels as ng, the time com-

76

plexity of Border face_tracking() is therefore O(knp).

For a given object, np is determined by the condi-
tions (3) and is fixed. But k varies with the number of
adjacent voxels that a border voxel could have. A way to
define the adjacency relation between pair of voxels is by
digital topology, where two voxels are adjacent each other
if they are either face, edge or vertex connected. By this
definition, each voxel has 26 adjacent voxels. Hence the
constant k is about 26.

Observe from Fig 13(c), however, that in the extended
cuberille model, every border voxel can be converted to
a face primitive, and all the face primitives are on a sur-
face. Intuitively, a face normal shouldn’t have dramatic
change from one border voxel to an adjacent one because
the surface is supposed to be smooth. This suggests that
the face normal of a border voxel can be used to assist
in defining adjacent voxels. This results in less than 26
adjacent voxels. Furthermore, face primitives are either
square or triangular face, see Fig 3, hence a face primitive
has at most four edges. As a result, there are at most
four ways to connect the current face to the next face.
The neighbor connections are called outways of the cur-
rent voxel. In the implementation, the Neighbor face()
procedure searches outways instead of all adjacent voxels.
Whenever a border voxel of an outway is found, the scarch
breaks and proceeds to the next outway. T'his reduces the
constant & to about half, and speeds up border face track-
ing. No further details will be given. The interested reader
may refer to [Qu92].

For each adjacent border voxel found for an outway,
the Close_surface() procedure checks face connections
between the current face primitive and the adjacent face
primitive. Other-
wise the procedure tries to find missing voxel faces and

If they are connected, do nothing.

adds the missing faces to the display table. Since pro-
cedure Close_surface() cxecutes only for disconnected
border voxel faces, it is expected to be faster than
Border_face_tracking().

Back to the Surface_tracking algorithm in Fig 14,
since the first three procedures work on the entire data
volume, the algorithm is a volume based algorithm after
all. Once voxel faces of a surface are saved in the display
table, however, the time of all subsequent operations such
as display, rotation and scaling. etc.. operate on the bor-
der voxel faces, and thercfore is an order of the number of
border voxel faces of an object, i.e., O(ny).

7 Experimental Results

Fig 16 shows surfaces of a test object and a medical ob-
ject obtained from real data. The test object is a sphere
of volume 40 x 40 x 40 with 16 gray values. Since the
test object is darker than the background, its border is a
positive layer of voxels. The surface of the sphere has 509
border voxels and 797 voxel faces. It can be seen that the
surfaces consist of four types of voxel faces. The images is
displayed using a graphics package WINDLIB [(CBS87] on
a Sun3/60.

Figure 16: Surfaces of a test object and a medical
object from real data.

The data size of the medical object is of 208 x 208 x 26,
resulting from linearly interpolating 6 CT slices produc-
ing 5 between successive pairs. The gray values were also
linerly mapped to the range from 0 to 255. The object
has a brighter color than the background, therefore, its
border is a negative layer of voxels. There are 17,742
border voxels detected and 26,409 voxel faces on the sur-
face. Running gprof shows that the execution time for
Border face_tracking on a Sun4 is about 55.32 seconds,
and checking face connections and close the surface takes

33.26 seconds.

The image is displayed on a Silicon Graphics Iris station
4D/35. To display 26,409 faces takes only seconds.

“®> Graphics Interface '92

8 Conclusion

The extended cuberille model introduced in this paper
provides a way to identify, reconstruct and display 3D ob-
jects based on 3D edge detection rather than thresholding.

3D edge elements are gradients, and orientations of gra-
dients are quantized to 26 directions. The model has four
volume primitives. Besides a cube, voxels are extended to
include three other polyhedra so that voxel faces are com-
patible with 26 gradient orientations. The merits of the
three representation schemes: space occupancy enumera-
tion, octree, and surface representation by the extended
cuberille model are briefly discussed.

To identify border voxels, asymmetric Gaussian filters
are convolved with the gray value data to compute second
derivatives of intensity changes at every voxel. Conditions
for identifying border voxels based on the signs of the sec-
ond derivatives are given in inequalities (3). From these
conditions, there exists exactly one layer of border vox-
els, and subsequent surface tracking could be simply be a
breadth first search.

A surface tracking algorithm using the conditions to
identify border voxel is given. The surface tracking algo-
rithm has two tasks: traverse border voxel faces and close
a surface. Analysis and experimental results have shown
that the the time complexity of the surface tracking algo-
rithm depends on the border face tracking. and is an order
of number of border voxels of a tracked object. Tracking
outways instead of 26 adjacent voxels is further suggested
to speed up border voxel tracking.

Experimental results of 3D surface identification, track-
ing, and display by the extended cuberille model on a test
object and a medical object from real data arce given. Be-
cause there are only four types of voxel faces in the model,
a surface of any object consists of only four types of voxel
faces.

References

[AFH81] E. Artzy, G. Irieder. and G. T Herman. The
theory, design. implementation and cvaluation of
a three-dimensional surface detection algorithm.
Computer Vision, Graphics. and Image Process-
g, 15:1-24, 1981.

[CR&9] John Danilo Cappelletti and Azriel Rosenfeld.
Three-dimensional boundary following. Com-
puter Vision, Graphics. and Image Processing,
48:80-92, 1989.

[GB87] M. Green and N. Bridgeman. WINDLIE Pro-
grammer’s Manual. Department of Computing
Science, University of Alberta, Edmonton, Al-
berta, September 1987,

[GU89] D. Gordon and J. K. Udupa. Fast surface track-
ing in three-dimensional binary images. Com-
puter Vision, Graphics. and Image Processing.,
45:196-214, 1989.

[HL79] G.T.Herman and H. K. Liu. Three-dimensional

display of human organs from computed tomo-

77

[HS79]

[IT80]

[LC8T]

[Man8sg]

[Mar76)

[Mea82]

[MH80]

[MR&1]

[QD92]

[QuYy2]

[Rey87]

[Sam&0)

[YS83]

[ZD91]

Graphics Interface *92

grams. Computer Vision, Graphics, and Image
Processing, 9:1-21, 1979.

G. M. Hunter and K. Steiglitz. Operations on
images using quad tres. [EEE Transactions

on Pattern Analysis and Machine Intelligence,
PAMI-1(2):145-153, 1979.

C. L. Jackins and S. L. Tanimoto.

and their use in representing three-dimensional

Oct-treeess

objects. Computer Vision, Graphics, and Image
Processing, 14:249-270, 1980.

W. E. Lorensen and H. E. Cline. Marching
cubes: a high resolution 3d surface construction
algorithm. ACM Computer Graphics, 21(4):163~
169, 1987.

M. Mantyla. An Introduction to Solid Modeling.
Computer Science Press, 1988.

Alberto Martelli. An application of heuris-
tic search methods to edge and contour detec-
tion. Communication of the ACM, 19(2):73-83,
February 1976.
D. J. Meagher.
tree encoding. Computer Vision, Graphics, and
Image Processing, 19:129-147, 1982.

D. Marr and E. Hildreth. Theory of edge detec-
tion. Proceeding of the Royol Society of London,
207:187-217, 1980.

D. G. Morgenthaler and A. Rosenfeld. Multi-
dimensional edge detection by hypersurface fit-
ting. [EEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-3(4):187-217,
July 1981.

X. Qu and W. A. Davis. Three dimensional bor-
der identification. Proceedings of Vision Inter-
face 92, page to be appear, 1992.

X. Qu. Identification and Display of 3D Objects
From 32D Gray Value Data. PhD thesis, Univer-
sity of Alberta, to be published in 1992,

R. A. Reynolds.

for shaded graphics display of slice-represented

Geometric modeling using oc-

A dynamic screen technique

objects. Computer Vision, Graphics. and Image
Processing, 38:275-298, 1987.

H. Samet. Quadtrees
from binary arrays. Computer Vision, Graph-
ics, and Image Processing, 13(1):88-93, 1980.

M. Yau N. Srihari.
data structure for multidimensional digial im-
ages. Communication of the ACM, 26(7):504-
515, 1983.

J. Zhao and W. A. Davis. Fast display of oc-

tree representations of 3d objects. Proceedings
of Graphics Interface’91, pages 160-167, 1991.

Region representation:

and S. A hierarvhical

