
70 

Ray Tracing With Adaptive Supersampling in Object Space 

Jon Genetti and Dan Gordon* 

Dep_artment of Computer Science 
Texas A&M University, College Station, Texas, 77843 

e-mail address: genetti@cs.tamu.edu 

ABSTRACT 

We introduce a new approach to two important problems 
in ray tracing: antialiasing and distributed light sources. 
For antialiasing, adaptive supersampling in object space 
(ASOS) combines the quality of supersampling with the 
speed of adaptive supersampling. In adaptive supersam­
pling, the decision to partition a ray is taken in image­
space, which means that small or thin objects may be 
missed entirely. This is particularly problematic in an 
animation, where the intensity of such objects may ap­
pear to vary. ASOS is based on testing the proximity of a 
ray to the boundary of an object. If a primary ray is close 
to the boundary, it splits into 4 subrays, and the proce­
dure continues re cursively with each subray. This split­
ting continues until the estimated error in pixel intensity 
is sufficiently small. ASOS also computes shadows from 
distributed light sources to any required precision . Our 
implementation includes spheres, polygons, disks, boxes, 
cones and cylinders and does not preclude other primi­
tives. 

KEYWORDS: Antialiasing, distributed light sources, ob­
ject space, penumbrae, ray tracing. 

INTRODUCTION 

The chief advantages of ray tracing are its ability to han­
dle many different shading models, complex reflections 
and refractions, and many different object types. Its 
main disadvantages are slowness, aliasing problems and 
difficulties with distributed light sources. Aliasing prob­
lems result because ray tracing is a point sampling process 
that can only antialias frequencies below the N yquist rate. 
Frequencies above the Nyquist rate result in artifacts in 
the image (the jaggies). In fact, any finite sampling pat­
tern cannot guarantee no aliasing [5] . 

There.have been several approaches to antialiasing ofray 
traced images. Briefly, these are: simple averaging, su­
persampling, stochastic sampling [3, 2, 4, 11], and adap­
tive supersampling [16]. See [7, 5, 12] for comprehensive 
discussions of these topics. These approaches can be con­
sidered image-space, since it is essentially the image-space 
that determines if and where extra rays have to be cast. 
However, Whitted's adaptive supersampling [16] contains 
an element of the object-space approach. 

·Present Address: Dept. oC Math &. Computer Science, Univer­
sity of HaiCa, HaiCa 31905, Israel, email:gordon@mathcs2.haiCa.ac.il 

We informally call an approach object-space if decisions 
regarding extra rays are based on information in object­
space available at the time that ray-object intersections 
are calculated. Whitted's method calls for a sufficiently 
large bounding volume to surround small objects, so that 
rays intersecting it will be subdivided. This component of 
the algorithm is object-space dependent, though the rest 
is not . Beam tracing [9] is an object-space approach be­
cause all calculations on beams are done in object-space. 
Recently, there have appeared two new object-space ap­
proaches to antialiasing [15, 13]. 

Another difficult problem for ray tracing is distributed 
light sources. The standard way to calculate shadows is 
by tracing a shadow ray to a point light source. This ap­
proach does not extend easily to distributed light sources. 
Beam tracing can handle such sources, but is restricted 
to polygonal environments. Cone tracing [1] can han­
dle spherical light sources, but is limited to polygons and 
spheres. Furthermore, as shall be explained later , shadow 
calculations with cone tracing can be inaccurate. Stochas­
tic sampling [3, 2] handles the problem in a very time­
consuming manner by distributing many rays across the 
light source. 

In this paper, a new object-space approach to the prob­
lems of antialiasing and distributed light sources is pre­
sented. The general flavor is that of adaptive supersam­
pling, with the difference being that decisions to subdi­
vide are taken in object-space. This approach offers the 
advantages of supersampling with a computation time 
on par with that of adaptive supersampling. In addi­
tion, it eliminates the inherent problem with Whitted's 
object-space component of adaptive supersampling. Our 
technique also solves the problem of penumbrae from dis­
tributed light sources, producing accurate shadows. All 
intensity and shadow computations can be carried out to 
any user-prescribed degree of accuracy. 

BACKGROUND 

There have been three main approaches to the aliasing 
problem. One is to generate a fixed number of extra rays 
for each pixel. The second approach, a logical extension 
of the first, is to adaptively generate more rays for each 
pixel until some criterion is met. The last approach is to 
extend the definition of a ray-either to a different object 
or to allow more than one ray to be traced at a time. 

Graphics Interface ' 93 



71 

Fixed Sampling 

In simple averaging, rays are cast at the same resolu­
tion as the screen, either through the centers or the cor­
ners of the pixels. The pixel value is then obtained as a 
(weighted) average of its neighboring rays. Different re­
sults are obtained by taking different neighborhoods and 
by varying the weights. The disadvantage of these meth­
ods is that small objects may be missed, and some jagged 
effects may still be seen. 

In supersampling and averaging, rays are cast at a higher 
resolution than the screen, typically 4 to 16 rays per pixel. 
This method yields good results, but at a very high price 
in computation time. In most parts of an image, just one 
ray per pixel (corner) is sufficient. 

Yellot [17] noticed that using an irregular sampling pat­
tern caused featureless noise rather than false patterns 
and that this noise was less noticeable than false patterns. 
Cook [2, 3] introduced the technique of stochastic sam­
pling for antialiasing, penumbrae and motion blur. On 
the pixel size that he worked with, he reached the con­
clusion that some 16 rays per pixel produce a reasonable 
noise. Lee [10] and Dippe [4] further analyzed and refined 
the method . 

Adaptive Sampling 

Adaptive Supersampling [16] consists of casting rays 
through the corners of a pixel. If the 4 values do not 
differ from each other by too much, their average is used 
for the pixel. If not, more rays are cast-from the cen­
ter of the pixel and the centers of the pixel edges. This 
subdivision continues as needed until some preset limit 
on the number of subdivisions is reached. 

This method has a potential problem with small objects, 
which may escape undetected. Whitted corrects this by 
surrounding each small object with a bounding sphere 
sufficiently large so that if the object projection inter­
sects a pixel, then at least one of the 4 rays will intersect 
the sphere. When this happens, the pixel is subdivided 
as before. We refer to this component of the algorithm as 
being done in object-space, because the decision to sub­
divide is based on information in object-space. Unfortu­
nately, using a bounding sphere does not work well with 
long thin objects. The screen area in which the pixels 
must be subdivided unnecessarily can be very large. 

Mitchell [11] used adaptive supersampling based on 
image-space, using Poisson-disk sampling. Painter and 
Sloan [14] also used adaptive supersampling based on 
image-space, but their procedure started from above the 
pixel level. 

Heckbert [8] combined radiosity and ray tracing. The ra­
diosity part, used for diffuse reflections and based on a 
concept of rexes, is an adaptive object-space technique, 
but the ray tracing part (used for specular reflections) 
is adaptive in image-space. This technique was imple­
mented with point light sources. 

Object-Space Sampling 

In beam tracing [9], an initial beam is formed from the 
viewpoint and the view plane, and traced through the 
image. When a beam intersects a polygonal surface, a 
clipping algorithm is used generate a reflected beam and 
a continuing beam. The main disadvantage is that it is 
limited to polygonal scenes. 

In cone tracing [1], an initial cone is formed that encloses 
the viewpoint and the pixel. When a cone intersects the 
boundary of an object, the fraction of the occluded cone is 
calculated, and the ray is then continued past the object 
with a suitably reduced intensity. Although this method 
produces reasonable antialiasing and soft shadows, it is 
not accurate, because it does not account for the fact 
that a cone may be blocked in various orientations. Fur­
thermore, all light sources are treated as spherical, rather 
than distributed. 

Covers [15] are an extension of Whitted's bounding 
spheres. Objects are assumed surrounded by some covers 
of a sufficient thickness to ensure that they are intersected 
by a ray from at least one pixel. Thus, when a ray in­
tersects a cover, it is in proximity to the boundary of 
an object, and the ray is split into two rays of reduced 
weight (one continues past the object, and the other hits 
the object). A pixel's intensity is taken as a weighted 
average of the two intensities. This is an object-space 
technique which solves some problems, but creates oth­
ers. For example, covers must be quite large if one is to 
account for reflected rays, particularly for rays reflected 
off a curved surface. Furthermore, as in cone tracing, 
there is no distinction between different orientations of 
objects in a ray's path . Another problem is with thin or 
small objects: Since the weights are based only on the 
distance to the closest edge, such an object will not ac­
curately contribute its weight to the pixel value. 

In ray bound tracing [13], a ray bound surrounding the 
ray is used to detect the proximity of the ray to the 
boundary of an object. When this happens, the pixel 
is supersampled at some predetermined value (16 sam­
ples were used in their sample images). The drawback of 
this approach, as compared to adaptive methods, is that 
many samples are always used to capture very small or 
thin objects. 

ADAPTIVE SUPERSAMPLlNG IN OBJECT-SPACE 

ASOS can be viewed as an extension of Whitted's adap­
tive supersampling approach carried out in object-space. 
The viewpoint and the pixel form a pyramid that, if ex­
tended to the end of the scene, contains any object that 
projects onto the pixel. We will call this a pyramidal ray 
or pyray for short. Since a pyramid-object intersection 
is very difficult to compute [1], the pyray is surrounded 
by a cone and a cone-object intersection is performed in 
two phases. Figure 1 shows an example of the initial eye 
pyray with dashed lines and the surrounding cone with 
solid lines. 

Graphic s Interface '93 



Figure 1: An eye pyray and cone. 

Detection Phase 

In the detection phase, a cone-object intersection is not 
done exactly-we simply use an in-out test like cone trac­
ing [1] to determine ifthe cone intersects any part of.the 
object. If there is no bl~ckage of the co~e, that object 
does not project on the plxel. If blockage IS detected, an 
additional test is performed to determine if the b~ock~ge 
is total or partial. Partial blockage of the cone Imphes 
that the boundary of the object is inside the cone and the 
intersection is called marginal. (Note that it is possible 
for the object to lie in the area between the pyray and 
the cone). If total blockage is det~cted! there ~an be no 
aliasing from the boundary of thiS object projected on 
this pixel. 

At the end of the detection phase, a list of all of the ob­
jects that project onto the pix~l are k~own: If the closest 
object intersection is not margmal, thiS object covers .the 
entire pixel and shading can be performed. In the sim­
plest case, the central ray of the cone (which we will s~m­
ply call the ray) can be used in the standard ray ~racmg 
illumination model to calculate a color for the plxel. If 
there is aliasing from other sources, such as texture maps 
or CSG intersections, any image-space method described 
previously can be used to reduce it at .this point. In fact, 
additional rays can be tested faster smce we know that 
any additional eye rays through this pixel can only strike 
this object. 

Subdivision Phase 

If the closest object intersection is marginal, the pyray 
and its surrounding cone are called marginal and the sub­
division phase is necessary. The pyray is subdivided into 
four pyrays, called subpyrays, and the ~etection ph.ase is 
repeated for each subpyray. (For notatIOnal convemence, 
the original eye pyray is called a O-pyray, its subpyrays 
are called I-pyrays, and so on. Likewise, the central ray 

. of a K-pyray will be called a K-ray.) This phase is no~ as 
costly, since the 4 1-pyrays only have to be .tested agamst 
the list of objects that project onto the plxel, and that 
list has already been formed. 

The decision on whether a pyray should be subdivided 
is also controlled by estimating an upper bound on the 
intensity change that could be produced by subdividing. 

72 

Figure 2: Subdivision of a pixel. 

If the estimated change is less than some user-supplied 
value EPS no subdivisions are done. At this point, a 
color can be computed using a standard shading model 
with the central ray of each subpyray. This provides the 
user an easily controlled trade-off between image q~ality 
and processing time. Eventually, all subpyrays Will be 
non-marginal, subdivision will become u~n~~essary. or a 
user-defined limit on the number of subdiVISIOns Will be 
reached. 

In general, assume that we have subdivided the margi~al 
pyrays up to a level of K, so we now have to det~r~mne 
which (if any) of the K-pyrays need to be subdiVided. 
Let M be the total number of marginal K -pyrays, and 
in (out) the number of marginal pyrays w~lOse K-ray hits 
(misses) the object. No,,: den~te L=max(,?,out), and we 
assume for the sake of dlscusslOn that L=m. 

We have two alternatives: to subdivide all the M 
marginal K -pyrays, or not to subdivide them. We can 
calculate the maximum possible change in intensity that 
could be produced by such a subdivision. By subdivid­
ing the L in K-pyrays, it is possible that the (K + 1)­
subpyrays of each of them will all be out (e.g., in the case 
of a thin object). This could be balanced by some of the 
M - Lout K-pyrays spawning some (K + 1)-subpyrays 
that are in but in the worst case, this will not happen. 
Since the area of every K-pyrayis 1/22K , the maximum 
area that could be affected by the change is L/22K. If we 
assume intensities in the range of 0 to 1, then we see that 
the maximum intensity chanke is again just L/22K . Our 
decision criterion is: If L/22 ~ EPS then stop subdivid­
ing the marginal pyrays. 

Note that when we go from K to K + 1, 22KEPS increases 
4 times. Figure 2 shows a polygon that projects com­
pletely onto a pixel. Table 1 summarizes the subd~vision 
process with EPS=1/16. Each. represents a margmal4-
pyray whose 4-ray hits the polygo~ and each 0 represen~s 
a marginal 4-pyray whose 4-ray misses the polygon. It IS 
interesting to note that in this example, the difference be­
tween the approximated area of the object (14 4-pyrays) 
and the actual area isjust 0.63% ofthe entire area covered 
by the original pixel. 

Graphics Interface ' 93 



73 

K M in out L 22A: L/22" 
1 3 0 3 3 4 0.7500 
2 5 0 5 5 16 0.3125 
3 12 4 8 8 64 0.1250 
4 28 13 15 15 256 0.0586 

Table 1: Summary of Figure 2 with EPS=I/16. 

Figure 3: Pixel subdivision with one edge. 

Proximity to One Edge 

When a pyray is in proximity to just one edge, we can 
improve the above estimate by obser~ing that for each 
marginal K-pyray, at most half of Its subpyrays can 
switch from in to out (or from out to in) . The reason 
is that if the K-ray of a K-pyray is in, then at most 2 of 
its (K + 1)-subrays can be out. Theref<?r~, in the decisio~ 
criterion L can be replaced by L/2, glVlDg us the modI­
fied crite~ion of: If L/22K+1 ~ EPS then stop subdividi.ng 
the marginal pyrays. This would, on the average, requue 
less subdivisions than the previous one. Figure 3 shows 
a pyray in proximity to just one edge. and Table 2 su~­
marizes the subdivision process for FIgure 3. Now wIth 
EPS=I/16, the subdivision would stop at level 3. 

Note that we should have some maximum allowable depth 
of subdivision so that the program does not continue sub­
dividing in case of pathological situations .. yv,e can con­
struct an object so that the O-ray of the lDltlal O-pyray 
will be in, then all the I-rays of the I-pyrays will be out, 
then all the 2-rays of the 2-pyrays will be in again, and 
so on. We denote the maximum level by MAl , with MAI=4 
sufficient for most practical purposes. This allows up to 
256 4-pyrays and may produce up to 256 point samples 

K M an out L 221<+1 L/221<+1 
1 3 1 2 2 8 0.2500 
2 6 3 3 3 32 0.0938 
3 13 6 7 7 128 0.0547 

Table 2: Summary of Figure 3 with EPS=I/16. 

Figure 4: A shadow pyray and cone. 

for a pixel. 

Upper Bound on Number of Subdivisions 

In the case of a single edge, we can easily compute an 
upper bound on K based on the given EPS. T~is can be 
seen by noting that no matter how the edge mtersects 
the original O-pyray, the maximum value f~ L is just 2K 
(the original pixel can be seen .as a 2.K x~" array of.I~­
pyrays) . So in order for the modIfied crlterlOn to hold, It IS 
sufficient to have 2K ~ 22K+lEPS, i.e., K ~ /og2(I/EPS)-
1. For example, if EPS=I/16, we will always stop with 
K=3 (or less, depending on L). vye should fu~ther note 
that in a typical image, most margmal pyrays WIll be close 
to just one edge of a polygon, so we will nearly always use 
the modified criterion. 

Jittering of MAl-rays 

Since a MAI-pyray will not be subdivided, the detection 
phase is not necessary-the result is always a point. sa!ll­
pIe. Instead of choosing the central ray, any ray mSlde 
the MAI-pyray can be point sampled. If this ray is chosen 
randomly, the result is a MAl x MAl jittered sample i~ a.r­
eas of object boundaries. This effect is very dramatic m 
Figure 8. 

ANTIALlASED POINT LIGHT SOURCES 

Shadows from point light sources are handled as follows. 
When a pyray (or subpyray) hits a surface, we consider 
the area of intersection of the origirial pyray and the sur­
face. In order to avoid aliasing, it is not enough to con­
sider a line from the center of this area to the light and 
just determine if the center is in shadow or not. Instead, 
we consider a shadow pyray emanating from the light 
source and enclosing the area of intersection as shown 
in Figure 4. We then determine, in the manner described 
above if the shadow pyray intersects any object in the 
path. 'If it does, we subdivide it in the same manner until 
we eventually obtain an approximation to the fraction of 
the area that is lit or reach the maximum level of subdi­
vision. The level of the initial shadow pyray starts out 
the same as the original pyray hitting the surface. For 
example if we find that a 3-pyray is not marginal we will 
start out the shadow pyray at level 3 and subdivide (if 
necessary) down to the level MAl. 

Graphics Interface ' 93 ~~ 



----- --- - - - --- ---

(a) (b) (c) 

Figure 5: Distributed light sources. 

DISTRIBUTED LIGHT SOURCES 

Rectangular light Sources 

Shadows from rectangular light sources are handled as 
follows. From a surface point to be shadowed, create a 
shadow pyray with the point on the surface and the cor­
ners of the light as illustrated in Figure 5a. We need to 
find the fraction of the shadow pyray that reaches the 
light without being obstructed. Again, this is done as de­
scribed previously for a pyray, by surrounding the pyray 
with a cone and the pyray splitting when it is in proxim­
ity to a boundary. The subpyrays (and their areas) that 
reach the light source determine the fraction of light that 
illuminates the point. 

The intensity of the light that we assign to each 
(sub)pyray hitting the light source is taken as lA cos 0, 
where I is the intensity of the source per unit area (as­
sumed constant for the source), A is the area of the source 
subtended by the (sub)pyray, and 0 is the angle between 
the normal of the source and the central ray of the pyray. 
This is the effective illumination for that particular pyray, 
since A cos 0 is the approximate area of the projection of 
the subtended area on a plane perpendicular to the ray. 
In radiosity techniques, this is also the way that form 
factors are calculated [5]. 

Spherical light Sources 

Shadows from spherical light sources are handled as fol­
lows. Instead of forming a shadow pyray and then a sur­
rounding cone, create a shadow cone directly from the 
spherical light source and the surface point as shown in 
Figure 5b. The fraction of light that reaches this point is 
calculated by subdividing the shadow cone. The intensity 
of the light that we assign to each (sub)cone hitting the 
light source is taken as lA. By omitting the cos 0 factor, 
a disk perpendicular to the line of sight is simulated. 

linear light Sources 

Shadows from linear light sources are handled as follows . 
From a surface point to be shadowed, create a shadow 
pyray with the point on the surface and the endpoints of 
the line as shown in Figure 5c. To find the fraction of the 
shadow pyray that reaches the linear light without be­
ing obstructed, use the same process as rectangular lights 
with one exception. Since a linear light is two dimen­
sional, it is only necessary to divide a marginal shadow 
pyray into 2 subpyrays. For shading purposes, each point 

74 

primitive Ray Cone Factor 
sphere 7.23 7.27 1.01 

polygon 2.48 3.51 1.42 
disk 5.68 5.72 1.01 
box 4.83 5.75 1.19 
cone 8.06 19.36 2.40 

cylinder 6.28 33.98 5.40 

Table 3: Cone vs. ray intersection. 

that the central ray hits on the line is treated as a point 
light source. 

RESULTS 

Figure 6 shows the primitives implemented and the cor­
responding shadows cast from each light source using 
ASOS(MAX=4) . The upper left hand image was rendered 
with an antialiased point light source above the objects. 
The lower left hand image was rendered with a spherical 
light source in the same location. The upper right hand 
image was rendered with a linear light source parallel to 
the x axis. The lower right hand image was rendered 
with a rectangular light source in the x-z plane. Note 
that the penumbras of the box and cone are small for 
two reasons-the distance from the ground plane and the 
area of the light source visible. Table 3 compares the 
time required for cone-object intersections as opposed to 
ray-object intersections. A complete description of the 
intersection routines for these objects can be found in [6]. 

Figure 8 shows 4 office scenes rendered at 1024x683 on 
an SGI R4000 Indigo. The upper left hand image was 
rendered using ASOS(MAX=3) in 41 minutes, tracing a 
total of 4,057,528 pyrays. The lower left hand image was 
also rendered with MAX=3, but with random MAX-cones 
in 42 minutes. The slight increase in time to calculate 
random MAX-cones really makes a difference-in effect this 
is an 8x8 stochastic sample in the penumbral areas. For 
comparison, the upper right image was rendered in 62 
minutes using stochastic sampling with 9 rays per pixel. 
The lower right hand image was rendered in 111 minutes 
using stochastic sampling with 16 rays per pixel, tracing 
a total of 18,604,885 rays. Although ASOS traces less 
than one fourth as many "rays" , the shadows look better 
because the extra "rays" are concentrated where they are 
needed. 

Figure 7 shows a Victorian house made up of 
2770 polygons which was rendered at 1024x683 using 
ASOS(MAX=4) in 147 minutes. A spherical light source 
provides the light and bounding boxes were used around 
most of the objects to speed up the intersection calcula­
tions. Figure 9 shows a frame from an animation rendered 
at 720x486 using ASOS(MAX=2). 

Graphics Interface '93 



75 

CONCLUSION 

We have introduced a new technique for the aliasing prob­
lem of ray traced images and the handling of distributed 
light sources. ASOS operates in object-space and at any 
desired accuracy. The parameter EPS controls the trade­
off between image quality and processing time. It al­
lows us to guarantee the capture of arbitrarily small (or 
narrow) objects simply by making EPS sufficiently small. 
This is extremely useful in an animation, because tempo­
ral aliasing can cause small objects to flash on and off. If 
small objects are detected, it is important to get a good 
approximation to their area, because otherwise they will 
appear to pulsate with different intensities. 

The use of our technique does not preclude the applica­
tion of other antialiasing methods. In particular , it can 
be combined with the image-space adaptive supersam­
pling or stochastic sampling. This combination of the 
two techniques can be used to handle aliasing problems 
not caused by the boundaries of objects. Two immediate 
examples of such aliasing problems are texture mapping 
and object intersections in CSG models. 

FUTURE WORK 

Since shadow pyrays for distributed light sources origi­
nate from a surface point, it is possible to have shadow 
aliasing. This is noticeable mainly on the porch in Fig­
ure 7. It should be possible to move this point behind 
the surface and construct a pyray using the area of in­
tersection as well as the light source. Any intersections 
between the new origin of the pyray and the surface would 
be ignored . A distributed light source could also be an 
arbitrary polygon. In fact, solving this problem would 
also provide a way to calculate form factors for radiosity. 

In the current implementation, reflections are handled by 
recursively tracing the reflected ray. For flat surfaces, 
the eye pyray can be reflected about the surface and re­
cursively traced if intersections between the origin of the 
reflected pyray and the reflecting surface are ignored. Un­
fortunately, the reflected pyray from a curved surface is 
complicated and requires further research. Likewise, re­
fracted pyrays are also difficult to construct, especially 
with a distributed light source filtering through a trans­
parent medium. The problem here is that we cannot aim 
a simple beam towards the light source, because of the 
refraction of light rays at the boundaries of the medium. 

ACKNOWLEDGEMENTS 

The authors wish to thank Glen Williams and Susan Van 
Baerle for several suggestions. Sean Graves and Russell 
Neper helped write the original ray tracer that was ex­
tended to include these techniques. Thanks also go out 
to the reviewers for their comments and suggestions. 

REFERENCES 

[1] Amanatides, J . Ray tracing with cones. Computer 
Graphics, vol. 18(3), (July 1984), pp. 129-135. 

[2] Cook, R. L. Stochastic sampling in computer graph­
ics. ACM Transactions on Graphics, vol. 5(1), (Jan­
uary 1986), pp. 51-72. 

[3] Cook, R. L., Porter, T., and Carpenter, L. Dis­
tributed ray tracing. Computer Graphics, vol. 18(3), 
(July 1984), pp. 137-145. 

[4] Dippe, M. A. Z. , and Wold, E. H. Antialiasing 
through stochastic sampling. Computer Graphics, 
vol. 19(3), (July 1985), pp. 69-78. 

[5] Foley, J . D., van Dam, A., Feiner, S. K., and Hughes, 
J . Computer Graphics: Principles and Practice, 
2nd ed. Addison-Wesley, Reading, Mass., 1990. 

[6] Genetti, J. Cone-object intersections for adaptive 
supersampling in object space . . Tech. Rep. TR93-
018, Texas A&M University, March 1993. 

[7] Glassner, A. S., Ed. An Introduction to Ray Tracing. 
Academic Press, London, 1989. 

[8] Heckbert, P. S. Adaptive radiosity textures for bidi­
rectional ray tracing. Computer Graphics, vol. 24(4) , 
(July 1990), pp. 145- 154. 

[9] Heckbert, P. S., and Hanrahan, P. Beam tracing 
polygonal objects. Computer Graphics, vol. 18(3), 
(July 1984), pp. 119-127. 

[10] Lee, M. E., Redner, R. A., and Uselton, S. P. Statisti­
cally optimized sampling for distributed ray tracing. 
Computer Graphics, vol. 19(3), (July 1985), pp. 61-
65. 

[11] Mitchell, D. P. Generating antialiased images at low 
sampling densities. Computer Graphics, vol. 21(4), 
(July 1987), pp. 65- 72 . 

[12] Mitchell, D. P. The antialiasing problem in ray trac­
ing. In SIGGRAPH '90 Course Notes (New York, 
August 1990), vol. 24 , ACM. 

[13] Ohta, M., and Maekawa, M. Ray-bound tracing for 
perfect and efficient anti-aliasing. The Visual Com­
puter, vol. 6(3) , (June 1990), pp. 125-133. 

[14] Painter, J., and Sloan, K. Antialiased ray tracing by 
adaptive progressive refinement. Computer Graph­
ics, vol. 23(3), (August 1989), pp. 281- 288. 

[15] Thomas, D., Netravali, A. N., and Fox, D. S. An­
tialiased ray tracing with covers. Comput. Graph. 
Forum, vol. 8(4), (December 1989), pp. 325-336. 

[16] Whitted, T. An improved illumination model for 
shaded display. Communications of the ACM, vol. 
23(6), (June 1980) , pp. 343-349. 

[17] Yellot, Jr., J. I. Spectral consequences of photore­
ceptor sampling in the rhesus retina. Science, vol. 
221 , (1983) , pp. 382- 385. 

Graphics Interface '93 



76 

Figure 6: Shadows cast from primitives using ASOS(HAX=4). Upper left-antialiased point light. Lower left­
spherical light. Upper right-linear light. Lower right- rectangular light. 

Figure 7: Victorian house rendered using ASOS(HAX=4,random 4-pyrays). 

~ Graphics Interface '93 



77 

Figure 8: Office scene. Upper left-ASOS(MU=3). Lower left-ASOS(MAI=3,random 3-pyrays). Upper right-3x3 
stochastic sampling. Lower right--4x4 stochastic sampling. 

Figure 9: Frame from "Shadow of a Doubt" rendered using ASOS(IUI=2,random 2-pyrays). 

Graphics Interface '93 ~ 


