
78

An Adaptive Discretization Method for Progressive Radiosity

Paul Lalonde
Department of Computer Science *

6356 Agricultural Road - Room 333
University of British Columbia

Vancouver, B.C. Canada V6T lZ2

Abstract

The solutions of the radiosity method are highly de­
pendent on the discretization used . All methods
used to generate these discretizations have to date
depended upon the scene being formed of polygonal
faces. However, these are often not the most efficient
representations of the objects. The meshing process
usually only takes geometry into account, making
shadow edges awkward to deal with . In addition,
there are a number of restrictions that the radios­
ity method requires of the model that most available
modellers do not enforce.

The method presented here allows non-polygonal
objects to be used as input to a progressive radiosity
method. The environment is sampled by ray casting,
removing the need for a polygonal representation to
be provided. The method allows the generation of
a discretization that is sensitive to lighting changes,
not only to geometric constraints. One effect of this
is that higher order discontinuities in surface lighting
are detected and the discretization can be focused in
these areas without user intervention.

Resume
Les solutions des methodes de radiosite sont tres
dependantes de la discretisation utilisee. Toutes
les methodes utilisees a date pour creer ces
discretisations dependent de la representation de la
scene par des polygones, ce qui n 'est que rarement la
rep'resentation la plus efficace. De plus, le processus
pour generer la grille porte sou vent seulement atten­
tion a la geometrie, ce qui cause des difficultes pour
trouver la limite des ombrages. Il y a aussi un nom­
bre de contraintes que la methode de radiosite impose
sur les modeles que la plupart des modelisateurs ne
garantissent pas.

La methode presentee permet d'utiliser des ob­
jets non-polygonaux avec une methode de radiosite

"This work was done in the Department of Computing and
Information Science at Queen's University

progressive. La scene est echantillonnee par lancer
de rayons, ce qui enleve la contrainte des scenes
polygonales. La methode cree une discretisation
dependante des changements d'illumination en plus
de la geometrie. Vne consequence de ceci est que
les discontil1uites d 'illumination d 'ordre superieure
d 'une surface peuvent etre detectees et l'effort de
discretisation peut etre concentre dans ces regions.

Keywords: Radiosity, automatic meshing, pro­
gressive radiosity, automatic discretization, triangu­
lation

1 Introduction

Interreflection between surfaces plays an important
role in indoor lighting . Without indirect lighting al­
most everything in a room would be completely black .
But in reality we can look under tables and still find
enough light to see a dropped pencil , this light com­
ing from reflections off other surfaces in the environ­
ment. The reason that light-tinted paints seem to
make a room larger is that light colours reflect more
energy, causing brighter interreflections and so more
light to see by. Vnsurprisingly, scenes rendered with­
out accounting for these interreflection effects look
unnatural.

One way to solve the interreflection problem is the
radiosity method. Adapted from the thermal engi­
neering literature [10, 11], the radiosity algorithm
works by calculating the diffuse energy transfers be­
tween the surfaces of the scene. To do this the sur­
faces are discretized into a mesh, the energy transfer
being solved over this mesh. Each element of the
mesh is assumed to have constant illumination and
reflectance over its area.

1.1 The Radiosity Algorithm

Considering only diffuse reflection makes the amount
of reflected light dependent only on the angle of in-

Graphics Interface '93

79

cidence of the light, as described by Lambert's law,
lr = liP cos Oi. The radiosity method works by build­
ing a system of equations relating the radiosity of
each surface element, measured as energy per unit
area per unit time, in a scene to every other element.
Light sources emit light, also measured as energy per
unit area per unit time. Both can be thought of as
the brightness or intensity of light. The radiosity
method also assumes that all light-surface interac­
tions are Lambertian in nature. These interactions
can be written down as

where the terms are

Bi the r adiosi ty of differen tial area Ai;

Ei the emission of dA i ;

Pi the reflecti vi ty of dAi;

Fj i the form factor, relating the fraction of energy
leaving dAj arriving at dAi

The solution of Equation 1 for all dAi's gives the
radiosity at every point. Since it is usually not pos­
sible to evaluate this expression directly it is usually
discretized and solved numerically.

1.1.1 Full Matrix Radiosity

Assuming that each element Ai has a constant radios­
ity and reflectance over its surface gives the system

BiAi = EiAi + Pi L B j FjiAj (2)
j

This can be simplified by noting that reversing the
indices of two elements does not change the relative
fractions of energy received by one from the other,
that is to say Fij Ai = FjiAj, which implies that Fij =
FjiAj/Ai. We can then divide Equation 2 through by
Ai to obtain

Bi = Ei + Pi LBjFij
j

(3)

This can then solved for B as a large system of linear
equations, (I - pF)B = E using a Gauss Seidel [4]
iterative method [5] .

1.1.2 Progressive Radiosity

The full matrix radiosity method requires O(n2)

space and O(n 2) time to compute, where n is the
number of elements in the discretization, because the

matrix to solve is composed from a form factor for
each pair of elements, and the Gauss-Seidel method
works in O(n2) time. An alternative method has been
developed [3] . Their progressive method casts light
from each element, removing the requirement to store
O(n 2) form factors to solve the system of equations ,
by computing the form factors as they are needed.

The method works by keeping track of how much
radiant energy an element has received that it has not
re-radiated. The element with the most unradiated
radiosity is selected and its energy cast to every other
element in the scene. The element with next greatest
radiosity is then selected to cast its unradiated ra­
diosity, and the process repeats until the unshot ra­
diosity the system drops below some tolerance. This
method has the advantage of generating a passable
image very quickly while converging to solution after
more iterations. Also , there is no need to store the
matrix of form factors ; rather , they are calculated
every time they are needed. This makes a complete
solution less efficient to calculate, as the form factor
calculations are expensive and must be repeated, but
the method yields useful images earlier in the process,
at interactive rates.

One limitation to these radiosity techniques is that
the scene must be discretized to solve the equations.
This can be problematic because many objects are
not easily or efficiently described by polygons, so
their discretizations use much more storage space
than their parametric definition. A second limitation
caused by the need for the discretization is that gen­
erating quality images requires a great deal of human
interaction . The models generated by most modellers
are inadequate as meshes for the radiosity method
since many of the restrictions on the mesh that are
required for a good radiosity solution are not enforced
by the modeller. Thus such a user must be familiar
with the workings of the radiosity method in order to
manually adjust the model. This makes the radios­
ity method much less useful to the professionals who
should be benefiting from it most , such as architects
and designers.

This paper presents a method by which a mesh can
be generated automatically, without user interven­
tion. The method also allows non-polygonal objects
to be used in the model, without having to discretize
them explicitly into polygons before beginning the
rendering process.

2 Previous Work

Campbell and Fussell approached the problem of
subdividing the scene from a purely geometric

Graphics Interface '93

standpoint[8]. They used BSP (Binary Space Par­
titioning) trees to detect projections of edges in the
scene, thus finding lines upon which discontinuities
in shading may occur. The method relies on the BSP
representation of the scene, limiting environments to
polygons.

Baum et al. developed a system in which the poly­
gons in an environment could be subdivided if the
shading at the vertices of the polygons is too differ­
ent [1]. Upon detection 6f polygons with excessively
high shading gradients these would be subdivided and
new vertices interpolated. Their method also detects
cases in which the input geometry violates the model
requirements imposed by the radiosity method and
corrects the model. Again, their method is dependent
on a polygonal representation of the environment .

2.1 Failings

The methods presented depend upon a polygonal rep­
resentation of the scene geometry. Each object must
be decomposable into a set of polygonal faces. How­
ever, many objects exist that are not easily convert­
ible to polygonal representations. It would be useful
to be able to use any implicit surface without having
to provide means of subdividing it.

Many objects are also very expensive to represent
as polygons, for instance, those objects that are mod­
eled as swept curves. Using each facet of such an
object in the radiosity solution is expensive, since
the storage and time costs of the radiosity method
are O(n2) with respect to the number of elements .
There are cases in which complex objects are hidden
deep in shadow, contributing little to the scene. But
these still require expensive form factor calculations
to each facet, when only a few coarse patches could
have provided adequate accuracy.

It would be useful to store objects in a simple form
that is easy to manipulate and is independent of the
discretization used by the radiosity method . The dis­
cretization should be generated without regard to the
kind of geometric primitives that model the scene,
using instead a metric based on lighting and illumi­
nation gradients over the scene, which in turn are
dependent on the geometry.

3 Adaptive Illumination-
Based SubdiVIsion

The method presented here generates a discretiza­
tion based on the difference in lighting, orientation
and curvature of surfaces. Careful choice of the fea­
ture space allows objects to be discretized as nec-

80

essary in order to obtain good shading definition .
The geometry is sampled, but is not the only ba­
sis for the discretization. Since ray tracing is used to
sample the scene the true geometry can be used to
test for occlusions in form factor calculations . Like­
wise, the resampling step that generates the image
for display can be performed using the true geome­
try, while gathering lighting information from the dis­
cretized environment. This removes silhouetting ar­
tifacts caused by curved objects being approximated
by a series of polygons from the generated image. The
mesh is formed using visibility information from each
vertex, causing the mesh to be based on the whole
objects rather than on the artifacts generated in the
modelling process, such as patch boundaries within a
polygonal representation of a swept surface .

3.1 Criteria for Discretization

Before selecting a discretization method it is impor­
tant to understand what is required from the result­
ing discretization mesh . As mentioned above the
mesh should not be entirely dependent on the geom­
etry of the objects being discretized . The discretiza­
tion should allow elements to span multiple objects,
generating element boundaries where . discontinuities
occur in the illumination on surfaces and not exclu­
sively in the provided representation of the geometry.
By doing this a smaller mesh can be generated that
better covers the scene. It would also be beneficial
if the discretization allowed storage of radiosities at
vertices rather than with the elements, to facilitate
resampling [12] . The method should make it easy
to build the discretization adaptively, refining it as
more information about lighting and shading discon­
tinuities becomes available .

Also, the method used to generate the discretiza­
tion should place a higher priority on discretizing
those parts of the scene that will generate the greatest
increase in accuracy for work expended. If the discon­
tinuities visible from every emitting and re-emitting
element could be detected and included in the dis­
cretization at each step of the progressive radiosity
solution, a very accurate result could be obtained.
The discretization could then be built in such a way
that the objects receiving light from the most impor­
tant emitters would be discretized where the most
change occurred [6] . The high cost of applying the
radiosity method makes this particularly important
if near-interactive run-times are required .

Graphics Interface '93

81

3.2 Discretization by Point Sampling

Many of these goals can be addressed by building a
triangulation of the environment from sample points
that are generated by ray casting. A triangulation
was selected as the discretization because it is sim­
ple to work with: all its elements are convex poly­
gons, and all neighbours sharing an edge of a triangle
are connected to the triangle at two of the three ver­
tices of the triangle (making adjacency checks easy
while keeping the data structures simple) . These
properties are more difficult to maintain with quadri­
laterals or other higher-order polygon meshes. Us­
ing a progressive-radiosity algorithm it is possible to
provide a discretization that is sensitive to the ele­
ments emitting and reflecting light [1] . Since errors
in the early stages of the progressive method propa­
gate more extensively than those in later stages, due
to the monotonic nature of the progressive method,
it is important that the early stages be as accurate
as possible. Biasing the discretization to be more re­
sponsive to the discontinuities, as well as continuous
changes caused by stronger emitters, helps to reduce
errors in the early passes of the progressive method.

The discretization process presented herein works
in tight consort with the progressive radiosity algo­
rithm. At each progressive radiosity step many rays
are cast from the current emitter's vertices to identify
discontinuities. The intersections of these rays with
both the environment and the growing triangulation
are recorded, along with the normals of intersection
and the surface properties. These are then tested to
determine if their addition to the triangulation would
be beneficial to the solution obtained.

By considering all points of intersection along a
ray rather than just the first point it is possible to
detect and discretize areas that fall in shadow. This
is important to the accurate generation of elements
along shadow boundaries. If this is not done then no
triangulation vertices will be created where shadows
fall, leading to poorly defined shadows as no elements
will span the shadow boundaries. By comparing the
intersections with the real environment to those with
the discretization it is also possible to detect features
such as bumps, holes, and discontinuities that are
inadequately represented by an existing element of
the triangulation . The following sections will address
the details of generating this discretization .

3.2.1 The Progressive Refinement Algorithm

The modified progressive radiosity algorithm works
as follows ; the steps are explained in detail in the next
few subsections. The triangulation starts empty.

Procedure Radiosity
Discretize light sources into triangles
Refine from the eye, as described in Section 3.2.6
T +- brightest triangle
While (the solution has not converged)

For each vertex V of the triangulation ~ T
Calculate new vertex radiosities

V.~B +- V.p * T .B * FV_T

V.B +- V.B + V.~B
End for

Refine the discretization from current element
Refine(T)
T.~B +- 0
For each triangle R of the triangulation

Calculate triangle radiosities
R.~B +-Average of R 's vertices's ~ radiosities
RB +- RB + R~B
If (Vertex ~B's are too different) then split(R)
If (R~B > T.~B) then T +- R

End for
End while

The principal changes are in the addition of the
eye pass and the refinement step before calculating
triangle radiosities . The refinement step assures that
a sufficient discretization is formed relative to the cur­
rent emitter, T . Once the method has converged to
a solution, a resampling step from the view point is
applied to complete the coverage of the triangulation
seen from the view point and to generate the image.

3.2.2 Maintaining the Triangulation

As the triangulation develops, the mesh generation
algorithm attempts to enforce five restrictive rules:

1. No edge in the triangulation will be longer than
some 8.

2. No triangle will be smaller in area than some Ll .

3. Any vertex v' of the triangulation must be as­
sociated with a point v in the scene, so that the
triangulation retains some resemblance to the ac­
tual scene.

4. The normals associated with the point v asso­
ciated with any vertex Vi of a triangle must be
within some tolerance O'n of the normals of the
points associated with the other vertices of that
triangle.

5. During any iteration of the progressive radios­
ity method, the delta radiosity (llB) associated
with any vertex of a triangle must be no more
than some factor 0'. from the llB's for any other
vertex of that triangle.

When restrictions conflict, the lower numbered
ones hold first . For instance, if application of Rule 5
indicates that a new triangle should be created, but

Graphics Interface '93 ~

its area would be smaller than ~, then Rule 2 takes
precedence and Rule 5 is not enforced.

This set of restrictions gives certain guarantees
about the solutions. The maximum edge length guar­
antees that no excessively large elements are gener­
ated. It also allows the algorithm to search for neigh­
bouring vertices in a limited neighbourhood rather
than searching the entire discretization, significantly
decreasing the running time of the implementation.

The minimum triangle size guarantees that no el­
ements will be generated that are excessively small,
leading to overly expensive solutions. This can hap­
pen in areas with a high shading gradient and at
discontinuities. Making sure that each vertex of the
triangulation is associated with a point in the scene
guarantees that the surface information at each point
of the triangulation properly represents the underly­
ing scene. The last two requirements guarantee that
triangles formed on shading discontinuities and on
areas with high shading gradients will be split into
more triangles, allowing these discontinuities to be
properly represented in the discretization. In practice
the delta radiosities are thresholded so that triangles
dimly lit by an emitter are not needlessly split.

The triangulation is built incrementally, adding
non-intersecting edges into the mesh and connect­
ing them into three-cycles to make triangles . While
building the triangulation a possible edge list is main­
tained. This list records all edges that are in the
triangulation as well as any edge connecting two ver­
tices that are not at the time part of a three-cycle to
be connected into triangles . This list is used both to
verify that any new edges do not cross any previously
built edges, and to search for three-cycles of edges to
be added to the triangulation.

To insert a point into the triangulation, a new ver­
tex v is generated to correspond with the scene inter­
section generated by ray casting; the surface proper­
ties and normal of the vertex are those of the corre­
sponding point in the scene. Each vertex w within
a radius of 5 is recorded, and each segment vw is
tested against the segments of the possible edge list
originating from a vertex within 45 for intersection.
Any edge that can intersect an edge of length 5 with
vertex v must have an end point within this radius . If
no intersection is found, the edge vw is added to the
possible edge list . Once all such edges are added, they
are searched for three-cycles which include v and any
such cycle is added as a triangle in the triangulation .
To increase the speed of the searches the vertices are
stored in a regular grid data structure so that only a
few voxels need to be searched to find end points of
edges within a given radius.

82

3.2.3 The Refinement Ste p

The refinement step works by casting rays from each
corner of the current emitting element into both the
scene and the discretization. All points of intersec­
tion are recorded and tested for inclusion into the
triangulation . The refinement step is given by the
following algorithm.

Procedure Refine(T)
For each verte x V of T

While (more refinement is needed)
Generate a new ray

R <- new-ray(V)
Get all intersections with scene

I. +- Rn Scene
Id +- Rn Discretization
Merge lists I. and Id, pairwise by distance

Possibly change the triangulation
For each pair I.i,!di

If (I .i is a dummy intersection) then
remove-from- triangulation (T)

If (Idi is a dummy intersection) then
extend- triangulation(I di)

If (both I.i and Idi are real) then
refine-triangulation(T,I' i ,Idi)

End for
End while

End for

First a ray is generated ; then it is intersected with
both the scene and the discretization ; and then the
list of intersections is traversed to see if any of the
points of intersection need to be added to the dis­
cretization. The distribution of the sample rays gen­
erated will be covered in Section 4. For the time be­
ing it is sufficient to note that the rays must somehow
cover the hemisphere visible from the current emitter.
Modifying the distribution affects the efficiency and
accuracy of the solutions generated by the presented
method.

Once generated, the intersection lists Is (scene in­
tersections) and Id (discretization intersections) must
be paired by distance. If a scene intersection and a
discretization intersection are sufficiently close to one
another relative to the distance from the origin of the
intersecting ray, then they are paired . This simple
distance heuristic can be wrong in ' situations where
surfaces are very close to one another , choosing the
wrong triangulation intersection to associate with the
geometry intersection. (Consider, for example, Fig­
ure 1.) Experimental results have, however, shown
this heuristic to be adequate .

Given this list of intersections it is then possible to
start modifying the triangulation . Each pair of in­
tersections (I'i , Idi) must be tested for one of three
cases . If there is an intersection Is. with the scene and
there is no corresponding intersection with the trian­
gulation Id., then the triangulation must be extended

Graphic s Interface '93

83

Figure 1: I. may be paired with the discretization
intersection Id because the line segment has no dis­
cretization built on it, and Id is close enough to be
accepted by the distance heuristic.

to include the new point. If there is a triangulation
intersection but no intersection with the scene, then
the triangle intersected does not adequately represent
the scene at that point and the triangle must be de­
stroyed. If both exist, then the points must be tested
to see if the triangulation needs to be refined or if it
is adequate in its current state.

3.2.4 Removing Triangles

In the case where there is a discretization intersec­
tion without a scene intersection, the triangle inter­
sected must be removed from the triangulation . This
is caused by the scene being inadequately represented
by the triangulation at that point, such as in cases
where inadequate sampling caused a triangle to be
built over a hole or around a steep peak in either
the geometry or the illumination. This can be done
by simply removing the triangle from the discretiza­
tion. The edges should remain in the possible edge
list since they may be useful for adding future trian­
gles and will not hinder future progress.

3.2.5 Triangle Refinement

After each refinement step every triangle is examined
to determine if the vertex delta radiosities due to the
current emitter are within a tolerance cx, from their
neighbours ; this tolerance is also weighted by the im­
portance of the change in radiosity at the element
due to the current emitter relative to the element's
radiosity. If they are, and the triangle is not already
smaller than the user supplied limit Ll, then the tri­
angle needs to be split, by adding a new vertex in the
triangle, correcting the triangulation in that neigh­
bourhood and interpolating the accumulated radios­
ity at that vertex from its neighbours . Care must be
taken at this stage that the new vertex inserted into
the triangulation corresponds to a point in the scene.
This can be done by casting a ray toward the center

of the triangle to be subdivided and using the point
of intersection as the new vertex of the triangulation.

3.2.6 The Eye Pass

Although the method presented herein could be used
to generate a solution independent of the viewpoint,
the method can benefit greatly from a refinement step
from the view point . This eye pass identifies geo­
metric discontinuities that are visible from the view
point, and generates a more pleasing solution with
fewer gaps left to be interpolated in the resampling
step by assuring a better coverage of the image plane
with triangles. Without this step the discretization
visible from the view point will contain many gaps
that require expensive and inaccurate interpolation
during the resampling step.

This refinement step can be done at a fairly fine
level - the number of added triangles is small com­
pared to the final number of triangles, and the cost
of one refinement step is small compared to the cost
of the complete solution.

There is one major difference between this refine­
ment pass and all the others: there is no light being
emitted from the eye, so all the tests on vertex and
triangle delta radiosities cannot be used. This lim­
its the information available to the triangulation al­
gorithm to local geometric information . Other than
this, the eye pass proceeds identically to the other
refinement passes.

3.3 Form Factor Calculation

Form factors are needed each time a new delta ra­
diosity is calculated, which occurs at several stages .
The Form Factors are calculated from the differential
areas at the vertices of the triangulation, dA j , to the
current emitting element, Ai, which may be adap­
tively subdivided. Occlusion is tested by casting rays
through the scene, testing against the true geometry
rather than the triangulated environment . The form
factor from a vertex to a polygon can be calculated
using the following equation , given the geometry of
Figure 2.

(4)

where

1. G i is the set of edges of surface i,

2. Nj is the normal of differential area j, and

3. r 9 is a vector with length equal to the angle I
expressed in radians , and perpendicular to the
plane of Rg and Rg+ 1 .

Graphics Interface '93 -~

Figure 2: Geometry of analytic form factor

A detailed derivation can be found in [7] . Baum et
al. make use of this form [2], but neglect to observe
that the vector r 9 is given by the cross product of the
normalized vectors Rg and Rg+l , which are already
available from the occlusion test calculations. Occlu­
sion is tested by casting rays to the emitter corners
from the receiving vertex, and if needed the emitter
can be subdvided to increase the accuracy of the so­
lution, as was done by Wall ace et al. in [12].

3.3.1 Resampling

Generating an image from the radiosities stored in
the discretization is done by casting rays at the scene,
much the same way as ray tracing works . However,
rather than casting shadow rays, a ray is cast into
the discretization and the intersections paired, as in
section 3.2.3 . If there is a scene intersection and no
discretization intersection then the · triangulation is
extended, and a radiosity value extrapolated from
the vertices of the triangles to which the point was
connected, weighted by the length of the connecting
edg.e and its angular coverage. This value is then
used to shade the pixel. Though this interpolation
is innacurate very few are actually needed if the eye
pass provided a good coverage of the scene visible
from the eye. If there is a discretization intersection
and no scene intersection, then the· intersection must
be discarded. If both exist, then the radiosity value
is interpolated from the triangle hit. This value is
returned to shade the pixel.

84

4 Sample Generation

The method used to generate the sample rays has
an important impact on the efficiency of the algo­
rithm and quality of the results. A small number of
rays should provide an adequate discretization, while
adding more rays should further refine it . More work
should be spent discretizing the environment along
shading discontinuities caused by the most important
emitters and reflectors . It is also beneficial that more
work be spent on parts of the scene that receive the
most light from the sources and bright re-emitters ,
since these are evaluated early in the solution process,
and they propagate more error through the solution
than elements that cast their energy later in the pro­
cess, as these elements are dimmer and so contribute
less to the global lighting.

4.1 Uniform Distribution

A regular distribution of rays through the hemisphere
above an element (called the visible hemisphere) does
not satisfy these needs . Such a method requires that
a fixed number of rays be cast, and lends itself to
various aliasing problems, as described in [2] . A fur­
ther failing is that the same amount of work is spent
discretizing regions near the horizon, where less light
will be received . Because these surfaces receive less
light, errors made at the horizon will not be as im­
portant those made where more light is cast.

4.2 Importance-Based Distributions

Two of these problems can be overcome using a distri­
bution proposed in [9] . The method distributes "jit­
tered" samples on a unit circle centered at the source
vertex. Jittered samples are generated by taking reg­
ularly distributed points on a grid and perturbing
their positions by as much as half the interval be­
tween points. These points are then projected to a
unit hemisphere above the source and rays are gener­
ated passing through the source vertex and the pro­
jected grid point . The sample density over the visible
hemisphere is proportional to the cosine of the angle
from the tangent to the surface to the sample point
(which is the same relationship described by Lam­
bert's law) thereby generating more rays where more
of the emitter's light will be distributed. The density
of the rays at different elevations on the hemisphere
is proportional to the magnitude of the form factor to
an element normal to the ray at the same elevation.
Thus more samples are cast where more energy will
be distributed, leading to more accurate solutions.
The jittering also provides a means of anti-aliasing,

Graphics Interface ' 93

85

6\03 1.0 1.5 5.0
0.1 9056 8292 6237
0.15 8157 4468
0.2 7256 3438
0.3 7851 2787

Table 1: Number of Discretization Elements for var­
ious values of 0 3 and 6 at iteration 25

converting aliasing effects to noise.
There is one deficiency inherent in the sampling

method: small objects can easily be missed, causing
some shadows to be missed. This can be partially
addressed by forcing a minimum number of samples
to be cast from each vertex. These initial samples
can then be uniformly distributed or jittered, to try
to obtain a good first cut of the discretization. A
better solution is to generate the rays adaptively, but
a treatment of adaptive sampling is beyond the scope
of this paper.

5 Results and Discussion

The method described in Section 3 was implemented
as a preprocessing pass to a ray tracer, RayShade1 .

A sample environment consisting of a room 1 me­
ter on a side, with a sphere of 10 cm diameter resting
upon a cylinder of the same diameter, 30 cm tall. A
0.01 m2 light source was placed in the ceiling. This
scene was rendered with different values for the pa­
rameters 6, the maximal edge length in the triangu­
lation, and 0 3 , the maximum allowable difference in
intensity at each vertex of a triangle. Figures 3 (a)­
(b) show the scene rendered for different values of 6.
A longer edge length in the triangulation generates a
number of long, thin polygons, causing noise in the
images. Figure 3 (c) shows the triangulation gener­
ated after 800 iterations with 0 = 0.1 and 0, = 2.0 .
Table 1 gives the number of triangles generated at
various values of 0 3 and o.

5.1 Failings

The restriction allowing only point sampling of the
environment is artificial and causes some diffic.ulties.
Starting without a mesh causes the early stages of
the solution to be very inaccurate, often requiring
that the energy transfer process be restarted after
a few iterations because accumulated errors are too

1 RayShade is a public domain ray tracer written by Craig
Kolb. It is available on several internet ftp sites.

large. The extrapolation of lighting values to ver­
tices outside the existing triangulation is simply too
error prone. Restarting the energy transfer process
with the built triangulation addresses this partially.
The images in figures 3 and 4 were computed with­
out this fix to better illustrate the problem. A better
solution may be to use available geometric informa­
tion to generate a coarse discretization to be further
refined, perhaps using heuristics similar to those de­
scribed in [1]. However, doing this removes part of
the flexibility of the presented method by requiring a
discretization of the objects a priori.

Another failing of the current implementation is
that the number of elements generated is not effi­
ciently bounded; it has proven necessary to limit the
number of elements generated in order to keep the
method fast. Although the number of elements gen­
erated in each successive iteration tends to become
smaller, no practical metric has been developed that
will detect when further discretization is futile. The
current implementation simply tries to find regions to
discretize where none exists, thus wasting computing
time.

6 Conclusion

6.1 Summary

The discretization method presented allows the use of
non-polygonal geometries with the progressive radios­
ity method, without requiring an a priori subdivision
of the scene into polygons. The method uses point
sampling to identify discontinuities in shading, and
areas with a large illumination gradients caused by
important sources in the scene. The elements used in
the discretization are linear interpolants rather than
constant elements, yielding more pleasing penumbrae
at shadow edges rather than the sharp discontinuities
associated with other radiosity algorithms. The dis­
cretization also allows the true geometry to be used in
all occlusion tests and in the resampling step, yielding
true object outlines rather than polygonal approxi­
mations.

6.2 Future Work

The results generated by the presented method are
highly dependent on the method used to generate the
sample rays that are used to probe the environment.
More research needs to be done on the effects of dif­
ferent sampling methodologies on the discretization
obtained. In particular some form of adaptive sam­
pling appears to be very important. Making more

Graphics Interface '93

86

a. b. c.

Figure 3: Two renderings of a simple scene (ex. = 2.0, 5 = 0.1) at (a) 50 iterations, (b) 800 iterations, and
(c) the generated mesh. Note the accumulation of errors arround the base of the pedestal and the equator
of the sphere.

efficient use of rays cast will yield both shorter run
times and more efficient discretizations.

Another useful path of investigation would be al­
ternate triangulations . It should be possible to main­
tain a triangulation with a larger area to perimeter
ratio than the current implementation does. Such a
triangulation would help reduce the error caused by
the long thin triangles currently generated when the
5 parameter is too large.

6.3 Acknowledgements

Thanks to David Rappaport and Randy Ellis for su­
pervising the Master's thesis from which this work
is chiefly adapted. Funding for this research was
provided the Ontario Graduate Scholarship Program
and the Natural Sciences and Engineering Research
Council.

References

[1] Daniel R. Baum, Stephen Mann , Kevin P. Smith,
and James M. Winget . Making radiosity usable :
Automatic preprocessing and meshing techniques
for the generation of accurate radiosity solutions.
Compute r Graphics (SIGGRAPH '91 Proceedings),
2~(4):51-60, July 1991.

[2] Daniel R. Baum , Holly E. Rushm eier , and James M.
Winget. Improving radiosity solutions through
the use of analytically determin ed form-factors.
Co mputer Graphics (SIGGRAPH '89 Proceedings),
23(3):325-334, July 1989. •

[3] Michael F . Cohen, Shenchang Eric Chen, John R.
Wallace, and Donald P . Greenberg. A progressive

refinement approach to fast radiosity image genera­
tion. Computer Graphics (SIGGRAPH '88 Proceed­
ings), 22(4):75-84, August 1988.

[4] Gene H. Golub and Charles F . Van Loan . Matrix
Co mputations. The John Hopkins University Press,
1983.

[5] Cindy M. Goral, Kenneth E. Torrance, Donald P.
Greenberg, and Benett Battaile . Modeling the inter­
action of light between diffuse surfaces. Computer
Graphics (SIGGRAPH '84 Proceedings) , 18(3):213-
222, July 1984.

[6] Paul Heckbert . Simulating Global nlumination Using
Adaptive Meshing. PhD thesis, University of Califor­
nia, Berkeley, Computer Science Division, June 1991.

[7] Hoyt C. Hottel and Adel F. Sarofim. Radiative
Transfer. McGraw-Hill , 1967.

[8] A. T . Campbell III and Donald S. Fussel. Adaptive
mes h generation for global illumination. Computer
Graphics (SIGGRAPH '90 Proceedings) , 24(4):155-
164, August 1990.

[9] Thomas M alley. A shading method for computer
generated images. Master's thesis , The University of
Utah, 1988.

[10] Robert Siegel and John R. Howell. Thermal Radi­
ation Heat Transf er. Hemisphere Publishing Corp.,
Washington DC, 1981.

[11] Ephraim M . Sparrow and Robert D. Cess. Radiation
Heat Transfer. Hemisphere Publishing Corp., 1978.

[12] John R. Wallace, Kells A. Elmquist, and Eric A.
Haines. A ray tracing algorithm for progressive ra­
diosity. Computer Graphics (SIGGRAPH '89 PI"O­
ceedings) , 23(3):315-324, July 1989.

Graphics Interface '93

