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Abstract 

The solutions of the radiosity method are highly de­
pendent on the discretization used . All methods 
used to generate these discretizations have to date 
depended upon the scene being formed of polygonal 
faces. However, these are often not the most efficient 
representations of the objects. The meshing process 
usually only takes geometry into account, making 
shadow edges awkward to deal with . In addition, 
there are a number of restrictions that the radios­
ity method requires of the model that most available 
modellers do not enforce. 

The method presented here allows non-polygonal 
objects to be used as input to a progressive radiosity 
method. The environment is sampled by ray casting, 
removing the need for a polygonal representation to 
be provided. The method allows the generation of 
a discretization that is sensitive to lighting changes, 
not only to geometric constraints. One effect of this 
is that higher order discontinuities in surface lighting 
are detected and the discretization can be focused in 
these areas without user intervention. 

Resume 
Les solutions des methodes de radiosite sont tres 
dependantes de la discretisation utilisee. Toutes 
les methodes utilisees a date pour creer ces 
discretisations dependent de la representation de la 
scene par des polygones, ce qui n 'est que rarement la 
rep'resentation la plus efficace. De plus, le processus 
pour generer la grille porte sou vent seulement atten­
tion a la geometrie, ce qui cause des difficultes pour 
trouver la limite des ombrages. Il y a aussi un nom­
bre de contraintes que la methode de radiosite impose 
sur les modeles que la plupart des modelisateurs ne 
garantissent pas. 

La methode presentee permet d'utiliser des ob­
jets non-polygonaux avec une methode de radiosite 
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Information Science at Queen's University 

progressive. La scene est echantillonnee par lancer 
de rayons, ce qui enleve la contrainte des scenes 
polygonales. La methode cree une discretisation 
dependante des changements d'illumination en plus 
de la geometrie. Vne consequence de ceci est que 
les discontil1uites d 'illumination d 'ordre superieure 
d 'une surface peuvent etre detectees et l'effort de 
discretisation peut etre concentre dans ces regions. 

Keywords: Radiosity, automatic meshing, pro­
gressive radiosity, automatic discretization, triangu­
lation 

1 Introduction 

Interreflection between surfaces plays an important 
role in indoor lighting . Without indirect lighting al­
most everything in a room would be completely black . 
But in reality we can look under tables and still find 
enough light to see a dropped pencil , this light com­
ing from reflections off other surfaces in the environ­
ment. The reason that light-tinted paints seem to 
make a room larger is that light colours reflect more 
energy, causing brighter interreflections and so more 
light to see by. Vnsurprisingly, scenes rendered with­
out accounting for these interreflection effects look 
unnatural. 

One way to solve the interreflection problem is the 
radiosity method. Adapted from the thermal engi­
neering literature [10, 11], the radiosity algorithm 
works by calculating the diffuse energy transfers be­
tween the surfaces of the scene. To do this the sur­
faces are discretized into a mesh, the energy transfer 
being solved over this mesh. Each element of the 
mesh is assumed to have constant illumination and 
reflectance over its area. 

1.1 The Radiosity Algorithm 

Considering only diffuse reflection makes the amount 
of reflected light dependent only on the angle of in-
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cidence of the light, as described by Lambert's law, 
lr = liP cos Oi. The radiosity method works by build­
ing a system of equations relating the radiosity of 
each surface element, measured as energy per unit 
area per unit time, in a scene to every other element. 
Light sources emit light, also measured as energy per 
unit area per unit time. Both can be thought of as 
the brightness or intensity of light. The radiosity 
method also assumes that all light-surface interac­
tions are Lambertian in nature. These interactions 
can be written down as 

where the terms are 

Bi the r adiosi ty of differen tial area Ai; 

Ei the emission of dA i ; 

Pi the reflecti vi ty of dAi; 

Fj i the form factor, relating the fraction of energy 
leaving dAj arriving at dAi 

The solution of Equation 1 for all dAi's gives the 
radiosity at every point. Since it is usually not pos­
sible to evaluate this expression directly it is usually 
discretized and solved numerically. 

1.1.1 Full Matrix Radiosity 

Assuming that each element Ai has a constant radios­
ity and reflectance over its surface gives the system 

BiAi = EiAi + Pi L B j FjiAj (2) 
j 

This can be simplified by noting that reversing the 
indices of two elements does not change the relative 
fractions of energy received by one from the other, 
that is to say Fij Ai = FjiAj, which implies that Fij = 
FjiAj/Ai. We can then divide Equation 2 through by 
Ai to obtain 

Bi = Ei + Pi LBjFij 
j 

(3) 

This can then solved for B as a large system of linear 
equations, (I - pF)B = E using a Gauss Seidel [4] 
iterative method [5] . 

1.1.2 Progressive Radiosity 

The full matrix radiosity method requires O(n2 ) 

space and O( n 2) time to compute, where n is the 
number of elements in the discretization, because the 

matrix to solve is composed from a form factor for 
each pair of elements, and the Gauss-Seidel method 
works in O(n2 ) time. An alternative method has been 
developed [3] . Their progressive method casts light 
from each element, removing the requirement to store 
O(n 2 ) form factors to solve the system of equations , 
by computing the form factors as they are needed. 

The method works by keeping track of how much 
radiant energy an element has received that it has not 
re-radiated. The element with the most unradiated 
radiosity is selected and its energy cast to every other 
element in the scene. The element with next greatest 
radiosity is then selected to cast its unradiated ra­
diosity, and the process repeats until the unshot ra­
diosity the system drops below some tolerance. This 
method has the advantage of generating a passable 
image very quickly while converging to solution after 
more iterations. Also , there is no need to store the 
matrix of form factors ; rather , they are calculated 
every time they are needed. This makes a complete 
solution less efficient to calculate, as the form factor 
calculations are expensive and must be repeated, but 
the method yields useful images earlier in the process, 
at interactive rates. 

One limitation to these radiosity techniques is that 
the scene must be discretized to solve the equations. 
This can be problematic because many objects are 
not easily or efficiently described by polygons, so 
their discretizations use much more storage space 
than their parametric definition. A second limitation 
caused by the need for the discretization is that gen­
erating quality images requires a great deal of human 
interaction . The models generated by most modellers 
are inadequate as meshes for the radiosity method 
since many of the restrictions on the mesh that are 
required for a good radiosity solution are not enforced 
by the modeller. Thus such a user must be familiar 
with the workings of the radiosity method in order to 
manually adjust the model. This makes the radios­
ity method much less useful to the professionals who 
should be benefiting from it most , such as architects 
and designers. 

This paper presents a method by which a mesh can 
be generated automatically, without user interven­
tion. The method also allows non-polygonal objects 
to be used in the model, without having to discretize 
them explicitly into polygons before beginning the 
rendering process. 

2 Previous Work 

Campbell and Fussell approached the problem of 
subdividing the scene from a purely geometric 
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standpoint[8]. They used BSP (Binary Space Par­
titioning) trees to detect projections of edges in the 
scene, thus finding lines upon which discontinuities 
in shading may occur. The method relies on the BSP 
representation of the scene, limiting environments to 
polygons. 

Baum et al. developed a system in which the poly­
gons in an environment could be subdivided if the 
shading at the vertices of the polygons is too differ­
ent [1]. Upon detection 6f polygons with excessively 
high shading gradients these would be subdivided and 
new vertices interpolated. Their method also detects 
cases in which the input geometry violates the model 
requirements imposed by the radiosity method and 
corrects the model. Again, their method is dependent 
on a polygonal representation of the environment . 

2.1 Failings 

The methods presented depend upon a polygonal rep­
resentation of the scene geometry. Each object must 
be decomposable into a set of polygonal faces. How­
ever, many objects exist that are not easily convert­
ible to polygonal representations. It would be useful 
to be able to use any implicit surface without having 
to provide means of subdividing it. 

Many objects are also very expensive to represent 
as polygons, for instance, those objects that are mod­
eled as swept curves. Using each facet of such an 
object in the radiosity solution is expensive, since 
the storage and time costs of the radiosity method 
are O(n2 ) with respect to the number of elements . 
There are cases in which complex objects are hidden 
deep in shadow, contributing little to the scene. But 
these still require expensive form factor calculations 
to each facet, when only a few coarse patches could 
have provided adequate accuracy. 

It would be useful to store objects in a simple form 
that is easy to manipulate and is independent of the 
discretization used by the radiosity method . The dis­
cretization should be generated without regard to the 
kind of geometric primitives that model the scene, 
using instead a metric based on lighting and illumi­
nation gradients over the scene, which in turn are 
dependent on the geometry. 

3 Adaptive Illumination-
Based SubdiVIsion 

The method presented here generates a discretiza­
tion based on the difference in lighting, orientation 
and curvature of surfaces. Careful choice of the fea­
ture space allows objects to be discretized as nec-
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essary in order to obtain good shading definition . 
The geometry is sampled, but is not the only ba­
sis for the discretization. Since ray tracing is used to 
sample the scene the true geometry can be used to 
test for occlusions in form factor calculations . Like­
wise, the resampling step that generates the image 
for display can be performed using the true geome­
try, while gathering lighting information from the dis­
cretized environment. This removes silhouetting ar­
tifacts caused by curved objects being approximated 
by a series of polygons from the generated image. The 
mesh is formed using visibility information from each 
vertex, causing the mesh to be based on the whole 
objects rather than on the artifacts generated in the 
modelling process, such as patch boundaries within a 
polygonal representation of a swept surface . 

3.1 Criteria for Discretization 

Before selecting a discretization method it is impor­
tant to understand what is required from the result­
ing discretization mesh . As mentioned above the 
mesh should not be entirely dependent on the geom­
etry of the objects being discretized . The discretiza­
tion should allow elements to span multiple objects, 
generating element boundaries where . discontinuities 
occur in the illumination on surfaces and not exclu­
sively in the provided representation of the geometry. 
By doing this a smaller mesh can be generated that 
better covers the scene. It would also be beneficial 
if the discretization allowed storage of radiosities at 
vertices rather than with the elements, to facilitate 
resampling [12] . The method should make it easy 
to build the discretization adaptively, refining it as 
more information about lighting and shading discon­
tinuities becomes available . 

Also, the method used to generate the discretiza­
tion should place a higher priority on discretizing 
those parts of the scene that will generate the greatest 
increase in accuracy for work expended. If the discon­
tinuities visible from every emitting and re-emitting 
element could be detected and included in the dis­
cretization at each step of the progressive radiosity 
solution, a very accurate result could be obtained. 
The discretization could then be built in such a way 
that the objects receiving light from the most impor­
tant emitters would be discretized where the most 
change occurred [6] . The high cost of applying the 
radiosity method makes this particularly important 
if near-interactive run-times are required . 
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3.2 Discretization by Point Sampling 

Many of these goals can be addressed by building a 
triangulation of the environment from sample points 
that are generated by ray casting. A triangulation 
was selected as the discretization because it is sim­
ple to work with: all its elements are convex poly­
gons, and all neighbours sharing an edge of a triangle 
are connected to the triangle at two of the three ver­
tices of the triangle (making adjacency checks easy 
while keeping the data structures simple) . These 
properties are more difficult to maintain with quadri­
laterals or other higher-order polygon meshes. Us­
ing a progressive-radiosity algorithm it is possible to 
provide a discretization that is sensitive to the ele­
ments emitting and reflecting light [1] . Since errors 
in the early stages of the progressive method propa­
gate more extensively than those in later stages, due 
to the monotonic nature of the progressive method, 
it is important that the early stages be as accurate 
as possible. Biasing the discretization to be more re­
sponsive to the discontinuities, as well as continuous 
changes caused by stronger emitters, helps to reduce 
errors in the early passes of the progressive method. 

The discretization process presented herein works 
in tight consort with the progressive radiosity algo­
rithm. At each progressive radiosity step many rays 
are cast from the current emitter's vertices to identify 
discontinuities. The intersections of these rays with 
both the environment and the growing triangulation 
are recorded, along with the normals of intersection 
and the surface properties. These are then tested to 
determine if their addition to the triangulation would 
be beneficial to the solution obtained. 

By considering all points of intersection along a 
ray rather than just the first point it is possible to 
detect and discretize areas that fall in shadow. This 
is important to the accurate generation of elements 
along shadow boundaries. If this is not done then no 
triangulation vertices will be created where shadows 
fall, leading to poorly defined shadows as no elements 
will span the shadow boundaries. By comparing the 
intersections with the real environment to those with 
the discretization it is also possible to detect features 
such as bumps, holes, and discontinuities that are 
inadequately represented by an existing element of 
the triangulation . The following sections will address 
the details of generating this discretization . 

3.2.1 The Progressive Refinement Algorithm 

The modified progressive radiosity algorithm works 
as follows ; the steps are explained in detail in the next 
few subsections. The triangulation starts empty. 

Procedure Radiosity 
Discretize light sources into triangles 
Refine from the eye, as described in Section 3.2.6 
T +- brightest triangle 
While ( the solution has not converged) 

For each vertex V of the triangulation ~ T 
Calculate new vertex radiosities 

V.~B +- V.p * T .B * FV_T 

V.B +- V.B + V.~B 
End for 

Refine the discretization from current element 
Refine(T) 
T.~B +- 0 
For each triangle R of the triangulation 

Calculate triangle radiosities 
R.~B +-Average of R 's vertices's ~ radiosities 
RB +- RB + R~B 
If ( Vertex ~B's are too different) then split(R) 
If ( R~B > T.~B ) then T +- R 

End for 
End while 

The principal changes are in the addition of the 
eye pass and the refinement step before calculating 
triangle radiosities . The refinement step assures that 
a sufficient discretization is formed relative to the cur­
rent emitter, T . Once the method has converged to 
a solution, a resampling step from the view point is 
applied to complete the coverage of the triangulation 
seen from the view point and to generate the image. 

3.2.2 Maintaining the Triangulation 

As the triangulation develops, the mesh generation 
algorithm attempts to enforce five restrictive rules: 

1. No edge in the triangulation will be longer than 
some 8. 

2. No triangle will be smaller in area than some Ll . 

3. Any vertex v' of the triangulation must be as­
sociated with a point v in the scene, so that the 
triangulation retains some resemblance to the ac­
tual scene. 

4. The normals associated with the point v asso­
ciated with any vertex Vi of a triangle must be 
within some tolerance O'n of the normals of the 
points associated with the other vertices of that 
triangle. 

5. During any iteration of the progressive radios­
ity method, the delta radiosity (llB) associated 
with any vertex of a triangle must be no more 
than some factor 0'. from the llB's for any other 
vertex of that triangle. 

When restrictions conflict, the lower numbered 
ones hold first . For instance, if application of Rule 5 
indicates that a new triangle should be created, but 
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its area would be smaller than ~, then Rule 2 takes 
precedence and Rule 5 is not enforced. 

This set of restrictions gives certain guarantees 
about the solutions. The maximum edge length guar­
antees that no excessively large elements are gener­
ated. It also allows the algorithm to search for neigh­
bouring vertices in a limited neighbourhood rather 
than searching the entire discretization, significantly 
decreasing the running time of the implementation. 

The minimum triangle size guarantees that no el­
ements will be generated that are excessively small, 
leading to overly expensive solutions. This can hap­
pen in areas with a high shading gradient and at 
discontinuities. Making sure that each vertex of the 
triangulation is associated with a point in the scene 
guarantees that the surface information at each point 
of the triangulation properly represents the underly­
ing scene. The last two requirements guarantee that 
triangles formed on shading discontinuities and on 
areas with high shading gradients will be split into 
more triangles, allowing these discontinuities to be 
properly represented in the discretization. In practice 
the delta radiosities are thresholded so that triangles 
dimly lit by an emitter are not needlessly split. 

The triangulation is built incrementally, adding 
non-intersecting edges into the mesh and connect­
ing them into three-cycles to make triangles . While 
building the triangulation a possible edge list is main­
tained. This list records all edges that are in the 
triangulation as well as any edge connecting two ver­
tices that are not at the time part of a three-cycle to 
be connected into triangles . This list is used both to 
verify that any new edges do not cross any previously 
built edges, and to search for three-cycles of edges to 
be added to the triangulation. 

To insert a point into the triangulation, a new ver­
tex v is generated to correspond with the scene inter­
section generated by ray casting; the surface proper­
ties and normal of the vertex are those of the corre­
sponding point in the scene. Each vertex w within 
a radius of 5 is recorded, and each segment vw is 
tested against the segments of the possible edge list 
originating from a vertex within 45 for intersection. 
Any edge that can intersect an edge of length 5 with 
vertex v must have an end point within this radius . If 
no intersection is found, the edge vw is added to the 
possible edge list . Once all such edges are added, they 
are searched for three-cycles which include v and any 
such cycle is added as a triangle in the triangulation . 
To increase the speed of the searches the vertices are 
stored in a regular grid data structure so that only a 
few voxels need to be searched to find end points of 
edges within a given radius. 
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3.2.3 The Refinement Ste p 

The refinement step works by casting rays from each 
corner of the current emitting element into both the 
scene and the discretization. All points of intersec­
tion are recorded and tested for inclusion into the 
triangulation . The refinement step is given by the 
following algorithm. 

Procedure Refine(T) 
For each verte x V of T 

While ( more refinement is needed) 
Generate a new ray 

R <- new-ray(V) 
Get all intersections with scene 

I. +- Rn Scene 
Id +- Rn Discretization 
Merge lists I. and Id, pairwise by distance 

Possibly change the triangulation 
For each pair I.i,!di 

If ( I .i is a dummy intersection) then 
remove-from- triangulation (T) 

If ( Idi is a dummy intersection) then 
extend- triangulation( I di) 

If ( both I.i and Idi are real) then 
refine-triangulation(T,I' i ,Idi) 

End for 
End while 

End for 

First a ray is generated ; then it is intersected with 
both the scene and the discretization ; and then the 
list of intersections is traversed to see if any of the 
points of intersection need to be added to the dis­
cretization. The distribution of the sample rays gen­
erated will be covered in Section 4. For the time be­
ing it is sufficient to note that the rays must somehow 
cover the hemisphere visible from the current emitter. 
Modifying the distribution affects the efficiency and 
accuracy of the solutions generated by the presented 
method. 

Once generated, the intersection lists Is (scene in­
tersections) and Id (discretization intersections) must 
be paired by distance. If a scene intersection and a 
discretization intersection are sufficiently close to one 
another relative to the distance from the origin of the 
intersecting ray, then they are paired . This simple 
distance heuristic can be wrong in ' situations where 
surfaces are very close to one another , choosing the 
wrong triangulation intersection to associate with the 
geometry intersection. (Consider, for example, Fig­
ure 1.) Experimental results have, however, shown 
this heuristic to be adequate . 

Given this list of intersections it is then possible to 
start modifying the triangulation . Each pair of in­
tersections (I'i , Idi) must be tested for one of three 
cases . If there is an intersection Is. with the scene and 
there is no corresponding intersection with the trian­
gulation Id., then the triangulation must be extended 
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Figure 1: I. may be paired with the discretization 
intersection Id because the line segment has no dis­
cretization built on it, and Id is close enough to be 
accepted by the distance heuristic. 

to include the new point. If there is a triangulation 
intersection but no intersection with the scene, then 
the triangle intersected does not adequately represent 
the scene at that point and the triangle must be de­
stroyed. If both exist, then the points must be tested 
to see if the triangulation needs to be refined or if it 
is adequate in its current state. 

3.2.4 Removing Triangles 

In the case where there is a discretization intersec­
tion without a scene intersection, the triangle inter­
sected must be removed from the triangulation . This 
is caused by the scene being inadequately represented 
by the triangulation at that point, such as in cases 
where inadequate sampling caused a triangle to be 
built over a hole or around a steep peak in either 
the geometry or the illumination. This can be done 
by simply removing the triangle from the discretiza­
tion. The edges should remain in the possible edge 
list since they may be useful for adding future trian­
gles and will not hinder future progress. 

3.2.5 Triangle Refinement 

After each refinement step every triangle is examined 
to determine if the vertex delta radiosities due to the 
current emitter are within a tolerance cx, from their 
neighbours ; this tolerance is also weighted by the im­
portance of the change in radiosity at the element 
due to the current emitter relative to the element's 
radiosity. If they are, and the triangle is not already 
smaller than the user supplied limit Ll, then the tri­
angle needs to be split, by adding a new vertex in the 
triangle, correcting the triangulation in that neigh­
bourhood and interpolating the accumulated radios­
ity at that vertex from its neighbours . Care must be 
taken at this stage that the new vertex inserted into 
the triangulation corresponds to a point in the scene. 
This can be done by casting a ray toward the center 

of the triangle to be subdivided and using the point 
of intersection as the new vertex of the triangulation. 

3.2.6 The Eye Pass 

Although the method presented herein could be used 
to generate a solution independent of the viewpoint, 
the method can benefit greatly from a refinement step 
from the view point . This eye pass identifies geo­
metric discontinuities that are visible from the view 
point, and generates a more pleasing solution with 
fewer gaps left to be interpolated in the resampling 
step by assuring a better coverage of the image plane 
with triangles. Without this step the discretization 
visible from the view point will contain many gaps 
that require expensive and inaccurate interpolation 
during the resampling step. 

This refinement step can be done at a fairly fine 
level - the number of added triangles is small com­
pared to the final number of triangles, and the cost 
of one refinement step is small compared to the cost 
of the complete solution. 

There is one major difference between this refine­
ment pass and all the others: there is no light being 
emitted from the eye, so all the tests on vertex and 
triangle delta radiosities cannot be used. This lim­
its the information available to the triangulation al­
gorithm to local geometric information . Other than 
this, the eye pass proceeds identically to the other 
refinement passes. 

3.3 Form Factor Calculation 

Form factors are needed each time a new delta ra­
diosity is calculated, which occurs at several stages . 
The Form Factors are calculated from the differential 
areas at the vertices of the triangulation, dA j , to the 
current emitting element, Ai, which may be adap­
tively subdivided. Occlusion is tested by casting rays 
through the scene, testing against the true geometry 
rather than the triangulated environment . The form 
factor from a vertex to a polygon can be calculated 
using the following equation , given the geometry of 
Figure 2. 

(4) 

where 

1. G i is the set of edges of surface i, 

2. Nj is the normal of differential area j, and 

3. r 9 is a vector with length equal to the angle I 
expressed in radians , and perpendicular to the 
plane of Rg and Rg+ 1 . 

Graphics Interface '93 -~ 



Figure 2: Geometry of analytic form factor 

A detailed derivation can be found in [7] . Baum et 
al. make use of this form [2], but neglect to observe 
that the vector r 9 is given by the cross product of the 
normalized vectors Rg and Rg+l , which are already 
available from the occlusion test calculations. Occlu­
sion is tested by casting rays to the emitter corners 
from the receiving vertex, and if needed the emitter 
can be subdvided to increase the accuracy of the so­
lution, as was done by Wall ace et al. in [12]. 

3.3.1 Resampling 

Generating an image from the radiosities stored in 
the discretization is done by casting rays at the scene, 
much the same way as ray tracing works . However, 
rather than casting shadow rays, a ray is cast into 
the discretization and the intersections paired, as in 
section 3.2.3 . If there is a scene intersection and no 
discretization intersection then the · triangulation is 
extended, and a radiosity value extrapolated from 
the vertices of the triangles to which the point was 
connected, weighted by the length of the connecting 
edg.e and its angular coverage. This value is then 
used to shade the pixel. Though this interpolation 
is innacurate very few are actually needed if the eye 
pass provided a good coverage of the scene visible 
from the eye. If there is a discretization intersection 
and no scene intersection, then the· intersection must 
be discarded. If both exist, then the radiosity value 
is interpolated from the triangle hit. This value is 
returned to shade the pixel. 
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4 Sample Generation 

The method used to generate the sample rays has 
an important impact on the efficiency of the algo­
rithm and quality of the results. A small number of 
rays should provide an adequate discretization, while 
adding more rays should further refine it . More work 
should be spent discretizing the environment along 
shading discontinuities caused by the most important 
emitters and reflectors . It is also beneficial that more 
work be spent on parts of the scene that receive the 
most light from the sources and bright re-emitters , 
since these are evaluated early in the solution process, 
and they propagate more error through the solution 
than elements that cast their energy later in the pro­
cess, as these elements are dimmer and so contribute 
less to the global lighting. 

4.1 Uniform Distribution 

A regular distribution of rays through the hemisphere 
above an element (called the visible hemisphere) does 
not satisfy these needs . Such a method requires that 
a fixed number of rays be cast, and lends itself to 
various aliasing problems, as described in [2] . A fur­
ther failing is that the same amount of work is spent 
discretizing regions near the horizon, where less light 
will be received . Because these surfaces receive less 
light, errors made at the horizon will not be as im­
portant those made where more light is cast. 

4.2 Importance-Based Distributions 

Two of these problems can be overcome using a distri­
bution proposed in [9] . The method distributes "jit­
tered" samples on a unit circle centered at the source 
vertex. Jittered samples are generated by taking reg­
ularly distributed points on a grid and perturbing 
their positions by as much as half the interval be­
tween points. These points are then projected to a 
unit hemisphere above the source and rays are gener­
ated passing through the source vertex and the pro­
jected grid point . The sample density over the visible 
hemisphere is proportional to the cosine of the angle 
from the tangent to the surface to the sample point 
(which is the same relationship described by Lam­
bert's law) thereby generating more rays where more 
of the emitter's light will be distributed. The density 
of the rays at different elevations on the hemisphere 
is proportional to the magnitude of the form factor to 
an element normal to the ray at the same elevation. 
Thus more samples are cast where more energy will 
be distributed, leading to more accurate solutions. 
The jittering also provides a means of anti-aliasing, 
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6\03 1.0 1.5 5.0 
0.1 9056 8292 6237 
0.15 8157 4468 
0.2 7256 3438 
0.3 7851 2787 

Table 1: Number of Discretization Elements for var­
ious values of 0 3 and 6 at iteration 25 

converting aliasing effects to noise. 
There is one deficiency inherent in the sampling 

method: small objects can easily be missed, causing 
some shadows to be missed. This can be partially 
addressed by forcing a minimum number of samples 
to be cast from each vertex. These initial samples 
can then be uniformly distributed or jittered, to try 
to obtain a good first cut of the discretization. A 
better solution is to generate the rays adaptively, but 
a treatment of adaptive sampling is beyond the scope 
of this paper. 

5 Results and Discussion 

The method described in Section 3 was implemented 
as a preprocessing pass to a ray tracer, RayShade1 . 

A sample environment consisting of a room 1 me­
ter on a side, with a sphere of 10 cm diameter resting 
upon a cylinder of the same diameter, 30 cm tall. A 
0.01 m2 light source was placed in the ceiling. This 
scene was rendered with different values for the pa­
rameters 6, the maximal edge length in the triangu­
lation, and 0 3 , the maximum allowable difference in 
intensity at each vertex of a triangle. Figures 3 (a)­
(b) show the scene rendered for different values of 6. 
A longer edge length in the triangulation generates a 
number of long, thin polygons, causing noise in the 
images. Figure 3 (c) shows the triangulation gener­
ated after 800 iterations with 0 = 0.1 and 0, = 2.0 . 
Table 1 gives the number of triangles generated at 
various values of 0 3 and o. 

5.1 Failings 

The restriction allowing only point sampling of the 
environment is artificial and causes some diffic.ulties. 
Starting without a mesh causes the early stages of 
the solution to be very inaccurate, often requiring 
that the energy transfer process be restarted after 
a few iterations because accumulated errors are too 

1 RayShade is a public domain ray tracer written by Craig 
Kolb. It is available on several internet ftp sites. 

large. The extrapolation of lighting values to ver­
tices outside the existing triangulation is simply too 
error prone. Restarting the energy transfer process 
with the built triangulation addresses this partially. 
The images in figures 3 and 4 were computed with­
out this fix to better illustrate the problem. A better 
solution may be to use available geometric informa­
tion to generate a coarse discretization to be further 
refined, perhaps using heuristics similar to those de­
scribed in [1]. However, doing this removes part of 
the flexibility of the presented method by requiring a 
discretization of the objects a priori. 

Another failing of the current implementation is 
that the number of elements generated is not effi­
ciently bounded; it has proven necessary to limit the 
number of elements generated in order to keep the 
method fast. Although the number of elements gen­
erated in each successive iteration tends to become 
smaller, no practical metric has been developed that 
will detect when further discretization is futile. The 
current implementation simply tries to find regions to 
discretize where none exists, thus wasting computing 
time. 

6 Conclusion 

6.1 Summary 

The discretization method presented allows the use of 
non-polygonal geometries with the progressive radios­
ity method, without requiring an a priori subdivision 
of the scene into polygons. The method uses point 
sampling to identify discontinuities in shading, and 
areas with a large illumination gradients caused by 
important sources in the scene. The elements used in 
the discretization are linear interpolants rather than 
constant elements, yielding more pleasing penumbrae 
at shadow edges rather than the sharp discontinuities 
associated with other radiosity algorithms. The dis­
cretization also allows the true geometry to be used in 
all occlusion tests and in the resampling step, yielding 
true object outlines rather than polygonal approxi­
mations. 

6.2 Future Work 

The results generated by the presented method are 
highly dependent on the method used to generate the 
sample rays that are used to probe the environment. 
More research needs to be done on the effects of dif­
ferent sampling methodologies on the discretization 
obtained. In particular some form of adaptive sam­
pling appears to be very important. Making more 
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a. b. c. 

Figure 3: Two renderings of a simple scene (ex. = 2.0, 5 = 0.1) at (a) 50 iterations, (b) 800 iterations, and 
(c) the generated mesh. Note the accumulation of errors arround the base of the pedestal and the equator 
of the sphere. 

efficient use of rays cast will yield both shorter run 
times and more efficient discretizations. 

Another useful path of investigation would be al­
ternate triangulations . It should be possible to main­
tain a triangulation with a larger area to perimeter 
ratio than the current implementation does. Such a 
triangulation would help reduce the error caused by 
the long thin triangles currently generated when the 
5 parameter is too large. 
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