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ABSTRACT 

A new method for designing multivariate data visu
alization tools is presented . These tools allow users 
to perform simple tasks such as estimation, target de
tection, and detection of data boundaries rapidly and 
accurately. Our design technique is based on prin
ciples arising from an area of cognitive psychology 
called preattentive processing. Preattentive process
ing involves visual features that can be detected by 
the human visual system without focusing attention 
on particular regions in an image. Examples of preat
tentive features include colour, orientation, intensity, 
size, shape, curvature, and line length. Detection is 
performed very rapidly by the visual system, almost 
certainly using a large degree of parallelism. We stud
ied two known preattentive features, hue and orienta
tion. The particular question investigated is whether 
rapid and accurate estimation is possible using these 
preattentive features. Experiments that simulated dis
plays using our preattentive visualization tool were 
run. Analysis of the results of the experiments showed 
that rapid and accurate estimation is possible with 
both hue and orientation. A second question, whether 
interaction occurs between the two features, was an
swered negatively. This suggests that these and per
haps other preattentive features can be used to create 
visualization tools which allow high-speed multivariate 
data analysis . 

RESUME 

Vne nouvelle methode pour le design d 'outils pour 
la visualization de donnees multivariees est presentee. 
Ces outils permettent a I 'usager de realiser rapidement 
et precisement des taches simples comme I'estimation, 
la detection d'une cible et la detection des limites de 
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donnees. Notre technique de design est fondee sur 
des principles de traitement preattentif en provenance 
du domaine de la psychologie des connaissances. Le 
traitement preattentif comprend des caracteristiques 
visuelles qui peuvent et re detectees par le systeme 
visuel humain sans porter attention sur des regions 
particulieres d'une image. La couleur, l'orientation, 
l'intensite, la grosseur, la forme, la courbure et la 
longueur de lignes sont aut ant d'exemples de car
acteristiques preattentives. La detection est realisee 
tres rapidement par le systeme visuel , presque cer
tainement utilisant un haut niveau de parallelisme. 
Nous avons choisi deux caracteristiques preattentives 
connues: la teinte et l'orientation. La question parti
culiere investiguee est s'il est possible d'obtenir des 
estimations rapides et precises en utilisant ces car
acteristiques. Nous avons conduits des experiences qui 
utilisaient nos outils bases sur ces deux caracteristiques 
preattentives. L'analyse des resultats des experiences 
demontre qu'une estimation rapide et precise est pos
sible avec la teinte et I'orientation . Vne seconde ques
tion ayant trait a I'interaction entre ces deux car
acteristiques fut repondue negativement. Ceci suggere 
que les caracteristiques preattentives peuvent etre 
utilisees pour creer des outils de visualization qui per
mettent une analyse rapide de donnees multivariees. 

OVERVIEW 

The field of scientific visualization draws on research 
from a wide spectrum of traditional disciplines. These 
include computer science, psychology, and the visual 
arts. The "domain of visualization", as defined by a 
National Science Foundation panel on scientific com
puting, includes the development of specific applica
tions, the development of general purpose tools, and 
the study of research problems that arise in the process 
[McC87]. To date, most research efforts have focused 
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on visualization applications for specific problems and 
environments. Relatively few efforts have formulated 
general guidelines for the design of visualization tools. 

In this paper, we utilize an area of cognitive psychol
ogy known as preattentive processing in an attempt 
to develop such general guidelines. First, we review 
a set of visualization requirements that are common 
to applications ranging from visual interactive simu
lation, to volume visualization, to multivariate data 
analysis. Second, we summarize the area of preatten
tive processing in order to reveal abilities and limita
tions of human cognition that are relevant to these re
quirements. Third, we describe a specific visualization 
tool we have developed, based on these general consid
erations, to assist oceanographers in numeric estima
tion problems involving salmon migration simulations. 
Finally, we discuss the implications of our approach, 
both for the specific application of numeric estimation, 
and for the development of general guidelines in scien
tific visualization . 

SCIENTIFIC VISUALIZATION 

Many different disciplines such as physics, chemistry, 
oceanography, and management science use computer 
simulations to model real-world phenomena. Visual 
interactive simulation (VIS) is a type of computer sim
ulation system which provides immediate visual feed
back and user interaction [Bel87] . A key requirement 
of VIS is a visualization technique which provides an 
informative display of results in real-time. The tech
nique must be computationally simple, yet must al
low the user to rapidly analyse the data being dis
played . Researchers use VIS tools to view their re
sults as they are being produced. This allows them 
to "steer" the simulation and direct its path to follow 
interesting trends as the data is generated . A num
ber of researchers who built VIS tools provide vari
ous empirical and anecdotal results that show VIS to 
be an improvement over existing simulation models 
[MeI85] [Set88]. 

The requirements for VIS are similar to another im
portant class of problems, the visualization of output 
from real-time applications. Systems like air traffic 
control require rapid and informative visualization of 
multivariate data. These displays are often shared 
by different operators, who visually acquire different 
data from different parts of the display at the same 
time. The visualization technique must allow a va
riety of tasks to be performed rapidly and accurately 
on dynamically changing subsets of the overall display. 
Medical imaging systems such as eT, MRI, and ultra
sound are another type of application that could bene-
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fit from real-time visualization techniques directed by 
the user, who analyses the data and decides how to 
proceed. An informative visualization technique that 
allows rapid and accurate visual analysis of more than 
one aspect of the data would decrease the amount of 
time needed to complete the diagnostic task. This is 
important, because these types of systems often cannot 
be time-shared and thus any improvement in visualiza
tion would increase the throughput for the system. 

One explicit goal of visualization is to present data 
to human observers in a way that is informative and 
meaningful, on the one hand, and yet intuitive and 
effortless on the other. This goal is often pursued 
by attaching "features" such as colour, spatial loca
tion, and size to each data element. Features are cho
sen to show properties within and relationships among 
data elements. This technique is used to represent 
high-dimensional data in a low-dimensional environ
ment. Multivariate data visualization addresses the 
question "How can we display the information in a low
dimensional environment, such as a computer screen 
or printed media?" An ad hoc assignment of features 
to individual data dimensions may not result in a use
ful visualization tool. Indeed, too often the tool itself 
interferes with the user's ability to extract the desired 
information. 

Researchers have approached the multivariate data vi
sualization problem in different ways. Enns discusses 
using the human visual system to efficiently process 
large multivariate datasets [Enn90a]; he describes geo
metric icons which combine the power of the computer 
and the human visual system [Enn90b]. Ware and 
Beatty designed a method that uses colour to repre
sent multivariate data elements [War88]; subsets of the 
data with similar values appear as a spatial "cloud" of 
similarly coloured squares. Pickett and Grinstein have 
been using results from cognitive psychology as a ba
sis for design of their visualization tools [Pic88] [Gri89]; 
they display structure in the data as a set of textures 
and boundaries, so that groups of data elements with 
similar values appear as a spatial group with a unique 
texture in the display. 

We approached multivariate visualization by defining 
a set of requirements which we feel are inherent to this 
class of problem. Specifically, we wanted to design a 
visualization technique which supported: 

• shared data, the technique should be able to dis
play independent data values simultaneously. A 
single user could choose to examine various rela
tionships , or multiple users could simultaneously 
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Figure 1: Examples of target detection: (a) target can be preattentively detected because it has the unique 
feature "filled"; (b) filled circle target cannot be preattentively detected because it has no preattentive 
feature unique from its distractors 

examine independent data values 

• speed, users should be able to obtain information 
about any of the data values quickly 

• accuracy, information obtained by the users 
should accurately represent the relationship be
ing investigated 

Using an approach similar to Pickett and Grinstein, 
we decided to use the built-in processing of the human 
visual system to assist with visualization. Preattentive 
processing describes a set of simple visual features that 
are detected in parallel by the low-level human visual 
system. We hypothesized that the use of preattentive 
features in a visualization tool would allow users to 
perform rapid and accurate visual tasks such as group
ing of similar data elements, detection of elements with 
a unique characteristic, and estimation of the number 
of elements with a given value or range of values. We 
tested this hypothesis using controlled psychological 
experiments that simulated a preattentive visualiza
tion tool. Analysis of the experiment results showed 
our hypothesis was true for the class of data we used. 
Before describing our experiments and results, we pro
vide an introduction to preattentive processing. 

PREATTENTIVE PROCESSING 

Researchers in psychology and vision attempt to un
derstand how the human visual system analyses im
ages . One interesting result has been the discovery of 
visual properties that are "preattentively" processed . 
These properties are detected immediately, such that 
viewers do not have to focus their attention to deter
mine whether elements with the given property are 

present or absent. 

An example of preattentive processing is detecting a 
filled circle in a group of empty circles (Figure la). The 
target object has a preattentive feature "filled" that 
the distractor objects do not (all non-target objects are 
considered distractor objects). A viewer can quickly 
glance at the image to determine whether the target 
is present or absent. A conjunction occurs when the 
target object is made up of two or more features, each 
of which is contained in the distractor objects. Objects 
that are made up of a conjunction of unique features 
cannot be detected preattentively [Tri85]. Figure 1 b 
shows an example of a conjunction target. The target 
is made up of two features, filled and circular. Both 
these features occur in the distractor objects (filled 
squares and empty circles) . Thus, the target cannot 
be preattentively detected. 

Properties that are preattentively processed can be 
used to highlight important image characteristics. Ex
periments in psychology by Triesman, Julesz, and oth
ers have used preattentive properties to assist in per
forming the following visual tasks: 

• target detection, where users attempt to rapidly 
and accurately detect the presence or absence of 
a "target" element that uses a unique preatten
tive feature within a field of distractor elements 
(Figure 1) 

• boundary detection, where users attempt to 
rapidly and accurately detect a texture boundary 
between two groups of elements, where all the ele
ments in each group have a common preattentive 
feature (Figure 2) 
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Figure 2: Fonn and hue segregation: (a) hue boundary is preattentiveiy detected, even though fonn varies 
in both groups; (b) hue interferes with detection of fonn boundary 

• counting/estimation, where users attempt to 
count or estimate the number of elements in a 
display that have a unique preattentive feature 

In general, tasks which can be performed in less than 
250 milliseconds are considered preattentive. Within 
this time frame the human visual system cannot decide 
to change its focus of attention. This means preatten
tive tasks require only "a single glance" at the image 
being displayed. 

In addition to the tasks listed above, scientists 
have been examining the interaction between features 
within a display. Callaghan found that varying certain 
irrelevant features within a group can interfere with 
boundary detection [CaI89] . Results showed that a 
non-uniform hue interfered with form segregation (Fig
ure 2b) . It took subjects longer to determine where a 
horizontal or vertical form boundary occurred , rela
tive to a control array where hue was held constant . 
However, a non-uniform form did not interfere with 
hue segregation (Figure 2a) ; a hue boundary could 
be detected in a fixed amount of time, regardless of 
whether form varied or not . Callaghan found a sim
ilar asymmetry between brightness and hue [CaI84] . 
Results showed that variation of brightness interfered 
with hue segregation. However, variation of hue did 
not interfere with brightness segregation . 

A number of scientists have proposed competing the
ories to explain how preattentive processing occurs, 
in particular Triesman's feature integration theory 
[Tri85], Juh~sz' texton theory [JuI83], and Quinlan and 
Humphreys ' similarity theory [Qui87]. Our interest is 

10 the use of features which have been shown to be 
preattentive. We examined two such features, hue and 
orientation, and investigated their use for a common 
visualization task, estimation. 

PREATIENTIVE ESTIMATION 

Through experimentation, we sought to determine 
whether or not research in preattentive processing can 
help design more useful and intuitive scientific visual
ization tools . We addressed two specific sets of ques
tions about preattentive features and their use in vi
sualization tools: 

• Is it possible for subjects to provide a reasonable 
estimation of the relative number of elements in a 
display with a given preattentive feature? What 
features allow this and under what conditions? 

• How does encoding an "irrelevant" data dimen
sion with a secondary preattentive feature inter
fere with a subject's estimation ability? Which 
features interfere with one another and which do 
not? 

Both of these questions address the visualization re
quirements discussed in the previous section . Estima
tion is often needed for rapid and accurate analysis of 
visual displays. If preattentive features can be used , 
VIS and real-time applications could employ this tech
nique for effective real-time visualization . Similarly, 
the ability to efficiently encode multiple unrelated data 
values in a single display would allow users to "share" 
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the display, but only if no interference occurs. This 
corresponds our requirements for a potential visual
ization technique. 

The experiments used data similar to that which oc
curred in a set of salmon migration simulations being 
run by the Department of Oceanography at the Uni
versity of British Columbia [Th092a][Th092b]. Salmon 
are a well-known and economically important type of 
fish that live, among other areas, on the western Cana
dian coast. After a period of feeding and growth in the 
open ocean, salmon begin their migration run. This 
consists of an open ocean stage back to the British 
Columbia coast and a coastal stage back to a freshwa
ter stream to spawn. Salmon almost always spawn in 
the stream where they were born. Scientists now know 
salmon find their stream of birth using smell when they 
reach the coast. The direction finding methods used to 
navigate from the open ocean habitat to the coast are 
still being researched. The simulations are studying 
the causal effects of ocean currents on sockeye salmon 
migration patterns. Results such as ocean current pat
terns and latitudes where each salmon arrived at the 
B.C. coast (latitude of landfall) were generated during 
the simulation . We chose to use this data to investi
gate the likelihood of our techniques being relevant to 
real-world problems and data. 

We decided to examine two preattentive features, hue 
and orientation. This was done by running experi
ments which displayed data using coloured, rotated 
rectangles. The features hue and orientation have been 
shown to be preattentive in various experiments by 
J ulesz [J u183] and Triesman [Tri85]. Two unique ro
tations were used: 00 rotation and 600 rotation. Two 
different hues, HI and H2, were chosen from the Mun
sell colour space. 

The Munsell colour space was originally proposed by 
Albert H. Munsell in 1898 [Bir69]. It was later revised 
by the Optical Society of America in 1943 to more 
closely approximate Munsell's desire for a functional 
and perceptually balanced colour system. A colour 
from the M unsell colour space is specified using the 
three "dimensions" hue, chroma, and value. Hue refers 
to a uniquely identifiable colour such as red, blue, or 
blue-green. Individual hues are further subdivided into 
subsections . A number before the hue specifies its 
subsection (e.g., 5R, 2B, or 9BG). Chroma defines a 
colour's strength or weakness. Greys are colours with 
a chroma of zero. Value refers to a colour's lightness 
or darkness. A Munsell colour is specified by "hue 
value/chroma" . For example, 5R6/6 would be a rel
atively strong red, while 5BG 9/2 would be a weak 
cyan. We chose hues which satisfied the following two 
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properties: 

• Property 1: the perceived brightness of both rect
angles coloured using hues HI and H2 was equal 
(isoluminence) 

• Property 2: the perceived difference between hues 
HI and H2 was equal to the perceived difference 
between a rectangle rotated 00 and one rotated 
600 (where perceived difference is explained be
low) 

A feature of the Munsell colour space is that Munsell 
colours with the same value are isoluminent. Property 
1 was satisfied by ensuring both hues had the same 
value in Munsell space. We chose Munsell value 7, 
because that slice through Munsell space provided a 
large number of displayable colours for a varj~ty of 
different hues. 

Property 2 was satisfied by running a set of prelim
inary experiments. We started with a simple target 
detection task. Subjects were asked to detect the pres
ence or absence of a rectangle rotated 600 in a field of 
distractor rectangles rotated 00

• Both the target and 
distractor rectangles were coloured 5R 7/8. The av
erage reaction time for detection was computed from 
the trials in which the subjects responded correctly. 
After the first experiment, the target and distractors 
were changed. The target was a rectangle coloured 
10RP 7/8. The distractors were rectangles coloured 
5R 7/8. The target was a single "hue step" from the 
distractors in Munsell space. Both the target and dis
tractor rectangles were rotated 00

. The average reac
tion time for detection was computed from the trials 
in which the subjects responded correctly. 

The hues used for the target and distractors during 
the second experiment were very similar. Because of 
this, the average reaction time for the second exper
iment was higher than the average reaction time for 
the first experiment . Additional experiments were run 
as follows. 

• the target was moved another "hue step" away 
from the distractors (i.e., 5RP7/8, 10P7/8, and 
so on) 

• the second experiment was re-run, and average 
reaction time was computed 

• this process continued until an average reaction 
time equal to or below the average reaction time 
of the first experiment was obtained 
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This process provided two isoluminent hues Hl and H2 
with a perceived difference equal to that of a 600 rota
tion, where perceived difference is measured by reac
tion time in the target detection experiment. Analysis 
of the preliminary experiment results led us to choose 
a red hue (Munsell 5R 7/8) and a blue hue (Munsell 
5PB 7/8). 
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Figure 3: Example of a display from block B l , data 
value Vl (latitude of landfall) represented by hue, data 
value V2 (ocean current) represented by orientation. 
Hue is represented by grey scale 

Our design allowed us to use oriented, coloured rect
angles to represent data elements with two associated 
data values Vl and V2 . The experiment was divided 
into four subsections or "blocks" of experiment trials 
Bl , B2, B3, and B4. The primary and secondary data 
value varied within each block, as did the primary and 
secondary preattentive feature . This gave us the fol
lowing: 

1. Primary data value was Vl, represented by hue; 
secondary data value was V2, represented by ori
entation (Figure 3) 

2. Primary data value was Vl , represellted by orien
tation; secondary data value was V2 , represented 
by hue 
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3. Primary data value was V2 , represented by hue; 
secondary data value was Vl, represented by ori
entation 

4. Primary data value was V2 , represented byorien
tation ; secondary data value was Vl, represented 
by hue 

During the experiment, subjects were shown a display 
similar to Figure 3 for 450 milliseconds. The screen 
was cleared, and subjects were asked to estimate the 
number of elements in the display with a given preat
tentive feature, to the nearest 10%. For example, in 
blocks Bl and B3 subjects were asked to estimate the 
number of rectangles coloured blue, to the nearest 
10%. In blocks B2 and B4 they were asked to esti
mate the number of rectangles oriented 600

• 

The two data values Vl and V2 represented latitude 
of landfall values and ocean current patterns from 
Oceanography's salmon migration simulations. Lat
itude of landfall had two possible values: "north" or 
"south" . Ocean current had two possible values: "low" 
or "high". The primary data values for some trials 
were modified to meet statistical requirements for the 
data used in the experiment. For example, in blocks 
Bl and B2 the data value Vl (latitude of landfall) was 
modified to ensure that : 

1. An equal number of trials had a given percentage 
of data elements with a Vl value of "north" (i.e., 
4 trials where 5-15% of the data elements had a 
Vl value of "north" , 4 trials where 15-25% of the 
data elements had a Vl value of "north", and so 
on up to 85-95%) . This allowed us to compare 
estimation ability across a uniform range of per
centages 

2. Any dependence which might have existed be
tween Vl (latitude of landfall) and V2 (ocean cur
rent) was removed. This ensured subjects could 
not infer information about the primary data 
value by examining the secondary data value 

Trials were divided equally between control trials, 
where the secondary feature was fixed to a specific 
constant value, and experimental trials, where the sec
ondary feature was used to represent the secondary 
data value which varied from element to element. This 
allowed us to test for feature interference. Better per
formance in control trials versus experimental trials 
would suggest that using a secondary feature to encode 
an "irrelevant" data value interfered with a subject's 
estimation ability for the primary feature . We tested 
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Interval Control 1 Control 2 Experimental 

V O"(V) e 0"( e) V O"(V) e 0"( e) V O"(V) e O"(e) 
1 1.25 0.53 0.25 0.53 1.33 0.70 0.33 0.70 1.29 0.68 0.29 0.68 

2 1.83 0.82 0.58 0.58 2.04 0.86 0.62 0.58 2.17 0.83 0.46 0.71 

3 2.71 0.75 0.46 0.66 2.75 0.85 0.67 0.56 2.79 0.71 0.54 0.50 

4 4.17 1.13 0.75 0.85 3.75 1.11 0.83 0.76 3.83 1.49 1.08 1.03 

5 5.50 1.32 1.00 0.98 5.08 1.67 1.42 0.83 5.54 1.41 1.25 0.84 

6 5.96 1.27 0.96 0.81 6.71 1.23 1.21 0.72 6.31 1.17 0.94 0.76 

7 6.83 1.01 0.75 0.68 7.42 0.78 0.67 0.56 7.19 0.73 0.52 0.55 

8 8.13 0.80 0.46 0.66 8.33 0.56 0.42 0.50 8.15 0.62 0.40 0.49 

9 8.71 0.55 0.29 0.55 8.96 0.20 0.04 0.20 8.65 0.53 0.35 0.53 

Total 5.01 2.71 0.61 0.75 5.15 2.84 0.69 0.74 5.10 2.72 0.65 0.77 

Table 1: Sununary of block B1 experiment results, showing average subject response V, standard deviation 
of subject response O"(V), average subject estimation error e, and standard deviation of subject estimation 
error 0" ( e) for each interval 

both for orientation interfering with hue estimation 
and for hue interfering with orientation estimation. 

Twelve subjects with normal or corrected acuity and 
normal colour vision were tested . The experiments 
were conducted in the Department of Psychology's 
vision laboratory, using a Macintosh 11 microcom
puter equipped with a 13-inch RGB monitor and video 
hardware capable of displaying 256 colours simultane
ously. The software used was designed and written 
by Rensink and Enns to run preattentive psychology 
experiments [Enn91] . Each subject completed either 
blocks Bl and B3 (blocks using hue as the primary 
feature) or blocks B2 and B4 (blocks using orientation 
as the primary feature) . 

At the beginning of the experiment, subjects were 
shown a sample display frame. The experiment proce
dure and task were explained to the subjects. Subjects 
were then shown how to enter their estimation. This 
was done by typing a digit on the keyboard between 
1 and 9, which corresponded to the interval (percent
age of rectangles) they estimated contained the target 
feature: interval 1 (5-15%), interval 2 (15-25%), and 
so on up to interval 9 (85-95%). Subjects were told no 
trial would contain less than 5% or more than 95% of 
the target rectangles. 

Subjects began the experiment with a set of practice 
trials . This consisted of nine trials, one for each of the 
nine possible intervals. In one trial 10% of the rectan
gles were targets, in another 20% were targets, and so 
on up to 90%. The practice trials were designed to cal
ibrate the subjects' responses and to give them an idea 
of the speed of the trials and the experiment. Trials 
were displayed one after another to the subjects. If 

subjects estimated correctly, they moved immediately 
to the next trial. If they estimated incorrectly, the 
trial was redisplayed, and they were told the correct 
answer. 

Next , subjects completed a second set of practice tri
als. This phase consisted of 18 trials, two for each of 
the nine possible intervals. Trials were displayed in 
a random order to the subjects. This phase was de
signed to run more like a real experiment block . Trials 
in which the subjects estimated incorrectly were not 
redisplayed and subjects were not told the correct an
swer, although they did know whether their estimation 
was right or wrong. 

Finally, subjects completed two experiment blocks, Bl 
and B3 or B2 and B4. Each block consisted of 72 con
trol trials and 72 experimental trials . The 144 trials 
from each block were presented to the subjects in a 
random order. Subjects were provided with an oppor
tunity to rest after every 48 trials. Data from all four 
phases were saved for later analysis. 

RESULTS 

The primary dependent variable examined was estima
tion error, defined as the absolute difference between 
the subject's estimate and the percentage of target ele
ments for the display. Statistical analyses using t-tests 
and analysis of variance (ANOVA) F-tests revealed the 
following findings : 

• rapid and accurate estimation can be performed 
using either hue or orientation 

• there is no evidence of a subject preference for ei-
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ther hue or orientation during the estimation task 
for the particular hue and orientation values used 

• there is evidence of a subject preference for the 
spatial arrangement of data being displayed dur
ing the estimation task 

• there is no evidence that orientation interferes 
with a subject's ability to perform hue estimation 

• there is no evidence that hue interferes with a sub
ject's ability to perform orientation estimation 

The first question we asked was whether subjects were 
able to perform accurate estimation in a 450 millisec
ond exposure duration. Table 1 shows results of com
bined subject data for the control and experimental 
subsections of block BI as an example of the data cal
culated for each block. The results showed that ac
curate estimation was possible during the experiment 
for all four blocks. In the experimental subsections the 
total estimation error e ranged from a low of 0.54 in 
block B2 to a high of 0.65 in block B1. The standard 
deviation u( e) was below 1.0 in all four blocks. This 
indicates that subject responses were clustered close 
to the correct estimate. Results from the two control 
subsections show similar trends. 

Subsection nl n2 v t 

Control 1 432 432 862 0.36 

Control 2 432 432 862 1.43 

Experimental 864 864 1726 0.45 

Table 2: t-test results for estimation error rates 
from hue and orientation trials, showing the sub
section, the number of hue trials nl , the number 
of orientation trials n2, the degrees of freedom v, 

and the t-value t 

A point of interest was whether a subject's estima
tion ability differed depending on the feature being 
estimated. A t-test was computed to see if mean es
timation error was equal across primary features for 
both the control and experimental subsections. Trials 
were combined into two groups: trials where orienta
tion was the primary preattentive feature and trials 
where hue was the primary preattentive feature . 

There appears to be no feature preference for the es
timation task, since the control t-values (Table 2) are 
less than O.97StS62 = 1.962 and the experimental t
value' is less than O.97St1726 = 1.960 . We did not ex
pect to observe a feature preference, because we cali
brated the perceived difference between our two hues 
and our two orientations to be equal before the exper
iment. 

It is possible that the spatial distribution of the data 
affects a subject's estimation ability. It may be easy 
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to perform estimation if the data elements cluster into 
two distinct groups. Similarly, if the data elements 
are distributed randomly throughout the display, esti
mation may be difficult. We used two different data 
sources during the experiment , VI and V2, which cor
responded to results from the salmon migration sim
ulations. Both data types tended towards their own 
distinctive spatial distribution. A difference in mean 
estimation error across data types would indicate esti
mation ability depends, at least in part, on the spatial 
distribution of data being displayed. Trials were com
bined into two groups: trials where VI was the primary 
data value and trials where V2 was the primary data 
value. 

Subsection nl n2 V t 

Control 1 432 432 862 2.06 

Control 2 432 432 862 1.73 

Experimental 864 864 1726 1.84 

Table 3: t-test results for estimation error rates 
from VI and V2 trials, showing the subsection, the 
number of VI trials nI, the number of V2 trials n2, 

the degrees of freedom v , and the t-values t. 

Control subsection 1 's t-value (Table 3) is greater than 
O.97StS62 = 1.962. This suggests data type did have 
an effect on estimation error in control subsection 1. 
Control subsection 2's t-value is less than 1.962, but 
it does fall between O.9StS62 = 1.647 < P < O.975tS62 ' 

Similarly, the experimental subsection's t-value falls 
between O.9St1726 = 1.645 < P < O.97St1726 = 1.960. 
The t-test results indicate the possibility of data type 
influence on estimation error. With 0' = 0.10 , we 
would conclude data type may affect estimation error 
in all three subsections. Additional experiments which 
explicitly control the change in spatial distribution are 
needed before we can state specifically its effect on the 
estimation task. 

One question of interest was whether encoding an ir
relevant data value with a secondary preattentive fea
ture affected a subject's estimation ability. We began 
by checking to see if orientation interfered with a sub
ject's ability to estimate using hue . t-tests were com
puted to compare estimation error mean across control 
and experimental subsections for blocks BI and B3 , 

the blocks that used hue as their primary preattentive 
feature. 

The t-values for both blocks (Table 4) are less than 
O.97StS62 = 1.962. Therefore, there appears to be no 
interference due to encoding of an irrelevant data value 
using orientation . Any difference in means is probably 
due to sampling error . 

We continued to investigate interference by checking to 
see if hue interfered with a subject's ability to estimate 
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Subsection nl n2 v t 

Bl 432 432 862 0.03 

B3 432 432 862 0.21 

Table 4: t-test results for estimation error rates 
from control and experimental hue trials, showing 
the block, the number of control trials nI, the 
number of experimental trials n2, the degrees of 
freedom v, and the t-value t 

using orientation. t-tests were computed to compare 
mean estimation error across control and experimental 
subsections for blocks B2 and B4, the blocks that used 
orientation as their primary preattentive feature. 

Subsection nl n2 v t 

B2 432 432 862 0.23 

B4 432 432 862 1.15 

Table 5: t-test results for estimation error rates 
from control and experimental orientation trials , 
showing the block, the number of control trials 
nI, the number of experimental trials n2, the de
grees of freedom v, and the t-value t 

The t-values for both blocks (Table 5) are less than 
0 .975t862 = 1.962. Therefore, the appears to be no 
interference due to encoding of an irrelevant data value 
using hue . Any difference in means is probably due to 
sampling error. 

EXPOSURE DURATION EXPERIMENTS 

Our conclusions in the first experiment apply to data 
displayed for an exposure duration of 450 millisec
onds. This leaves two important questions unan
swered. First, at what exposure duration are subjects 
no longer able to perform robust estimation? Second, 
do any interference effects begin to appear at lower ex
posure durations? For example, we found that orien
tation did not interfere with estimation of hue at a 450 
millisecond exposure duration. It may be that an in
terference effect does exist, but 450 milliseconds gives 
subjects enough time to overcome this effect. Feature 
preference may also be dependent on exposure dura
tion . 

We conducted a second experiment in which exposure 
duration for each trial varied among five possible val
ues: 15,50, 100, 200 , and 450 milliseconds. Trials were 
presented to subjects in the following way: 

• a blank screen was displayed for 200 milliseconds 

• a focus circle was displayed for 100 milliseconds 
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• . the trial was displayed for its exposure duration 
(one of 15,50, 100,200, or 450 milliseconds) 

• a "mask" of randomly oriented grey rectangles 
was displayed for 100 milliseconds 

• the screen blanked, and subjects were allowed to 
enter their estimation 

Because trials came from block B 1, our primary data 
value was Vl (latitude of landfall), represented by hue, 
and our secondary data value was V2 (current pattern), 
represented by orientation . Subjects estimated the 
number of blue rectangles in each trial. As before, an 
equal number of trials (10 control and 10 experimen
tal) for each interval were used. Trials at each interval 
were split evenly among the five exposure durations, 
and were presented to the subjects in a random order 
so the various exposure durations were intermixed. 

Average Error 
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Figure 4: Graph of average error across exposure du
ration for combined results from exposure duration 
experiment 

Analysis of data from the previous experiment showed 
estimation was accurate at every interval. Because of 
this, we combined trials with a given exposure dura
tion into a single block of data. For example, trials 
that were displayed for 100 milliseconds formed a sin
gle group of 2 control and 2 experimental trials from 
each interval for a total of 18 control and 18 experimen
tal trials . We plotted average estimation error versus 
exposure duration to see if estimation ability was af
fected by display time. Figure 4 shows the graph of 
average estimation error versus exposure duration for 
experimental trials . 
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A verage estimation error and standard deviation of 
error seemed to be reasonably stable, even down to 
100 milliseconds. Below that duration error values in
creased rapidly. This indicates the minimum exposure 
duration for robust hue estimation lies somewhere be
tween 50 and 100 milliseconds. We concluded our anal
ysis by checking to see if orientation interfered with 
hue estimation at any of the exposure durations. t
tests were computed to compare mean estimation er
ror across control and experimental subsections for all 
five exposure durations. The t-values for all durations 
were less than 0.975t178 = 1.972. Only the 15 mil
lisecond exposure duration had a t-value which might 
be considered significant, 0 .90t178 = 1.286 < p < 
0 .95t178 = 1.653. This suggests orientation is not in
terfering with hue estimation at any of the exposure 
durations tested. 

FUTURE WORK 

Our experiments and related analysis leave open a 
number of interesting avenues for future work. We 
could examine in more detail numeric estimation and 
its relationship to specific visualization applications. 
We explicitly chose two hues whose perceived differ
ence from one another was equal to the perceived dif
ference between two rectangles oriented 00 and 600

• 

A choice of features perceptually different from one 
another might cause a subject feature preference dur
ing the estimation task . We could also test different 
features, such as intensity and size, to see how they 
perform during the estimation task. 

Work which provides general guidelines for the use 
of preattentive features in the design of visualization 
tools should be pursued. Many visualization tasks re
quire more than two data values to be encoded at each 
spatial location . Future experiments could examine 
how to encode higher-dimensional elements in a low
dimensional environment. This type of visualization 
tool could exhibit new and unexpected types of inter
ference . There may also be a limit to the amount of 
information a subject can extract and process at one 
time. 

The data values used in our experiment were de
rived from salmon migration studies in Oceanography. 
More comprehensive studies based on actual tasks per
formed by researchers are needed before conclusive 
evidence will exist for using preattentive features in 
real-world multivariate data analysis such as salmon 
migration simulations, air traffic control, and medical 
imaging. Other types of data should be investigated 
as well if general visualization tools are to be based on 
preattentive processing. 
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