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ABSTRACT 

Rapid progress in the modeling of biological structures and 
simulation of their development has occurred over the last 
few years. It has been coupled with the visualization of 
simulation results, which has lead to a better understanding 
of morphogenesis and given rise to new procedural tech­
niques for realistic image synthesis. This paper characterizes 
selected models of morphogenesis with a significant visual 
component. 
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How far mathematics will SUffice to describe, 
and physics to explain , the fabric of the body, 
no man can forsee . 

D' Arcy Thompson, On Growth and Form [40] 

INTRODUCTION 

In the landmark 1984 paper Plants,fractals, andformallan­
g uages [37], Smith coined the term database amplification to 
denote the synthesis of complex images from small data sets. 
A generalization of this notion, called emergence, became a 
central notion of artificial life. According to Taylor [39, page 
31], emergence is a process in which a collection of interact· 
ing units acquires qualitatively new properties that cannot be 
reduced !o a simple superposition of individual contributions. 

Morphogenesis, or the development of complex forms and 
patterns found in living organisms, provides many striking 
examples of emergence. Consequently, its models often dis­
play an astonishing contrast between the 'simplicity of the 
rules expressing the behavior of individual components, and 
the intricacy of the resulting developmental processes, pat­
terns, and forms. 

Simulation plays an essential role in the study of morphogen­
esis. This was anticipated as early as 1952 by Turing, who 
wrote [42]: 

The difficulties are such that one cannot hope 
to have any very embracing theory of such pro­
cesses, beyond the statement of equations. It might 
be possible, however, to treat a few particular cases 
in detail with the aid of a digital computer. This 
method has the advantage that is is not so neces­
sary to make simplifying assumptions as it is when 
doing a more theoretical type of analysis. 

Visualization of simulation results facilitates their interpreta­
tion, and is used as a method for evaluating models. Lacking 
a formal measure of what makes two patterns or forms (such 
as trees) look alike, we rely on visual inspection while com­
paring the models with the reality. For example, Plate 1 
shows a photograph and a model of the shell Natica enzona, 
juxtaposed to facilitate visual evaluation of the model. The 
natural and synthetic pigmentation patterns differ in details, 
yet we perceive them as fairly similar. This observation con­
tributes to the plausibility of the model , although it does not 
constitute its definitive validation. 

P hotorealistic presentation of the models aids in their com­
parisons with the natural structures, and makes models useful 
for image synthesis applications, such as computer anima­
tion, landscape design, and computer art. For example, Plate 
2 shows a rendering of the Pelican's Foot shell (Aporrhais 
pespelecani), generated by a mathematical model of shell 
shape, and placed in an artificial context that blurs the dis­
tinction between biological and architectural forms. 

This paper reviews mathematical models of morphogenesis 
capable of producing realistic images of modeled patterns and 
forms. Our moti vation is to expose the relationships between 
models that may eventually lead to a better understanding 
of morphogenesis, and to collect together those suitable for 
computer imagery purposes. Models that capture biologi­
cal forms without simulating developmental processes, such 
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as [3, 46] are not considered. The paper is concluded by 
a reflection on the role of computer science in the study of 
biological pattterns and forms. 

FEATURES OF MODELS OF MORPHOGENESIS 
Historicall y, the study of morphogenesis has been approached 
from two directions. The first one consists of viewing form 
as a derivative of growth, and was formulated by d' Arcy 
Thompson [40, page 79]: 

It is obvious that the/orm of an organism is deter­
mined by its rate of growth in various directions; 
hence rate of growth deserves to be studied as a 
necessary preliminary to the theoretical study of 
form. 

The second direction focuses on the flow of substances 
through a tissue and was initiated by Turing [42, page 38]: 

The systems considered consist of masses of tissues 
which are not growing, but within which certain 
substances are reacting chemically, and through 
which they are diffusing. These substances are 
calledmorphogens, the word being intended to con­
vey the idea of a form producer. 

The distinction between these two directions is captured as 
the first characteristic of the models of morphogenesis on 
the list given below. This list also includes other features 
that I have found useful in describing models of biological 
development from a computer scientist's point of view. 

1. Models may be structure-oriented, focusing on the com­
ponents of the developing structure, or space-oriented, 
capturing the whole space that embeds this structure. 
A model in the first category typically describes where 
each component of the structure is located. A model 
in the second category describes what is located at (or 
what is the state of) each point of space. 

2. The developing structure and the space that embeds it 
may be continuous or discrete. The state characterizing 
each point or cell in space may be chosen from a con­
tinuous or discrete domain. The model may operate in 
continuous or discrete time. 

3. Models may have different topologies, such as a non­
branchingfilament (sequence of discrete components, or 
modules), a branching structure, a network (graph with 
cycles), a 2D surface, or a 3D solid object. 

129 

4. The model may occupy constant space or may expand 
(and contract) overtime. In the latter case, the expansion 
may be limited to the boundary of the structure, or may 
take place in the interior as well. 

5. The neighborhood relations between modules may be 
fixed at the time of their creation (determined by the divi­
sion pattern of modules), or the modules may be mobile. 
In the continuous case, the developmental processes may 
be viewed as taking place in an elastic medium or in a 
fluid. 

6. Communication between the modules may have the form 
of lineage (information transfer from the parent mod­
ule to its offspring) or interaction (information transfer 
between coexisting modules). In the latter case, the in­
formation flow may be endogenous (between adjacent 
components of the model) or exogenous (throngh the 
space embedding the model). 

We will now use these characteristics to survey selected mod­
els of morphogenesis that include a significant visual compo­
nent. 

SPACE-ORIENTED MODELS 

Reaction-diffusion pattern models 
Reaction-diffusion models were developed by Turing to ex­
plain the "breakdown of symmetry and homogeneity," lead­
ing to the emergence of patterns in initially homogeneous, 
continuous media [42]. The patterns result from the inter­
action between two or more morphogens that diffuse in the 
medium and enter into chemical reactions with each other. 
Mathematically, this process is captured by a system of par­
tial differential equations. For properly chosen equations and 
parameter values the uniform distribution of morphogens is 
unstable. Random fluctuations are amplified and produce a 
stable pattern of high and low concentrations, which can be 
represented using different colors in the final image. 

Reaction-diffusion models have been extensively studied in 
theoretical biology, where they provide plausible explana­
tions of many observed phenomena [17, 25, 28]. Ouyang 
and Swinney recently validated the basic assumptions of these 
models by realizing reaction-diffusion processes in chemical 
experiments [29]. In computer graphics, Turk [43] applied 
the original Turing equations to generate spot patterns, and a 
five-morphogen system proposed by Meinhardt [25, Chap­
ter 12] to generate stripe patterns covering three-dimensional 
models of animals. Fowler et al. [8] synthesized realistic im­
ages of shells (plate 1) using the model of pigmentation devel­
oped by Meinhardt and Klinger [26]. Witkin and Kass [48] 
extended the application of reaction-diffusion models to non­
organic textures. 
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Figure 1: A venation pattern generated using Meinhardt's 
model of net-like structures on a hexagonal grid 

Reaction-diffusion models may be also suitable for generat­
ing the visually attractive pallerns found in butterfly wings 
and flower petals. Unfortunately, the biological literature fo­
cuses on models describing small elements of these pallems, 
such as an eyespot in a butterfly wing. This is not sufficient 
in image synthesis applications, where we need to reproduce 
the appearance of the whole structure. 

A reaction-diffusion model of differentiation 

Meinhardt [24] (see also [25, Chapter 15]) extended reaction­
diffusion models to capture differentiation of net-like struc­
tures from an undifferentiated medium. Figure 1 shows a 
venation pattern produced using his model. The reaction­
diffusion equations are solved on a hexagonal grid (in this 
case). The state of each cell is characterized by concentra­
tions of four morphogens, one of which determines whether 
a cell is in a differentiated state and belongs to the structure, 
or in a nondifferentiated state and belongs to the medium. 
The simulation begins with the creation of a filamentous suc­
cession of differentiated cells, extending at the growing tip 
of the filament. During the development the tip may split, 
creating dichotomous branches. At a sufficient distance from 
the tip (monitored by decreasing concentration of another 
morphogen, the inhibitor, produced by the tip), the filament 
initiates I.ateral branches. Next-order branches are formed in 
a similar way, if no growing tips are nearby. 

This model combines continuous and discrete components. 
On the one hand, the morphogens diffuse in a continuous 
medium. On the other hand, differentiati6n is described at 
the level of discrete cells. 
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Figure 2: A model of the sponge Haliclona occuLata , devel­
oped by Kaandorp 

Diffusion-limited accretive growth 

In many developmental processes there is an obvious distinc­
tion between the structure and the surrounding medium. The 
focus of the model is then on the gradual expansion of the 
structure at its border, termed accretive growth [20]. 

Eden [6] simulated the accretive growth of a cell cluster 
in a square lattice by sequentially adjoining randomly se­
lected cells to the structure formed during previous steps. 
Meakin [23] (see also [45]) improved this model by assum­
ing that the growth rate (the probability of adjoining a new 
cell) depends on the local concentration of nutrients that dif­
fuse from a surrounding exterior source and are consumed 
by the growing structure. Kaandorp [20] applied a three­
dimensional variant of this diffusion-limited growth process to 
simulate and visualize the development of corals and sponges. 
In the first approximation, they expand in the direction of the 
largest concentration of nutrients (Figure 2). The branching 
topology is an emerging property of these models, resulting 
from the higher gradient of nutrient concentration near the 
tips of the branches than near the origin of the structure. 

Diffusion-limited aggregation 

Witten and Sander proposed a discrete counterpart of 
diffusion-limited growth, called diffusion-limited aggrega­
tion (DLA) [49] (see also [45]), which captures diffusion of 
nutrients by simulating random movement of particles in a 
grid. The growing structure originates with a single cell. 
Free particles move in the grid, with the displacement di­
rection chosen at random at each simulation step. Once a 
moving particle touches the structure formed up to this stage, 
it sticks to it rigidly. 
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Figure 3: Patterns generated using a discrete counterpart of 
the reaction-diffusion model, proposed by Young 

Diffusion-limited aggregation has attracted considerable re­
search interest, due in part to the fractal character of the 
emerging branching structures. It is a faithful model of many 
physical phenomena, such as the deposition of metallic ions 
on an electrode. It neglects, however, the active role of the 
organism using nutrients to build its body, and therefore has 
limited application as a model of growing living structures. 

Cellular automata 

Cellular automata [41] can be considered a discrete-space 
counterpart of reaction-diffusion models. The space is repre­
sented by a uniform grid, wi~h each site or cell characterized 
by a state chosen from a finite set. Time advances in dis­
crete steps, and all cells change their states according to the 
same rule, which describes the next state as a function of the 
previous state of a cell and its close neighbors. 

Young [50] proposed a cellular-automaton model of animal 
coat patterns using only two cell states: pigmented or not 
(Figure 3). The resulting patterns are similar to those obtained 
using continuous reaction-diffusion equations. 

In general, the next-state function need not be related to the 
diffusion of morphogens. Ulam pioneered the application 
of cellular automata to the simulation of the development of 
branching structures [44], where the discrete space provides a 
medium for detecting collisions between branches. Figure 4 
shows a pattern he termed Maltese crosses. The structure 
differentiates from a (conceptually infinite) square grid of 
automata beginning with a single seed cell. In each iteration, 
the pattern expands to the adjacent cells, unless the resulting 
branches would collide. Figure 5 illustrates the same princi­
ple on a triangular grid. A slice of this pattern contained in a 
60° wedge is reminiscent of a tree; as noticed by Stevens [38, 
pages 127-131], this appearance can be reinforced by modi­
fying branching angles while preserving the topology of the 
model. 
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Figure 4: A branching structure generated by Ulam's cellular 
automaton operating on a square grid 

Figure 5: Branching structures generated by Ulam's cellular 
automaton operating on a triangular grid. Lines connect the 
centers of cells occupied by the growing structure. 

Voxel automata 

Three-dimensional extensions of cellular automata, called 
voxel automata [13], have been used in computer graphics to 
model aspects of plant development sU'ongly affected by the 
environment. Arvo and Kirk [2], and Greene [12] applied 
them to simulate the growth of climbing plants, attaching 
themselves to predefined objects in space. Subsequently, 
Greene [13] extended this technique to capture variations in 
the diameter of branches and roots of a tree, and applied it 
to simulate the growth of roots searching their path through 
rocks in the ground, as shown in Figure 6. In this case, 
the voxels do not represent elements of the structure on the 
"all or nothing" basis, but hold information about the run 
of the individual strands that compose branches and roots of 
the tree. This information is used to keep groups of strands 
together and guide their development between obstacles in 
the environment. 
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Figure 6: A model of a tree trunk with roots, developed by 
Greene 

Development In expanding space 

The models discussed so far can grow only on their boundary. 
The rigidity of the underlying space, whether continuous or 
discrete, prevents growth in the interior. Gottlieb [11] pro­
posed a geometric model of development, in which the space 
expands uniformly. A predefined starting structure is placed 
in a small square grid (for example, consisting of 2 x 2 cells). 
New branches are created by connecting the centers of grid 
cells to the structure, provided that the Euclidean distance 
between a particular center point and the structure exceeds 
a given threshold. The structure and the cellular space are 
then scaled twofold, the cells are subdivided, and connec­
tions to the centers of the new cells are made in the same 
way. This process is equivalent to the subdivision of the grid, 
combined with the reduction of the threshold distance. The 
above construction is repeated until the desired level of detail 
is reached, as shown in the left side of Figure 7. The right side 
of this figure shows the result of applying Gottlieb's method 
to model leaf venation. This application has a clear biological 
justification: as a leaf grows, its vascular system is develop­
ing in order to maintain the capacity for translocating water, 
nutrients and products of photosynthesis to and from all parts 
of the blade. The model exhibits a hierarchical organization 
of the veins, but there is still a discrepancy between their 
layout and patterns observed in nature. Faithful modeling of 
leaf venation remains an open problem. 

STRUCTURE-ORIENTED MODELS 

In contrast to space-oriented models, which describe the en­
tire space including the modeled structure, structure-oriented 
models focus on the development of components that consti­
tute the structure. 

132 

-----r------j 
I I 
I I 
I I 

---~----- i I f'" I 
I I 
I I 

.- .- -... --.~ ....... .. ... ' 

E~:;:~ 
:· ··AT~(···I 
~ ..... L .. .. L .. . L ... ..: 

Figure 7: Principle of Gottlieb's method for pattern genera­
tion, and a venation pattern modeled using this method 

L-systems 

L-systems simulate the development of linear and branching 
structures built from discrete modules [21]. The develop­
ment can be controlled by lineage (in context-free, or OL­
systems) and by endogenous interaction (in context-sensitive, 
or IL-systems). The modules represent individual cells of 
simple multicellular organisms, or larger modules of higher 
plants (for example, such a internodes, apices, leaves, and 
branches). L-systems were originally limited to the specifi­
cation of the topology of branching structures, but subsequent 
geometric interpretations have made it possible to visualize 
simulation results [33, 32]. For example, Plate 3 shows a 
simulated development of the herbaceous plant Mycetis mu­
ratis. 

Although L-systems were introduced as a purely discrete 
model, practical applications revealed the need for shifting 
their various aspects to the continuous domain. Parametric L­
systems [32] have made it possible to express concentrations 
of substances propagating in the modeled structure. Differ­
ential L-sys/ems extended L-systems to the continuous time 
domain, facilitating computer animation of developmental 
processes [30]. 

L-system can capture changes of shape that take place dur­
ing development. The modeled structures may expand at the 
extremities (subapical growth) as well as in the internal parts 
(elongation of internodes). Unfortunately, the changes of the 
relative positions of modules make it difficult to incorpo­
rate exogenous control mechanisms, which rely on informa­
tion flow through the space embedding the model. Prelimi-
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Figure 8: Development of a branching structure, confined to 
a square box with an incomplete edge. This model was gener­
ated using an "environmentally sensitive" L-system inspired 
by Kaandorp [19]. 

nary results include detection of collisions between branches 
themselves and between branches and the environment (Fig­
ure 8), and the removal of leaves shaded by other leaves and 
branches. 

Although this example demonstrates the possibility of in­
corporating exogenous control mechanisms into models ex­
pressed using L-systems, many practical problems remain 
open. For example, the existing "environmentally-sensitive" 
extensions of L-systems are not specified within the frame­
work of an L-system-based modeling language [16, 31] and 
require the incorporation of model-specific software modules 
into the simulation program. 

L-systems are related to several other plant models. As shown 
in [32, Chapter 2], parametric L-systems can reproduce the 
tree models developed by Aono and Kunii [1], which in 
turn were based on models by Honda [18]. Franyon [10] 
observed that L-systems can also capture the models of tree 
architecture classified by Hall~ et al. [15], and the AMAP 
models originated by de Reffye [5]. Stochastic L-systems can 
emulate grass models described in terms of particle systems 
by Reeves and Blau [34] (plate 4). Further analysis is needed 
to establish detailed relationships between these classes. 

Map L-systems 
Map L-systems [22] extend the expressive power of L­
systems beyond branching structures to graphs with cycles, 
called maps, representing cellular layers. Their geometrical 
interpretation is more difficult than that of branching struc­
tures, because the presence of cycles makes it impossible 
to assign metric properties to the model using local rules. 
For example, the angles between the edges of a quadrilat­
eral cycle must sum to 3600

, and therefore cannot be speci-
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fied independently from each other. Fracchia et al. [9] (see 
also [32, Chapter 7]) proposed a physically-based solution to 
this problem. The cells are assumed to have physical prop­
erties, osmotic pressure and wall tension, and form a final 
configuration by mechanically pushing each other until an 
equilibrium is reached. 

Map L-systems have been successfully applied to model fern 
gametophytes [4,32]. For example, Plate 5 compares a mi­
crophotograph and a computer generated image of the fern 
thallus Microsorium Iinguaeforme. The natural and the sim­
ulated shapes look alike, which supports the hypothesis that 
the timing and orientation of cell divisions are the dominant 
factors determining the global thallus shape. 

Map L-systems with geometric interpretation operate by first 
establishing the neighborhood relations between the cells, 
then assigning geometric parameters to the resulting graph. 
This approach is biologically justified in multicellular plant 
structures, since plant cells are tightly cemented together, 
but is inappropriate in models of animal tissues, since ani­
mal cells can move with respect to each other. A model of 
morphogenesis addressing this problem is described next. 

Mobile cells In a continuous medium 
Fleischer and Barr [7] proposed an extensible simulation 
framework for studying morphogenesis that focused on the 
generation of connectivity patterns during neural develop­
ment. Their model consists of discrete cells embedded in 
a continuous substrate. The actions of the cells are divided 
into continuous processes (grow, move) and discrete events 
(divide, create a dendrite, die). The cells move in response to 
physical forces and interact with other cells and the substrate 
through mechanical, chemical, and electrical means. Inter­
nally, the activity of each cell is governed by a set of con­
ditional differential equations that depend on the cell's state 
and the local environment. These equations represent the 
"genetic information" of the cell and describe the changes to 
an array of variables controlling cell's behavior (movements, 
growth, divisions). The substrate acts as a medium in which 
chemical substances diffuse, dissipate, and enter into reac­
tions. A sample frame from a simulation carried out in this 
environment is shown in Plate 6. The yellow cells appear 
first, then some of them differentiate into blue cells. The blue 
cells grow and gradually form a connected skeleton. 

Map L-systems and the Fleischer-Barr model present oppo­
site approaches to the definition of multicellular structures. 
In map L-systems, grammar-based rules specify a model's 
topology, which subsequently determines its geometry. The 
cells cannot move with respect to each other. On the other 
hand, in the FB-model cell movements determine their rel­
ative positions; the resulting clusters of adjacent cells indi-
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rectly specify topological properties of the emerging struc­
ture. The work of Mjolsness et al. [27] presents a step towards 
a synthesis of both approaches: a model in which spatial rela­
tionships between the cells and grammar-based productions 
can be combined to specify dynamic changes in system con­
figuration. 

Although the FB-model is directed at the study of morphogen­
esis, it may also provide a unifying framework for considering 
other phenomena in which autonomous agents move in space 
and interact. In the computer graphics context, these include 
behavioral animation, exemplified by Reynolds' model of 
flocks, herds, and schools [35], and Wejchert and Haumann's 
model of leaves flying in the air [47]. 

CONCLUSIONS 
We have surveyed and characterized selected visual mod­
els of morphogenesis suitable for image synthesis purposes. 

. The models were divided into two main classes, space­
oriented and structure-oriented. We have shown that the 
space-oriented models capture the flow of information in the 
medium, but usually have only limited capability to describe 
expansion of the medium and of the structure embedded in 
it: growth is limited to the boundary. The structure-oriented 
models, on the other hand, can simulate the expansion of 
the whole structure, but often do not capture the information 
flow through the medium. The selection of the appropri­
ate paradigm is an inherent part of modeling a given phe­
nomenon, as described by Segel [36, page xi], 

A good mathematical model - though dis­
torted and hence "wrong", like any simplified rep­
resentation of reality - will reveal some essential 
components of complex phenomenon. The process 
of modeling makes one concentrate on separating 
the essential from the inessential. 

In same cases, similar patterns or developmental sequences 
can be generated by fundamentally different models. For 
example, the Maltese crosses shown in Figure 4 were gener­
ated using a cellular automaton that explicitly detected and 
eliminated collisions between branches, but exactly the same 
pattern can be generated using a context-free L-system. The 
pigmentation pattern of an Oliva shell shown in Figure 9 was 
generated using a reaction-diffusion model, but similar pat­
terns can be generated using cellular automata and context­
sensitive L-systems. Lindenmayer proposed to address such 
equivalences in a formal way [21]: 

In view of the large number of possible models 
which give rise to similar morphogenetic patterns, 
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Figure 9: Pigmentation pattern of Oliva porphyria, generated 
using a reaction-diffusion model proposed by Meinhardt and 
Klinger [26]. 

the most important problem is that of narrowing 
down the set of possibilities. This can be ultimatel y 
done on the basis of experimental evidence only. 
But a better theoretical understanding of equiva­
lence relationships among models of different types 
would help considerably to sharpen the questions 
asked in the experiments. 

A formal theory of pattern complexity would be an important 
step in this direction. Traditional measures of complexity, 
such as the time and space needed by a Turing machine to 
execute an algorithm, fail to quantify the flow of information 
between components of a developing pattern or structure. A 
more specialized theory is therefore needed to formally eval­
uate the alternatives, and provide measurable criteria for se­
lecting the most plausible model of an observed phenomenon. 
An interesting feature of this methodology is that computer 
science is being applied to study processes taking place in 
nature. Gruska and Jilrgensen comment [14]: 

"Computer science" should be considered as 
a science with aims similar to those of physics. 
The information processing world is as rich and as 
important as the physical world for mankind. 
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Plate 1: A photograph and a model of Natica enzona 
(Fowler, Meinhardt, Prusinkiewicz, 1992) 

Plate 3: Developmental model of Myce/is muralis 
(Prusinkiewicz, Hanan, 1987) 

Plate 5: A photograph and a model of Microsorium 
linguaeforme (Fracchia, Prusinkiewicz, de Boer, 1990) 
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Plate 2: Pelican beach (Fowler, Prusinkiewicz, 1993) 

Plate4: Summer grass (Orth, 1993) 

Plate 6: Simulation of mobile cells interacting in a 
continuous medium (Fleischer, Barr, 1993) 


