
138 

Supporting Numerical Computations in Interactive 
Contexts 

Michael Gleicher 
Andrew Witkin 

School of Computer Science 
Carnegie Mellon University 
Pittsburgh, PA 15213-3891 

Abstract 

As computational performance becomes more readily 
available, there will be an increasing variety of interactive 
graphical applications with iterative numerical techniques 
at their core. In this paper, we consider how to support 
the unique demands of such applications. In particular, 
we focus on how to set up the numerical problems which 
must be solved. In the context of interactive systems, thi s 
requires the ability to dynamically compose systems of 
equations and rapidly evaluate them and their derivatives. 
We present an approach called Snap-Together Mathemat
ics for doing this. 

Keywords: interactive systems, automatic differentia
tion, numerical methods, constraints 

1 INTRODUCTION 

Continual advancements in computer hardware are mak
ing floating point and graphics performance more acces
sible. These capabilities are making possible new classes 
of interactive graphical applications involving animation, 
continuous motion, and direct manipulation. Such sys
tems will be able to employ techniques such as constraints, 
physical simulation, optimization, and differential control. 

These new classes of applications have a lot in com
mon. All do significant numerical calculations at their 
core. Many techniques used in these interactive graphi
cal applications, such as non-linear system solving, con
strained optimization, differential manipulation, and me
chanical simulation are similar: they involve repetitively 
setting up and solving systems of linear equations. Of
ten however, the user is insulated from the mathematics. 
Interfaces present the user with graphical objects and ge
ometric relations, it is the job of the system to translate 
these into optimization objectives, constraint functions , 
and equations of motion. 

There are many challenges in employing numerical 
techniques in interactive settings. The most obvious is 
performance: a system must keep up with interactive rates. 

USA 

Because we are interested in interaction and animation in
stead of quantitative prediction, we are often willing to 
sacrifice some accuracy for performance. Other common 
concerns of numerical analysis, such as stability and re
liability are still crucial - users would probably not be 
happy if the application failed to converge. 

Possibly the most unique set of demands that interacti ve 
systems place on numerical methods stems from their dy
namic nature. Not only do applications repeatedly solve 
numerical problems, but the structure of these problems 
is continually changing. These changes often occur in 
response to user actions such as creating objects and con
straints, or internal system events such as collisions. 

In this paper, we consider the problem of supporting 
such interactive applications with numerical computations 
at their core. The rich literature in numerical analysis pro
vides a variety of techniques for solving the systems of 
equations which arise. Therefore, we focus on the unique 
issues of employing these algorithms in interactive con
texts . In particular, we concentrate on setting up and 
managing the equations which the numerical algorithms 
will solve. Systems must be able to rapidly and dynami
cally define functions, efficiently evaluate them and their 
derivatives, and manage sets of them and variables. This 
paper describes an approach to providing these function
alities in an object-oriented, general purpose manner. 

1.1 An Example Application 

To introduce the issues which the paper will address, con
sider a constraint-based drawing program as an example 
application. Constraint-based drawing programs use equa
tion solving to maintain geometric relationships among 
objects. The use of such an approach dates back to the 
earliest interactive graphical applications[29]. Our Briar 
drawing program[9] attempted to address many of the is
sues in applying the approach[lO] . 

Like a traditional drawing program, Briar's interface 
is purely graphical. A user draws with direct manipula
tion , just as in more conventional systems. Briar provides 
Snap-Dragging[3], a non-constraint-based technique to 

Graphics Interface '93 



help users produce precise drawings easily. Constraints are 
created for the relationships which are created by Snap
Dragging operations. As the user drags objects in the 
drawing, these relationships are maintained. Briar em
ploys a visual representation for constraints so that the 
user is never confronted with any equations. In fact, the 
user never even refers directly to constraints - constraints 
are only created and destroyed in response to direct ma
nipulation dragging operations on the graphical objects in 
the drawings. 

Briar exemplifies the type of application Snap-Together 
Mathematics is meant to support. At its core is a con
strained optimization solver which is repeatedly called as 
the user manipulates objects. . In order to maintain the 
illusion of continuous motion required for direct manip
ulation, these equations must be solved many times per 
second. 

Constraints in Briar are continually being added and 
deleted as the user manipulates objects. The set of equa
tions which Briar uses to represent them, and must solve 
to maintain them, is, therefore, also in constraint flux . The 
user, however, is insulated from this mathematical machin
ery. The interface shows graphical objects and geometric 
relationships. The underlying mathematical support must 
face the challenges of creating the corresponding equa
tions dynamically as the model evolves and solving these 
equations rapidly. This paper discusses how such support 
can be provided in a general manner. 

2 RELATED WORK 

The class of graphical applications which use iterative ap
pi ication of numerical techniques at their core is expanding 
with the availability of computational performance to real
ize them. For example, the availability of this performance 
not only facilitates techniques for physically-based anima
tion, such as [1,22], but also causes them to evolve toward 
techniques for interaction simulation, such as[25, 33]. It 
also makes such physical simulation viable as an interac
tive modeling tool, as [2, 21]. 

Related to the methods of physical simulation are those 
of constrained optimization. Performing these com
putations at interactive rates permits using these tech
niques for interaction and animation problems, such as 
modeling free-form surfaces [8 , 32], experimenting with 
molecular structures[28], solving physical motion con
trol problems[34], positioning virtual cameras[ 13], and 
exploring toleranced behavior[24] . 

Since the earliest interactive graphical systems[29], 
constraints have been used to aid in the manipulation of 
geometry. From the early systems, numerical techniques 
to solve these constraints have been employed. Modern 
constraint-based systems, such as [4, 9, 19, 26], employ 
iterative numerical techniques. These non-linear system 
solving techniques, like the techniques for physical simu-

139 

lation and constrained optimization, all rely on repeatedly 
setting up and solving systems of linear equations based 
on the derivatives of model functions. 

All of these numerical techniques rely on the availability 
of the derivatives of the mathematical functions which 
define the constraints, optimization objects, and objects to 
be simulated. The most effective means for computing 
derivatives is a process called automatic differentiation 
[14]. The vast majority of automatic differentiation work 
is concerned with computing the derivatives of functions 
defined at compile time[ 15]. This paper describes a variant 
of automatic differentiation which is designed to meet the 
dynamic needs of interactive systems. 

While there is an extensive literature on the numerical 
techniques for constraint and simulation problems!, there 
is much less discussion on how to set such problems up. 
Interactive systems must be able to dynamically compose 
functions and evaluate them and their derivatives. For 
this task, some authors describe implementing function 
composition schemes similar to what is described in this 
paper[ 18, 24, 34], however such implementations rarely 
provide general purpose tools. In this paper, we describe 
encapsulating mathematical support into a toolkit so that 
the variety of applications which demand these services 
can be supported. An early implementation of these ideas 
is described in [12]. 

3 REPRESENTING AND EVALUATING FUNC
TIONS 

Algebraic expressions can be represented as directed 
acyclic graphs. The leaves of the graph are the variables 
and constants. The nodes, which we call function blocks, 
represent the primitive mathematical functions. The edges 
of the graph represent function composition . An expres
sion graph is not necessarily a tree because many nodes 
might refer to a given node. Such sharing is the result of 
a common subexpression and is common in the kinds of 
applications we are considering. For example, the func
tion which computes the position of the end of a linkage 
rod in a simulation would be a shared sub-expression of 
anything that was connected to that point. Exploiting this 
sharing is important for both performance and simplicity. 

We call the approach of providing tools for creating 
and evaluating expression graphs Snap-Together Mathe
matics . Some previous systems, such as [7] and [17], 
explicitly present the expression graph to the user. In such 
systems, users graphically manipulate graphs to edit func
tions. While such applications may be built with the tools 
described here, we have concentrated on constructing ap
plications, such as the drawing program of section 1.1, in 
which the mathematics is only kept internally. 

ISee [23) for a practical introduction . 

Graphics Interface '93 ~ 



3.1 Evaluating Functions 

Evaluation is probably the most important computation 
to be performed on expression graphs. In the interactive 
applications which we are considering, expression graphs 
will be evaluated repeatedly, so performance is critical. 
The most efficient way to repeatedly evaluate an expres
sion is to compile it into machine code. Unfortunately, 
compiling and linking code for each dynamically created 
expression is prohibitively expensive in the programming 
environments presently available. 

Other approaches to evaluating the expression graph are 
interpretive: traverse the graph for each evaluation. Each 
node of the graph computes its output value, given the 
values of its inputs. A set of primitive function elements 
are predefined at compile time to do this . Evaluation of 
a node involves asking its predecessors for their output 
values then computing the "local" function of the node. 

Performance can be enhanced by using caching to ex
ploit two types of redundancy : within an evaluation, com
mon subexpressions need only be evaluated once (these 
subexpressions may be shared within one expression or 
between different expressions); between evaluations, cer
tain old values might still be correct if some of the inputs 
did not change. Recomputation can be avoided by storing 
the results of a calculation and, for a later request, deciding 
whether this stored value is still correct. There are many 
possible ways to implement this cache validation; elab
orate schemes might avoid some recomputation, but will 
require additional computation and storage to make the de
termination. The more expensive the evaluations become, 
the more effort it is worth avoiding excess evaluations. 

3.2 Evaluating Derivatives 

For many of the applications we are considering, we will 
need to be able to evaluate the derivatives of expressions 
with respect to some subset of their inputs. Although the 
techniques extend to higher deri vatives, for this discussion, 
we will consider computing first derivatives since this is 
what the majority of the methods require. We will call 
the vector of variables which we are taking the derivatives 
with respect to the working set, and denote it as w. For a 
vector expression f , the lacobian, or first derivative, J is 
the matrix af/aw. In this matrix, each row corresponds 
to an element of f , while each column corresponds to a 
variable in w. 

There are three basic approaches to computing deriva
tives:' approximate them numerically, derive a symbolic 
expression for the derivatives, or compose them using a 
process called automatic differentiation. The latter ap
proach has been shown to be superior both in performance 
and precision of the results[14] . 

To understand the process of automatic differentiation, 
consider how derivatives are computed manually. The 

140 

chain rule allows us to decompose complicated functions 
into smaller pieces. For example, if our expression is 
f = f (a, b, . . . ), then the chain rule yields 

Differentiation involves recursive applications of the 
chain rule. If we are able to evaluate the derivative of 
each of the primitive functions with respect to their inputs 
then we can apply Equation I recursively to build the 
compound expressions. The recursion bottoms out at the 
constants, whose derivatives are 0, and at the variables, 
whose derivatives are I with respect to themselves and 0 
with respect to others. 

Symbolic differentiation applies the chain rule to an 
expression graph to transform it into a new expression 
which evaluates the derivative. The resulting expression 
must then be simplified to take advantage of the sparsity 
of the derivatives . Even then , the symbolic differentiation 
of a vector with respect to a vector yields a matrix of 
expressions which is unwieldy to manage. 

Automatic differentiation also applies the chain rule to 
expressions; however, rather than symbolically composing 
more compl icated expressions, the intermediate results are 
combined numerically. For any node in the graph, if the 
inputs to equation 1 are concatenated into a vector, the 
equation multiplies two matrices: the "local" lacobian of 
the outputs with respect to the inputs, and the derivatives 
of the inputs with respect to the working set. 

We implement automatic differentiation by augmenting 
the expression graph with the ability to pass derivatives as 
well as values along edges. In addition to to computing its 
output values, each node of the expression graph must also 
be able to compute the value of its local derivative, also a 
function of its inputs. The composition process builds the 
"global" lacobian by mUltiplying this matrix with interme
diate result matrices . By passing the entire intermediate 
result matrices along the edges of the graph , the derivative 
matrix can be built in one traversal of the expression graph. 
The same mechanisms for sharing intermediate results by 
caching as discussed in the previous section apply. 

A recursive descent of the expression graph computes 
the derivative matrix . Each node in the graph is able 
to respond to requests for the derivative of its output with 
respect to the current working set. Constants and variables 
not in the working set return zero in response to this query. 
A state variable in the current working set returns a vector 
with one in the position corresponding to the variable, 
and zeros elsewhere. After determining that its cached 
value is not valid , a non-terminal node recursively asks its 
children for their derivati ves, computes its local lacobian, 
and multiplies these together to produce its deri vative with 
respect to the current working set. Figure I demonstrates 
a simple example. Edges of the expression graph pass not 

Graphics Interface '93 



s=35 
as/aw= 171 0 151 0 I 

State Vector 

151617181 

af af ax 
aw = ax aw 

s=7 

= ITJ:II OJ:QIQIQJ 
[QIQ]JJQJ 

as/aw= I 0 I 0 11 I 0 I 

Figure 1: A simple example of derivative composition. Sig
nals carry both values and their derivatives. The function block 
computes its internal lacobian and composes the global lacobian 
by multiplying the matrices. 

only values, but also their derivatives . 

This method of automatic differentiation assembles the 
Jacobian bottom-up, and is called the forward-mode. The 
alternative reverse-mode, or top-down, approach is pre
sented by [14] and implemented for an interactive system 
by [24]. This algorithm reverses the order of the ma
trix mUltiplies, building the Jacobian matrix from the top 
down . It has the advantage that the intermediate result 
matrices are of small, fixed size. In the bottom-up ap
proach, the size of intermediate matrices depends on the 
number of variables which contribute to that derivative. 
Because the intermediate results are fixed-sized, the top
down approach can achieve linear asymptotic complexity 
in places where the bottom-up approach has O( n 2 ) com
plexity. However, this increased worst-case performance 
on dense problems comes at the expense of considerable 
bookkeeping, inability to fully exploit sparsity, inability 
to share intermediate results, much higher time constants, 
and difficulty in changing working sets. 

It is important to recognize the generality of either of 
these derivative composition processes. Each node of 
the expression graph need only to be able to compute its 
locallacobian, the derivative of its outputs with respect 
to its inputs. This matrix is a function only of the input 
values, not their derivatives. Given the local Jacobians, 
the composition process merely multiplies the matrices 
together to build the global derivatives. 

141 

3.3 Sparse Representations 

The critical performance issue in building the Jacobian 
matrix, as well as most calculations that use this result, 
is exploiting sparsity. Bottom-up matrix passing schemes 
exploit sparsity by using sparse representations for the in
termediate matrices. There are many possible ways to 
represent a sparse matrix , with many tradeoffs to consider 
in selecting a representation [6]. This decision is central to 
the design of an implementation. One particular represen
tation with which we have had success is the half sparse 
matrix: a full vector of sparse vectors. We call a system 
based on these data structures a sparse vector scheme. 

In the sparse vector scheme we consider every output 
in the expression as an independent scalar, even if higher 
levels will interpret them as pieces of larger structures. 
A function block can have mUltiple scalar outputs. The 
gradient of each scalar is a sparse vector (ox / ow). 

Sparse vectors can be represented as a list of pairs 
(index, value), taking space linear with the number of 
non-zero elements. If this list is sorted by index, we can 
perform the essential vector operations in time linear to 
the number of non-zero elements. For single vector op
erations, such as mUltiplying by a scalar or finding the 
magnitude, the algorithms simply run through the list. For 
multi-vector operations, such as addition, linear combi
nation, or dot product, we exploit the sortedness of the 
lists and step through both in parallel, advancing which 
ever has the least index. These algorithms maintain the 
representation invariant so sorting is not needed. 

Each derivative in the expression graph is represented 
as a sparse vector, the derivative of a scalar with respect to 
a set of variables. For each graph, one set of variables is 
denoted as current: all derivatives are with respect to this 
set. Each set of variables also must contain a mapping to 
the corresponding column of the Jacobian. 

Sparse vectors are collected into matrices which are 
half-sparse. While this is an unusual representation, itdoes 
permit the operations required by the numerical methods 
we employ. In particular, it can be rapidly multiplied by 
a vector or by its transpose, which are the essential com
putations in iterative linear system solvers like conjugate 
gradient[23]. 

4 OBJECT ORIENTED FUNCTION COMPOSI
TION 

The graph oriented view of function leads to an obvious 
encapsulation. The primary computations at any internal 
node of the graph are inherently local: given the inputs to 
the node, compute the output or local Jacobian. Composi
tion can be provided by a general purpose service, either 
external to the graph objects themselves, or by the generic 
classes of graph objects. 

The most obvious realization of the function composi-

Graphics Interface '93 



tion encapsulation is to create special objects for the major 
abstractions such as function blocks, variables, and con
stants. Although such a library is very easy to build and 
extend, it creates a tendency to have separate mathematical 
and conceptual models. For example, a mechanical simu
lator might keep a separate description of the mechanical 
object in addition to a expression graph which computed 
the equations required for the simulation. The user would 
operate on the mechanical model which in turn updates 
the mathematical model. Our experience was that main
taining these multiple representations complicated the de
velopment of systems. 

To alleviate some of the complications of managing 
multiple representations, we avoid defining separate ob
jects for graph entities. Instead, we add the ability to be
have as mathematical expressions to application objects. 
For example, objects in a geometric modeler which repre
sented points in space might add the ability for these points 
to serve as "mathematical outputs." This is possible be
cause for an object to "speak mathematics" it only needs 
to respond to a few additional types of queries. 

We call an object which can be used as a node in an 
expression graph, e.g. can have other nodes look at its 
output, a port. The only required protocol to realize the 
gradient passing scheme is for port objects to be able to 
respond with its output values and the gradients of these 
values with respect to the current working set. It is very 
easy to mix this behavior into other applications, or to 
extend this protocol to include other evaluations which can 
be computed by composition such as interval arithmetic . 

4.1 Connectors 

The simple port protocol provides the minimum of infor
mation for realizing function composition, evaluation and 
derivative evaluation. Some additional information about 
ports is also often useful. An obvious example is knowing 
the number of scalar outputs. of a port. Providing names 
and nominal value ranges for each output provides the 
possibility of automated graphical display like meters, or 
even slider-based input2. 

One of the most useful additions to ports is typing in
formation . For example, providing a port with the type 
"point in 3 space" means that it represents the position of 
a point in space and that it will have 3 outputs correspond
ing to its cartesian coordinates. Types provide a method 
of grouping signals together and checking types can help 
avoid signal mismatching. Types also add structure which 
can make it easier to hide the underlying mathematics. 

We call a typed port a connector. Using connectors 
permits generic interfaces between layers of systems. For 
example, graphical constraints typically involve points on 
the parts they relate. By formulating the constraints as 

2Using the techniques of section 5.1, outputs may be used as controls. 

142 

functions of point connectors, they can be defined indepen
dently of the kinds of objects they relate. Similarly, parts 
need only be defined to have point connectors on them, 
they need not know about the kinds of constraints which 
will be placed on them. Figure 2 shows how points on ob
jects and constraints are coupled merely by the common 
protocol of the connector. Such a design permits build
ing systems with extensible sets of parts and relationships 
among them. A more restrictive notion of connectors, with 
similar benefits, is presented in [16]. 

The choice of what types of connectors to provide de
termines what kinds of generic interfaces will be possible 
in systems. Positions of points are a generally useful class. 
Adding orientation information, such as normals, to point 
connectors is useful in a variety of drawing geometric 
modeling situations. Sometimes, more domain specific 
connector types are needed. For example, in our work on 
camera control [13]. we defined a connector type which 
was the location a point appeared on the image plane with 
a given camera, and objects in the Briar drawing program 
described in sectionl.l had connectors which provided a 
standardized form of the line passing through their major 
axis. 

4.2 Collecting Variables 

In defining our simple protocol for Snap-Together Math
ematics one issue which we have not yet specified is the 
set of variables which we are taking derivatives with re
spect to. This is indicative of the larger issue of managing 
collections of variables. On one hand, building systems in 
an object-oriented manner requires the state of the system 
distributed with the objects themselves. But, mathemat
ical algorithms typically require this state in the form of 
vectors, which are gathered, ordered collections. This or
dering also gives meaning to the columns of the lacobian 
matrices. 

We have experimented with many representations of 
variables in our system, ranging from having objects allo
cate space in a global state vector to modifying our numer
ical algorithms so that they operate on distributed vectors. 
What has worked best for us is a combination of central
ized and distributed representation. Objects each have 
their own state, however these variables are "gathered" 
into a centralized state vector for numerical computations. 
When an object's variable has been gathered, it knows 
where in the global vector to find it so it can still retrieve 
its value as well as index it for creating derivatives. In the 
context of Snap-Together Mathematics, derivatives can 
only be taken when variables are gathered as this is the 
only time when variables correspond to matrix columns. 

The ability to scatter and gather variables has an im
portant advantage over always keeping the variables cen
trali zed. It allows for the set of variables to be changed 
rapidly. This not only simplifies adding and deleting ob-

Graphics Interface '93 



143 

c1 = x1-x2 
c2 = y1-y2 

Attach 

Line I X11 y1 I X21 Y21 

Y=Y 
Center 

Circle 

X=X 
y=y+r 

Top Point 

Figure 2: Connectors permit defining constraints independently of the objects they relate. In the example, the attachment constraint is 
defined in terms of generic 2D points. 

jects, but also things like selecting sets of objects to be 
active and switching off certain variables which we do not 
want to change. Sharing a space in the collected vector 
provides a fast and simple way to constrain two variables 
to be equal. 

The ability to selectively gather variables helps achieve 
performance in interactive constraint systems. Because 
there is little that can be done about the computational 
complexity of solving algorithms, it is important to try to 
minimize the size of the problems which are solved, with
out placing undue restrictions on the user. For example, 
a system might only gather variables which are likely to 
change on the current iteration and only solve the subset of 
constraints which act on these variables. A related tech
nique is to partition the constraint problem into several 
smaller problems, which is examined extensively by [26]. 

5 IMPLEMENTATION 

Our efforts to build general purpose Snap-Together Math
ematics tools began with our original efforts to construct 
interactive systems[33]. Our early implementations are 
discussed in [12] . Experience using these tools has caused 
them to eyolve into what has been described here. Our 
present toolkit, written in C++, implements sparse vector 
passing, scatter and gather variable collections, and a sim
ple timestamping scheme for cache validation. We have 
tools which automatically generate function block code 
from mathematical expressions. 

Snap-Together Mathematics is built on top of a more 
general set of mathematical tools. Our library provides in
terval arithmetic, vector and matrix computations, sparse 
matrix operations, and linear system, non-linear system, 
and ordinary differential equation (ODE) solving. The 
entire toolbox is written with object-oriented interfaces, 
permitting such things as switching ODE solvers on the 
fly and writing matrix routines independently of represen
tations so the provided set of sparse matrix types can easily 
be extended. 

With Snap-Together Mathematics and our low level 
mathematical toolkit, we have built a tool for experiment
ing with constrained optimization. The tool allows con
straints and optimization criteria to be dynamically de
fined . Expressions can quickly and easily be added or 
removed from the set of constraints and objectives. This 
dynamic performance is what enables several of the in
teraction techniques we have experimented with, such as 
bounding variables and collisions. 

This constrained optimization tool and Snap-Together 
Mathematics serve as the core for a higher level interacti ve 
graphics toolkit called Bramble. Bramble provides the 
typical abstractions provided by tool kits, such as graphical 
objects, display lists, views, and cameras. It is designed 
with the intent that applications programmers should be 
able to deal with this layer of abstraction, rather than that 
of optimization objectives and Lagrange multipliers. 

What separates Bramble from similar systems such as 
Unidraw[30], Inventor[27], or UGA[5] is that it is built 

Graphics Interface '93 



with mathematical techniques for manipulation at its heart. 
Providing for the needs of the differential approach perme
ates the more traditional things which interaction tool kits 
do. For example, transformation hierarchies build func
tional representations and viewing parameters are stored 
as state variables. While these typically happen behind 
the back of the application programmer, their existence 
makes interesting interaction techniques available. The 
previous examples enable differential inverse kinematics 
and through-the-Iens camera controls respectively. Many 
of the quantities computed within the graphics library, 
such as the locations of shadows and the results of light
ing computations, are available as Snap-Together Math
ematics outputs and can, therefore, be constrained and 
controlled. 

In support of Bramble, we have developed an embedded 
interpreter that serves as an extension language, a user 
interface description language, a save and load format, a 
rapid prototyping facility, and a debugging aid. Although 
similar to TcI[20] in intent and implementation, Whisper 
is more akin to Scheme and Lisp in syntax and semantics. 
Whisper's extensible type system includes Snap-Together 
Mathematics classes, permitting easy, dynamic definition 
of mathematical functions . 

5.1 Differential Techniques 

Bramble uses constrained optimization to provide map
pings from user controls to the parameters of objects. In 
short, we aim to provide the user with direct control of 
some aspect of a geometric model, for example the posi
tion of a point on a curve. Since all aspects of a model 
must be determined by the model's state vector, the desired 
control must be a function of these parameters. However, 
we cannot simply specify the outputs ofthese functions be
cause they are often non-linear and underdetermined. We 
instead specify the motion (time derivative) of the control 
as it is a linear function of the time derivative of the pa
rameters. The non-linear controls on the parameters form 
linear constraints on the time derivatives of the parame
ters. Non-linear constraints on parameters also form linear 
constraints on the time derivatives. An optimization ob
jective specifies what happens to unconstrained degrees of 
freedom. We call this technique differential manipulation, 
and discuss it in detail in [11, 13] . 

In terms of implementation and numerical needs, differ
ential techniques are similar to other techniques for non
linear constraints and control such as as Newton-Raphson 
solvers[23]. The central calculation is solving a system 
of linear equations formed with the lacobian of the con
straint equation. In sol ving these equations, it is important 
to exploit sparsity to achieve interactive performance and 
scalability. Because of the dynamic nature of the prob
lems, systems cannot extensively pre-analyze the sparsity, 
as done in [28]. Instead, like [22] and [26], we use a 

144 

conjugate gradient solver which is an iterative method and 
therefore allows some control of the tradeoffbetween per
formance and accuracy. We also use damping techniques, 
similar to those discussed in [31] or used in the Levenberg
Marquardt Method[23], allowing us to trade accuracy for 
stability and performance in cases of conflicting or redun
dant constraints. 

A straightforward application of differential manipula
tion is interaction with parametric curves. Suppose all 
we knew about a curve is its parametric function, e.g. 
(x, y) = f(q , u) . This is sufficient information to draw 
the curve. With differential manipulation, this is also suf
ficient information to interactively manipulate the curve by 
controlling positions of points on it. Even if the function 
which computes the position of a point from the parame
ters is non-linear, we can control the motion of the point 
and compute how the parameters must change to achieve 
this motion by solving a linearly constrained optimization 
problem. The same mechanism is used to place constraints 
on the parametric curves. 

Differential techniques make it possible to have an ex
tensible system for manipulating parametric curves. To 
introduce a new type of curve, only its parametric func
tion need be provided. Drawing and manipulation can be 
handled by generic routines. In [11] we describe a system 
which permitted addition of new curve types by an auto
matic compilation process. With Bramble and Whisper, 
we have constructed a similar system which allows the 
user to define a new variety of curve on the fly. 

6 CONCLUSION 

Our implementation of Snap-Together Mathematics has 
served as a platform on which we have built an array 
of interactive graphical applications including drawing, 
scene composition, physical and mechanical simulation, 
motion control , and animation . Experience in building 
these applications has led to a highly evol ved toolkit. 

By encapsulating the often needed functionality of 
dynamically composing mathematical expressions and 
rapidly evaluating them and their derivatives we have cre
ated a substrate on which to build a variety of interactive 
applications. As we continue to experiment with applying 
iterative numerical techniques to more interaction prob
lems, we will continue to gain from having such a tool. 

References 

[I] D. Baraff. Analytical methods for dynamic simulation of 
non-penetrating rigid bodies. In Computer Graphics (Proc. 
SIGGRAPH) , volume 23, pages 223-232. ACM , July 1989. 

[2] Ronen Barze1 and A1an H. BaIT. A modeling system based 
on dynamic constaints. Computer Graphics, 22: 179-188, 
1988. Proceedings SIGGRAPH '88. 

Graphics Interface '93 



[3] Eric Bier and Maureen Stone. Snap-dragging. Computer 
Graphics, 20(4):233-240, 1986. Proceedings SIGGRAPH 
'86. 

[4] Computervision Corporation. DesignView. Computer Pro
gram, 1992. 

[5] D. Brookshire Conner, Scott S. Snibbe, Kenneth P. Hem
don, Daniel C. Robbins, and Andries van Dam. Three
dimensional widgets. In Proceedings of the 1992 Workshop 
on Inte ractive 3d Graphics, pages 183-188, March 1992. 

[6] 1. S. Duff, A. M. Erisman, and J.K. Reid. Direct Methods 
for Sparse Matrices. Oxford University Press, Oxford , UK, 
1986. 

[7] Kurt Fleischer and Andrew Witkin. A modeling testbed. In 
Proc . Graphics Interface, pages 127-137, 1988. 

[8] Barry Fowler. Geometric manipulation of tensor-product 
surfaces. In Proceedings, Interactive 3D Workshop, 1992. 
(to appear). 

[9] Michael Gleicher. Briar - a constraint-based drawing pro
gram. In SIGGRAPH Video Review, volume 77, 1992. CHI 
'92 Formal Video Program. 

[10] Michael Gleicher. Integrating constraints and direct ma
nipulation. In Proceedings of the 1992 Symposium on In
teractive 3D Graphics, pages 171-174, March 1992. 

[11] Michael Gleicher and Andrew Witkin. Differential manip
ulation. Graphics Interface, pages 61-67, June 1991. 

[12] Michael Gleicher and Andrew Witkin. Snap together math
ematics. In Edwin Blake and Peter Weisskirchen, editors, 
Advances in Object Oriented Graphics 1: Proceedings 
of the 1990 Eurographics Workshop on Object Oriented 
Graphics. Springer Verlag, 1991. Also appears as CMU 
School of Computer Science Technical Report CMU-CS-

90-164. 

[13] Michael Gleicher and Andrew Witkin. Through-the-Iens 
camera control. Computer Graphics, 26(2):331-340, July 
1992. Proceedings Siggraph '92. 

[14] Andreas Griewank. On automatic differentiation. In 
M. lri and K. Tanabe, editors, Mathematical Program
ming: Recent Developments and Applications, pages 83-
108 . Kluwer Academic, 1989. 

[15] David W. Juedes . A taxonomy of automatic differentiation 
tools. In Andreas Griewank and George Corliss, editors, 
Automatic Differentiation of Algorithms: Theory, Imple
mentation and Application, pages 315-329. SIAM, January 

1991. 

[16] Devandra Kalra and Alan H. BaIT. A constraint-based figure 
maker. In C.E. Vandoni and D. A. Duce, editors, Proceed
ings Eurographics, pages 413-424, 1991. 

[17] Michael Kass. CONDOR: constraint-based data flow. Com
puter Graphics , 26:321-330, July 1992. Proceedings SIG
GRAPH '92. 

[18] Henry Kaufman . Constraint techniques for interactive 
physically-based modeling. Master's thesis, Brown Un
versity, July 1991. 

145 

[19] Greg Nelson. Juno, a constraint based graphics system. 
Computer Graphics, 19(3):235-243, 1985. Proceedings 
SIGGRAPH '85. 

[20] John K. Osterhout. Tcl : An embeddable command lan
guage. In 1990 Winter Usenix Conference Proceedings, 
1990. 

[21] A. Pentland, I Essa, M. Friedmann, B. Horowitz, 
S. Sclaroff, and T. Stamer. The thingworld modeling sys
tem. In E. F. Deprette, editor, Algorithms and Parallel VLSI 
Architectures. Elsevier Press, October 1990. 

[22] John Platt. A generalization of dynamic constraints. 
CGVIP: Graphical Models and Image Processing , 
54(6):516-525, November 1992. 

[23] William Press, Brian Flannery, Saul Teukolsky, and 
William Veuerling. Numerical Recipes in C. Cambridge 
University Press, Cambridge, England, 1986. 

[24] Mark Sapossnek. Virtual Prototyping: An Interactive Ap
proach to Geometric Tolerance Design and Analysis. PhD 
thesis, Camegie Mellon University, 1993. in preperation . 

[25] Peter Schroeder and David Zeltzer. The virtual erector set: 
Dynamic simulation with linear recursive constraint prop
agation. Computer Graphics, 24(2):23-31, March 1990. 
Proceedings 1990 Symposium on Interactive 3D Graphics . 

[26] Steven Sistare. Interaction techniques in constraint-based 
geometric modeling. In Proceedings Graphics Interface 
'91 , pages 85-92, June 1991. 

[27] Paul S. Strauss and Rikk Carey. An object-oriented 3d 
graphics toolkit. Computer Graphics, 26(2):341-349, July 
1992. Proceedings SIGGRAPH '92. 

[28] Mark C. Surles. An algorithm for linear complexity for 
interactive, physically-based modelling of large proteins. 
Computer Graphics, 26(2):221-230, 1992. Proceedings 

SIGGRAPH '92. 

[29] Ivan Sutherland. Sketchpad: A Man Machine Graphical 
Communication System. PhD thesis , Massachusetts Insti
tute of Technology, January 1963. 

[30] John M. Vlissides and Mark A. Linton. Unidraw: A frame
work for building domain specific graphical editors. In 
Proceedings of the 1989 ACM SIGGRAPH Symposium on 
User Interface Software and Technology, November 1989. 

[31] Charles W. Wampler. Manipulator inverse kinematic so
lutions based on vector formulations and damped least
squares method . IEEE Transactions on Systems, Man, and 
Cybernetics, 16(1):93-101 , January 1986. 

[32] William C. Welch and Andrew Witkin. Variational surface 
modelling. Computer Graphics, 26(2): 157-166,July 1992. 
Proceedings SIGGRAPH '92. 

[33] Andrew Witkin, Michael Gleicher, and William Welch . 
Interactive dynamics. Computer Graphics, 24(2): 11-21 , 
March 1990. Proceedings 1990 Symposium on Interactive 
3D Graphics. 

[34] Andrew Witkin and Michael Kass . Spacetime constraints. 
Computer Graphics, 22: 159-168, 1988. Proceedings SIG
GRAPH '88. 

Graphics Interface '93 


