
146 

A Window Architecture Providing Predictable 
Temporal Performance 

Philippe F. Bertrand, William Cowan, Marceli Wein 

Department of Computer Science, 
University of Waterloo, Waterloo, Ontario, N2L 3G1 

519-888-4534 
e-mail: [PFBertrandIWBCowanIMWein]@watcgl.UWaterloo.ca 

ABSTRACT 
Programs running on high performance 
workstations are beginning to require the ability 
to perform precise temporal synchronization for 
applications that range from process and system 
visualization to video games like flight simulators. 
Unfortunately, the architecture of operating 
systems and graphics makes this capability very 
hard to achieve. This paper describes the 
architecture and implementation of SLwindows, a 
window system that provides all the usual facilities 
of overlapping windows in addition to real-time 
performance controllable from within the 
individual applications. It does so by making use 
of graphics hardware that duplicates context within 
the graphics system, allowing the implementation 
of independent graphics data paths that run from 
each application all the way to the digital-to
analogue converters. The window system written 
to take advantage of this hardware allows individual 
application tasks direct access to all the graphics 
hardware, giving them real-time control of the 
graphical output. In doing so it eliminates much 
of the time-consuming overhead that exists in 
current window systems, such as damage repair. 
The implementation was performed using a decade
old graphics system, combined with custom-built 
hardware. But the capabilities of commercial 
graphics subsystems are improving in ways that 
make widespread implementation of similar 
systems possible in the near future. They will be 
essential as application programs begin to use 
facilities like multi-media that require tight control 
of temporal synchronization among a variety of 
output streams. 

KEY WORDS: window systems, graphics context, 
multimedia, hardware and software architecture, 
workstation, temporal synchronization. 

INTRODUCTION 
A variety of applications are poorly served by 
hardware and software architectures offered in the 
current generation of high performance 
workstations . Of specific interest in this paper 
are applications that use a class of features relying 
on temporal synchronization. Examples include 
animation, coordination of events in different 
windows, and synchronization with audio output. 
Even more important, because the human user 
operates in real-time any application with a user 
interface is potentially a real-time program. Thus, 
all application environments should offer the 
programmer access to real-time control of the 
computation. 

A class of applications that has recently 
increased awareness of the need for good temporal 
performance is navigation in virtual reality. The 
image must be presented at a constant rate, with 
negligible jitter, forcing the delay from hand
controller input through the application to the 
display to be within a narrow band [2 , 21]. Otherwise 
the desired perception is completely lost to the 
user. Many other applications have similar 
requirements because they link hand-eye 
coordination to a real-time application. Such 
systems must provide tight feedback, low latency 
and a quality of response not found in contemporary 
graphics workstations. The requirements are well 
documented in the literature of avionics and 
industrial systems . Wickens [21] gives a good 
overview. Awareness of these issues can also be 
found in the graphics community [1 , 19]. 

A related class of applications makes use of 
multimedia presentation, requiring jitter-free 
presentation of visual material and synchronization 
among several threads, possibly including audio 
and tactile feedback. For such applications the 
temporal synchronization demands are as great or 
greater than they are for virtual reality. 

This paper discusses some of the shortcomings 
of existing systems, presents SLwindows, a novel 
window system architecture providing good 
temporal performance, and reports on a prototype 

~:.: .. .. . - ~ ~ Graphics Interface '93 



147 

Display ) I Keyboard I Workstation 
Mouse 

" / X 

X 
Application 

(Client) 
Server 

(Window Agent) - - Protocol 
Interface 

A. , 
I Network I 

-~ 
, , , , , 

Protocol Protocol Protocol 
Interface Interface Interface 

X Dialogue Window 
Appl ication Manager Manager 

(Client) Library (Client) 

X 
Application 

(Client) 
Remote Host 

Figure 1. Relationship of System Components in the X Window System. 

implementation · of the architecture demonstrating 
its feasibility. 

The thesis of this paper is that architectural 
improvements in the workstation window system 
and the underlying graphics hardware are more 
effective than waiting for increases in computing 
power and in graphics throughput. Adequate 
performance is available today using modest CPU 
bandwidth, and temporal control can be provided 
in addition to raw speed: any player of video games 
knows that too soon is often worse than too late. 

PROPERTIES OF EXISTING SYSTEMS 
Time-critical applications are increasingly 
emerging from embedded systems to run on 
interactive systems that range from high 
performa nce works ta tions to mass-market 
computers. Universally these platforms run under 
the control of an operating system through which 
application programs control the system hardware. 
The more elaborate the operating system the more 
the application program is isolated from the 
underlying hardware and the less temporal control 
is available. In this respect operating systems of 
mass-market computers are converging with Unix, 
which dominates the high performance market. 

OS/2 [13] is a typical example . In such 
environments a highly tuned application can be 
frustrated by the unreliable temporal response 
offered by the operating system. 

This problem is often compounded by the 
window system, which inserts another hard-to
control layer between the application and the 
hardware. A good example is the X Window System 
[16], which currendy occupies a dominant position 
in the workstation market. It has evolved with a 
strong emphasis for support of network oriented 
applications, permitting a window to display the 
output of applications that run either locally or 
remotely. The resulting loose coupling of 
application and display inhibits temporal control 
of application output. Thus, while X is strong 
for flexibi lity and generality, it is weak for temporal 
fidelity. 

The X window system is based on the UIMS 
model discussed by Lantz et al. [15]. At its centre 
is a monolithic server (Figure 1). All accesses to 
the graphics hardware go through the server which 
synchronizes accesses and controls graphics 
context. The hardware can be very fast. Therefore 
a single task driving one window can achieve 
excellent performance. In addition, software 
techniques can be used to enhance performance 

Graphics Interface '93 



by. reducing the fidelity of rendering for moving 
objects [20]. But, because the window server 
manages the graphics pipeline and handles all 
windows on the screen it creates a performance 
bottleneck when multiple windows are active. 
Window-specific state information exists in data 
structures controlled by the X Server and all 
synchronization occurs there. Server traffic 
includes window updates, damage reports and colour 
table management in addition to handling mouse 
and keyboard events. 

For example, X presents the user with a set of 
nominally independent windows but they actually 
interact because they share resources such as 
hardware, data structures and graphics context. 
Within the server requests are handled so as to 
reduce the context switching overhead, degrading 
the accuracy with which an application's temporal 
beha.viour can be controlled ' . One way to 
elImmate the undesirable coupling between 
wmdows is the elimination global state information 
which needs to be accessed through a concurrenc~ 
control mechanism [8]. 

Colour look-up tables (L UTs) are also a 
problem, since they are shared among all 
apphcatIons. Two strategies are possible. A static 
allocation method makes the entire LUT available 
to all applications by setting in a standard set of 
pre-defined colours. This method eliminates server 
overhead, but makes it impossible to reali ze effects 
like look-up table animation [5, 17]. A dynamic 
allocation method , on the other hand, has the 
server allocate entries as application tasks demand 
them. Thus, a task can, in principle, demand 
enough entries for its animation, then, after writing 
the appropriate patterns into pixel memory, issue 
commands that change entries to effect the 
animation. 

X offers both dynamic and static methods, but 
its implementation of dynamic allocation is 
inadequate in a way that is typical of server-based 
systems. The commands issued by the application 
must result in precisely timed changes to the 
LUTs or the animation is jerky. But network 
activity, system demands and competition from 
other applications makes precise timing impossible 
to achieve [19]. Furthermore, since entries are 
allocated at run time there is no guarantee that 
entries will be available when the program runs: 

, The ' temporal behaviour' of an application is 
difficu.!t to contro!' For example, to achieve temporal 
synchronization displayed events must occur at precise 
times, as specified by the real-time clock to which all 
t emporal events make reference. Such control of 
temporal behaviour, in which events mlJst be protected 
equally from earliness and lateness must be distinguished 
from good temporal performance, which can be produced 
by high throughput alone, without the necessity for 
real-time sync hronization. 

148 

they. may already have been acquired by other 
apphcatlOns. Thus, even jerky animation may be 
Impossible to provide. 

Better animation can be provided by treating 
the LUTs as ~ local resource, allocating them 
statIcally to a wmdow, and then letting the window 
access them directly. Then, as long as the 
apphcatIon can synchronize itself with a real-time 
clock it can synchronize the LUT updates, 
ensuring smooth animation. Such an architecture 
requires that pixels in the frame buffer be grouped 
mto wmdow-speclfic blocks, and that the grouping 
be preserved in video processing. 

ARCHITECTURE OF THE SYSTEM 
The design of the window system SLwindows and 
the constructed prototype presented here were 
developed to support applications with temporal 
fidehty and to overcome the difficulties discussed 
above. 

The SLwindows system was developed as 
part of an ongoing project that has produced a 
psychology workstation for administering vision 
and perception experiments, a task requiring real
time image display and response collection [3]. 
These activities require temporal performance 
predictable to within a few milliseconds. Ensuring 
the reliability of a program's temporal performance 
turned out to be difficult, and led to the 
deve~opment of software probes for such systems. 
SLwmdows IS an outgrowth of that activity. 

The psychology workstation project uses a 
programming model in which an application is 
structured as a set of tasks running on a tightly 
coupled multi-processor and communicating 
through message passing. The application runs 
under the Harmony real-time multiprocessing 
opera ting system [12]. A typical system consists 
of two to six single-board CPUs plus peripherals. 
Prudent allocation of tasks to processors, combined 
with a suitable choice of priorities, ensures real
time response of critical tasks. 

Most applications developed in the 
psychology workstation project take over the entire 
screen, without the benefit of a window system. 
A graphics server task is used to synchronize screen 
accesses from the tasks that comprise the 
application. Thus, parallelism was achieved at the 
application level but not in the graphics processor. 

The first step towards a window system for 
time dependent applications was the port of the 
X Window system to the multiprocessor 
architecture [14]. This exercise showed that X 
could indeed run on a multi-processor but 
demonstrated the principal weakness of X's 
architecture. State information is so intimately 
shared among different parts of the server that it 
was essentially impossible to increase throughput 
by taking advantage of the possibility for parallel 
execution of different functions. Clearly, a higher 

Graphics Interface '93 



149 

Display Hardware 

Figure 2. SLwindows' Task Structure 

level of parallelism requires graphics hardware that 
is consistent with multiple servers. 

The design and implementation presented 
here includes innovation in graphics hardware 
capabilities and in window system architecture. 
The overriding goal is to introduce parallelism 
from the application all the way to the graphics 
hardware, using parallel paths through the frame 
buffer and logically independent look-up tables. 
Because the system is supported by a 
multiprocessor multitasking operating system the 
application tasks can execute independently, 
unimpeded by other activities and synchronIzed 
to a real-time clock. 

The underlying frame buffer hardware 
provides independent paths into the frame buffer 
for different applications and eliminates as much 
global state information as possible [7]. The 
stateless nature of the interface removes the need 
for shared data structures, for interlocking, 
concurrency control and for expensive context 
switching. 

The second hardware component that made 
this project possible is a video processor developed 
to demonstrate a frame buffer architecture capable 
of storing reflectance values instead of RGB triples 
[9]. SLwindows uses the reflectance board as a 
dynamic cross-bar switch that is a ble to steer 
pixel data at video rates. 

DESIGN OF SLWINDOWS 
Based on the issues discussed above, the design of 
the SLwindows must meet several objectives. The 
system architecture must improve concurrencl 
in both software and hardware. To malOtalO thIS 

2 Concurrent means logically parallel but not 
necessarily truly parallel. True parallelism, on the other 
hand, implies concurrency. Thus, concurrency is 

concurrency and reduce the overhead on graphics 
operations, concurrent modules must have direct 
access to the hardware. In addition to the improved 
con currency, it is important to reduce or elimina.te 
damage reports, a major source of overhead tn 
window systems. 

Hardware Requirements 
To achieve desired performance, the graphics 
hardware must support multiple independent data 
paths. These paths may include components as 
complex as geometry engines and as simple as 
image pixels. The output of each of data path 
must be directed to a specific virtual frame buffer. 
The virtual frame buffer associated with a path 
should be configurable. 

These virtual frame buffers, or layers, are 
distinct portions of a physical frame buffer t.hat 
can be protected from access by tnappropnate 
paths, using write masks, for example. A 
mechanism must be provided to identify the layer 
to be displayed at each pixel. Because layers occupy 
distinct physical memory they are immune to 
damage caused by window overlapping. 

To achieve independence, each layer must have 
its own colour lookup table. For these colour tables 
to be properly accessed during the screen refresh, 
the mechanism that identifies the layer to be 
displayed at a pixel must also specify which colour 
table is to be used for the pixel. 

Software Structure 
To improve con currency and remove the 
bottleneck in traditional designs, the window agent 
functionality [15] of the traditional single server 
is distributed into a layer administrator and many 
renderers (Figure 2). The layer admtnlstrator 

necessary but not sufficient for true parallelism. · 

Graphics Interface '93 ~~ 



provides the mechanism for sharing the display: 

mainly the configuration, allocation, and 

manipulation of layers. Each client accesses the 

display hardware through its own renderer. 

Like the window manager in the X window 

system, the SLwindows window manager is a client 

task that identifies itself to the system as the task 

responsible for window policy. Since it is a client 

task, it also accesses the display hardware through 

a renderer. When the window manager initializes, 

it requests a renderer from the layer administrator, 

with a layer for the background and a layer for 

emergency messages. The emergency message 

layer is allocated immediately to make sure it is 

always available. 

The window creation process begins with a 

client request to the window manager. The window 

manager in turn requests a renderer and two layers 

from the layer administrator. The renderer and 

one of the layers is for the client area while the 

second layer is given to the window manager's 

renderer to draw the window frame 3
• All 

subsequent requests for window manipulation, such 

as movement, resizing or reordering, are translated 

by the window manager into requests to the layer 

administrator, asking it to handle both the client 

layer and the underlying frame layer. The layer 

administrator services these requests by modifying 

hardware state information to which it alone has 

access, without needing access to either the client 

or frame layers. 
When a new renderer and layer are requested, 

the layer administrator creates a layer and allocates 

a colour lookup table. A pipeline is initialized to 

use the new layer and colour table, after which 

the new renderer is created and granted access to 

these resources. The layer administrator is the 

only task permitted to reconfigure the state of 

the hardware. The configuration includes the size, 

positioning and ordering of layers. 

The renderer provides access to a layer and 

manages the associated colour table. Once created, 

the renderer has full and direct access to its layer 

through its own data path. Drawing and changes 

to colour table entries are performed without any 

communication with other renderers or with the 

layer administrator. In this respect, the renderer 

behaves as a client's personal X server, customized 

to serve the client. 
This distributed approach results in a system 

that has no central server. It is for this reason, 

this server-less window system is called SLwindows 

Internal Communications 

Communication between different components 

of the SLwindows system occurs only in response 

to user input. This input is usually single threaded 

3 The frame includes the border, title bar, and sizing 

boxes. 

150 

because the user has a single source of focal 

attention, but can be multi-threaded without 

violation of the SLwindows model. User requests 

to resize, move or change the ordering of windows 

are assumed to occur infrequently, so they can be 

processed less urgently than animation requests 

from applications. As mentioned above, user 

requests are first processed by the window manager 

which then makes the appropriate requests to the 

layer administrator. The layer administrator then 

communicates with only the affected renderers: 

the window manager's renderer and the renderer 

of the client that owns the affected window. All 

other renderers are uninvolved In this 

communication activity. 

The layer administrator only needs to notify 

renderers of resize events. Changes in layer depth 

and placement are handled directly by the layer 

administrator, which simply modifies the 

appropriate hardware state. The window manager 

and client renderers of the affected window(s) 

continue oblivious to the changes . Hence, there 

are no damage reports due to changes in the 

overlapping of windows. 

Resize events are signalled to the affected 

renderers because they affect screen drawing. For 

example, if a renderer treats its layer as a viewport, 

a resize event requires image rescaling. If it treats 

its layer as a window (one-to-one window to 

viewport mapping), the event may signal that 

more of the image is exposed, possibly requiring 

extra drawing. 

The Window Manager's Renderer 

At first glance, concurrency appears lost because 

the window manager's renderer owns all the layers 

used for frames. But a careful inspection of 

interaction requirements indicates that 

con currency is unimportant or even detrimental 

in the window manager. User-originated window 

actions, like moving or resizing, require focal 

attention and must be controlled serially by the 

user, with the speed of the user's actions closely 

integrated with the system response. For similar 

reasons, application-originated actions similar to 

those originated by a user, which could occur 

concurrently, should be rare, because it would be 

impossible for a user to control a system that 

produced frequent reactions resulting from internal 

conditions and not user input. 

The LID buffer provides another interesting 

interactive feature, since it can be used to identify 

the window to which an input event is directed, 

with speed and precision that does not depend on 

window shape. 

IMPLEMENTATION OF SLWINDOWS 

SLwindows was implemented on the multi

processor psychology workstation [6], using an 

Adage/Ikonas RDS-3000 Display System. This 

Graphics Interface '93 



151 

Client n's layer 

Pixel Memory 

Figure 3. Partitioning of Frame Buffer Into Layers 

system provides great flexibility for prototyping 
because of its open bus architecture. The systems 
used for SLwindows are configured with 
1024xl024x32 bits of image memory and a BPS32 
graphics microprocessor. 

Concurrent data paths are provided by linking 
the RDS-3000 display system to the multiprocessor 
application host using a custom-built interface 
[7]. The individual paths are identified by their 
sender identification (SID) and are accessed by 
specifying the SID during an access to the 
RDS-3000. The interface is designed so that 
accesses are completely atomic. Each SID has a 
write mask for controlling access to image memory 
on a bitplane by bitplane basis. 

Implementation of Layers and Video Processing 
Each layer is comprised of a set of bitplanes (Figure 
3) which are protected by setting the writemasks 
of each renderer to allow writing to only the layers 
it owns. Each renderer is also given a block of the 
RDS-3000 's 1024 entry colour lookup table for 
use as its colour table. 

A special layer owned by the layer 
administrator, called the LID-buffer, is used to 
identify the layer that is visible for each pixel 
(Figure 3). The LID-buffer is used pixel-by-pixel 
as an index to the layer that should be displayed 
for a each pixel (Figure 4). When a pixel is fetched 
from the frame buffer it contains the bits for 
every layer in the system, including the bits of 
the LID-buffer and the layer that is visible at the 
pixel. A custom designed board, normally used for 
reflectance calculations [9], is used as a dynamic 
cross-bar switch , using the contents of the LID
buffer to steer only the bits of the visible layer 
to the colour hardware . The visible layer's LID is 
transformed by the dynamic cross-bar into the 
base index of the layer's colour table. This base 
index combined with the layer's data form a ten 

bit index into the RDS-3000's colour lookup table. 

General Hardware Limitations 
The RDS-3000 and its interface provide only eight 
distinct SIDs. Since the layer administrator 
requires one to access the hardware and the window 
manager's renderer requires another, a maximum 
of six client windows may be open at a given 
time. Although it is evident that a commercial 
system must provide more than six windows, this 
number is sufficient to prove the concept. 

Since the reflectance board was not designed 
to be used as a dynamic cross-bar, it has some 
limitations. The restricted flexibility requires extra 
bitplanes to be assigned to the LID-buffer reducing 
the bitplanes available for client and frame data. 
The resulting prototype system may have as many 
as six four-colour (2-bit) client windows (with 
two colour frames) and one four colour alert layer 
for emergency messages. Client windows are 
restricted to a maximum of 128 colours (7 -bits). 

Move Layer Event 
In order to make the movement of layers 
transparent to the renderers when layers are 
implemented as a collection of bitplanes, the 
hardware must support the pan and scrolling of 
individual bitplanes. UnfortunatelY4 this feature 
is not available in the RDS-3000 . Therefore, 
contrary to the theoretical design, the prototype 
system must notify the renderer when its layer is 
moved. The renderer then corrects its x,y origin 
and invokes the graphics microprocessor to 

4 It existed in early image processing frame buffers 

but disappeared during the 1970s and early 1980s. 

Graphics Interface '93 4 



image 
n 

image 
m 

152 

a) Displayed image 
of client n's layer 
overlapped by m's 
layer 

b) client n's layer 
(notice image not 
clipped to other 
window's boundary) 

c) portion of LlD
buffer containing 
value n 

Figure 4. Operation of the LID-buffer 

perform a fast bitcopy of its frame buffer image 
to the new location. Since the graphics 
microprocessor assumes the SID of the client for 
whom it is currently working, the bitcopy uses 
the writemask mechanism to avoid corrupting other 
layers. 

Special Renderers 
One attractive feature of this architecture is the 
possibility of supplying special purpose renderers 
for application tasks that have special rendering 
requirements. For example, a special animation 
renderer was implemented to economi ze on 
responses to move events. This renderer relies 
on the frequency of animation changes to deal 
with the damage caused when a window is moved. 
Instead of wasting bandwidth copying an image 
that will be redrawn as part of the animation, the 
renderer simply updates its origin and waits to 
draw the next frame of the animation on behalf 
of the client. 

In addition to the normal and animation 
renderers, two other special renderers were 
implemented. The live video renderer is a normal 
renderer augmented with operations to change 
the destination and size of input from video capture 
hardware in accordance to its layer's position and 
size, enabling the display of live video. The window 
manager renderer was designed to share a single 
colour table block among all of its layers. This 
was necessary due to partitioning restrictions 
imposed by our version of a dynamic cross-bar. 

COMMENTS ON THE IMPLEMENTATION 
The prototype hardware and software were 
implemented using a decade-old graphics system. 
While it is obsolete as a high-performance display 
system, its open architecture lends itself extremely 
well to reconfiguring and to prototyping projects 
such as SLwindows. Some of the desirable 
characteristics are the presence of a programmable 

graphics processor, a clean and high performance 
backplane bus, reconfigurable video chain and 
programmable video timing generator. 

The prototype implementation is judged to be 
a success, in that it provides full system 
functionality on a system with modest CPU 
bandwidth: four to six MC68020s clocked at 12.5 
MHz. For example, it is able to present live 
video in a moving window without noticeable 
artifacts, and to provide continuous control of four 
simultaneous smooth animations on a single frame 
buffer. In addition, because each renderer's colour 
table is private, colour table animation with precise 
temporal control is easy to implement. Yet, the 
prototype implementation suffers from a variety 
of shortcomings that show how the hardware should 
be improved. Simulation of a dynamic cross-bar 
using the reflectance hardware consumed several 
image planes that would otherwise have been 
avail a ble for window contents. The resulting 
shortage of image planes produced allocation 
problems such as pixel bit fragmentation, along 
with poor dynamic window creation and deletion. 
Thus, future implementations require a true 
dynamic cross-bar switch. 

The graphics performance of the system was 
found to be limited by the throughput of the 
MC68020 CPUs running applications. This shows 
that when server and damage overhead is reduced 
systems need a larger share of their computational 
bandwidth in the application CPU, and a smaller 
share in the graphics processor. Another solution 
might place each renderer on a specialized graphics 
processor instead of on the application CPU, at 
the probable cost of complicating the overall 
graphics hardware, and possibly the real-time 
operating system. 

Finally, the prototype offered poor support for 
double buffered graphics. The double buffer 
implementation uses two layers owned by the same 
renderer. Whenever rendering to a buffer is 
complete the renderer requests the layer 

-~ Graphics Interface '93 



administrator to swap the buffers. This operation 
would ideally be performed by the renderer itself, 
without any synchron ization overhead. A second 
cross bar switch, not necessarily dynamic could 
be placed in the video path to enable this 
functionality. Each renderer would then own sets 
of input and output bits in this cross bar in addition 
to its layers. 

A useful result of our prototype is the 
identification of a skeleton multimedia application 
that could be the basis of a future benchmark. 
The application should drive three imaging 
windows at a uniform rate of frame update and a 
high degree of temporal synchronization, within 
one frame of about 17 milliseconds. An ancillary 
task is processing sound information, that must 
be reproduced at a jitter-free rate within the 
acceptable limits for wow and flutter, while 
synchronized to the images. Hardware to produce 
a suitable audio signal is currently being constructed 
in our lab. 

Clearly, there has to be sufficient computing 
power to generate the information. In our 
architecture that computing power is achieved by 
partitioning the application into light-weight tasks 
and allocating them to a set of tightly coupled 
processors. An obvious partitioning allocates tasks 
supporting each window to a unique processor and 
decoupling the performance of each window from 
each of the other windows. If each window is 200 
by 300 pixels the required data rate is about 2M 
pixels per second per window, uninterrupted. This 
rate is close to the throughput that is possible for 
our obsolete hardware, and easily within the 
capacity of more modern graphics systems. 

The image and sound streams only interact for 
temporal synchronization, and there is almost no 
implicit interaction through resource competition . 
In fact the streams do not interact with one 
another, but interact individually with a system
wide real-time clock. A system clock with a five 
millisecond resol ution is sufficiently accurate to 
maintain the required synchronization tolerance. 

In applications where elaborate 3D hand 
controllers are required, total system delay needs 
to be less than approximately 40 milliseconds, 
from the hand controller to the change in the 
displayed image. One can use the modular nature 
of the architecture and support such devices on 
separate processors as long as care is exercised in 
defining tasks and message paths so that no 
unnecessary delay is introduced. Bajura et al. [2] 
suggests that predictive control can reduce the 
apparent delay even further. 

CO NCLUS ION 
The design and implementation of a prototype 
have demonstrated a novel window architecture 
tha t provides predictable temporal performance 
and can meet the requirements of temporal fidelity 

153 

in such applications as multimedia, navigation 
through virtual worlds and animation. 

The implementation of the demonstrated 
prototype is limited by the capabilities of the 
available hardware. However, we may hope that 
improvements in display subsystems will provide 
the support for more realistic implementations. 
For example, SGI systems currently provide a 
window ID that allows a window manager to specify 
the visible region of a window, simplifying the 
writing of pixels by an application [18]. This 
provides some of the functionality of the write 
masks in the RDS-3000 system but needs to be 
duplicated when the bits are read out into the 
video pipeline to provide support for 
implementations like SLwindows . Another 
characteristic of the design is a large pixel depth: 
32 bits is satisfactory for a demonstration 
prototype, but inadequate for a realistic system. 
Currently 32 bitplanes is at the high end of 
workstation graphics, but this parameter is 
currently increasing. A recent product 
announcement [11] described a graphics engine 
that supports a pixel depth of 128 bits, including 
some type of dynamic cross-bar capability. Clearly, 
advances in technology are removing some of the 
limitations in the demonstrated prototype. As each 
limitation is removed the barrier to removing the 
others becomes lower, so it is reasonable to expect 
that workstations of the immediate future will be 
able to support window systems that have the 
advantages demonstrated in the SLwindows 
prototype implementation. 

ACKNOWLEDGEMENTS 
This project could not have been undertaken 
without hardware designed constructed and 
debugged by Chris Wein and Ed Dengler. Once 
again, we would like to thank Nick England for 
providing us with the 'Ikonasaurus', a graphics 
system whose flexibility and configurability makes 
it still usable for research long after everyone of 
its components is obsolete. 

REFERENCES 
1. Abi-Ezzi, S. Graphics Software 

Architecture for the Future (Panel, Chair: 
A. van Dam). Computer Graphics 
(SIGGRAPH'92), vol. 26(2), (1992), pp. 
389-390. 

2. Bajura, M ., H. Fuchs and R. Ohbuchi. 
Merging Virtual Objects with the Real 
World. Computer Graphics 
(SIGGRAPH'92), vo!. 26(2), (1992), pp. 
203-210. 

3. Bartram L. R., K. S. Booth and W. B. 
Cowan. Issues in the Design of Works tat ions 
for Psychology Experimentation. The 1989 
IFIP WG 5.10 International Working 
Conference on Workstations for 

Graphics Interface '93 ~ 



Experiments (Lowell, MA, July, 1989), pp. 
164-172. Springer-Verlag, 1993. 

4. Bertrand, P. F. A Server-less Window 
System for Multi- tasking, Multi-processor 
Systems. M. Math Thesis, Department of 
Computer Science, University of Waterloo, 
Waterloo, Ontario, 1993. 

5. Booth, K S. and S. A. MacKay. Techniques 
for Frame Buffer Animation. Proceedings 
of Graphics Interface'82, Toronto, Ontario, 
(1982), pp. 213-220. 

6. Booth, K S., W. B. Cowan and D. R. Forsey. 
Multitasking Support in a Graphics 
Workstation. Proceedings of the 1 st 
International Conference on Computer 
Workstations, (1985), pp. 82-89. 

7. Cowan, W. B., C. J. Wein, M . Wein and 
K S. Booth. Hardware Support for 
Multitasking Graphics. Proceedings of 
Graphics Interface'91, Calgary, Alberta, 
(1991), vol. 199-206. 

8. Cowan, W. B., M. Wein and P. F. Bertrand. 
A Window System Architecture to Support 
Consistency and Context. Unpublished 
manuscript, 1992. 

9. Dengler, E . A. and W. B. Cowan. A New 
Frame Buffer Architecture Capable of 
Storing Reflectance. Research Report 
CS-92-2 5, Department of Computer 
Science, University of Waterloo, Waterloo, 
Ontario, 1992. 

10. Evans & Suterland and Sun Microsystems. 
Product Update: The Fastest Graphics in 
the World. Press Release, Salt Lake City, 
UT: Evans & Sutherland, 1992. 

11. Fisher, S. S., M. McGreevy, J. Humphries 
and W. Robinett. Virtual Environment 
Display System. Proceedings 1986 
Workshop on Interactive 3D Graphics, 
Chapel Hill, NC, (1986), pp. 77-87. 

154 

12. Gentleman, W. M ., S. A. MacKay, D. A. 
Stewart, and M. Wein. Using the Harmony 
Operating System, Releas e 3.0, 
NRC/ERA-377. Ottawa, Ontario: National 
Research Council of Canada, 1986. 

13. IBM. OS/2 System Programming Guide. 
International Business Machines 
Corporation, Armonk, NY. Pub. No. 
10G6494, 1992. 

14. Kelley, J. V., K S. Booth and M . Wein. 
Design Experience with a Multiprocessor 
Window System Architecture. Proceedings 
of Graphics Interface'89, London, Ontario, 
(1988), pp. 62-69. 

15. Lantz, K A., P. Tanner, C. Binding, K-T. 
Huang and A. Dwelly. Reference Models, 
Window Systems, and Con currency. 
Computer Graphics (A CM SIGGRAPH 
Workshop on Software Tools for User 
Interface Management), vol. 21 (2), (1987) 
pp. 87-101. 

16. Scheiffler, R. W. and J. Gettys. The X 
Window System. ACM Transactions on 
Graphics, vol. 5, (1986), pp. 79-109. 

17. Shoup, R. G. Color Table Animation. 
Computer Graphics (SIGGRAPH'79), vol. 
13(2), (1979), pp. 8-13. 

18. Silicon Graphics. IRIS Indigo Family 
Technical Report (Version 1. 0), 1991. 

19. Sun, F. K , W. B. Cowan, and K S. Booth. 
Understanding Visual Effects in Windowed 
Environment. Proceedings of Graphics 
Interface'90, Halifax, Nova Scotia, (1990), 
pp. 100-105. 

20. Turk, G . Re-Tiling Polygonal Surfaces. 
Computer Graphics (SIGGRAPH'92), vo!. 
26(2), (1992), pp. 55- 64. 

21. Wickens, C. D. Engineering Psychology 
and Human Performance (2nd ed.). New 
York: Harper Collins, 1992 . 

4 Graphics Interface '93 


