
155

A Simple, Flexible, Parallel Graphics Architecture

John Amanatides t, Edward Szurkowski *
t Dept. of Computer Science, York University

North York, Ontario, Canada M3J IP3
amana@cs.yorku.ca

tt Computer Systems Research Lab
AT&T Bell Labs, Murray Hill, NJ, USA 07974

ABSTRACT

Traditional graphics hardware architectures, with their
emphasis on the graphics pipeline, are becoming less use
ful. As graphics algorithms evolve and grow more capa
ble, it becomes much harder to implement them in silicon.
By using general-purpose hardware technology effectively,
one can build powerful graphics hardware that is very flex
ible, yet inexpensive. In this paper we would like to dis
cuss one such architecture that allows for both traditional
interactive graphics (polygon scan conversion) as well as
more advanced graphics (ray tracing and radiosity).

KEYWORDS

computer graphics hardware

INTRODUCTION

The graphics pipeline has had a long history in computer
graphics [1]. Consisting of a front end that performs sim
ple, repetitive floating point calculations on short vectors
(for transformations, clipping, perspective) and a back end
that scan converts primitives into pixels and determines
visibility, it easily became a candidate for hardware accel
eration [2, 3, 4]. However, as graphics algorithms evolve
and become more capable the utility of this specialized
hardware is reduced. The required functionality can no
longer be incorporated easily in hardware and instead must
increasingly be performed in software on the host system.

VLSI technology is squeezing more and more onto a chip.
However, designing a special-purpose chip is getting
harder as more functionality is added. This is especially
true of custom graphics chips. Most effort in semiconduc
tor houses is now being put into creating more powerful
microprocessors and ever larger DRAMs and VRAMs.

In this paper we want to explore an architecture that tries to

take advantage of the growing power of VLSI by concen-

trating on these general-purpose products and using them
effectively. We wanted an architecture that minimized
graphics hardware. The result, we believe, is an inexpen
sive, powerful and flexible system.

As well, we will describe a design that utilizes this archi
tecture. The origin of this design came from our experi
ences with the AT &T Pixel Machine. We wanted to pro
duce a low-cost next-generation machine. Let us first
review architecture of the Pixel Machine.

THE PIXEL MACHINE

The Pixel Machine (PXM) was designed as a pro
grammable computer subsystem with pipeline and parallel
processing closely coupled to a display system [5]. Built
by Pixel Machines Corp, a subsidiary of AT&T, it was
launched in 1987. An important design goal was flexibil
ity. Graphics algorithms were not hardwired into the
design. Instead, digital signal processors (DSP32) were the
basic building blocks (nodes) of the PXM. This allowed
for a lot of flexibility as new functionality could be pro
grammed in afterwards. In fact, most of the algorithms
were written in C with only the critical sections written in
assembler. This resulted in a product that was ideal for
research and development.

The PXM consisted of a large box (containing up to 20
VME boards) which was connected to the host computer
via a series of registers in the memory address space of the
host computer. Data and commands reaching the PXM
would first be sent through a pipeline board consisting of
nine DSP32 pipe nodes. For interactive graphics, the pipe
nodes would do transformations, clipping and lighting cal
culations for the various graphics primitives. A second
pipeline board could be added to the PXM to increase per
formance.

Next, the primitives would be broadcast to 16-64 (depend-

Graphics Interface ' 93 ~

ing on options) DSP32 pixel nodes whose job it was to ras
terize the primitives. Each pixel node contained an inter
leaved portion of the frame buffer (every eighth pixel Of
every eighth row in the 64 processor version). As well, it
had 32KB SRAM (for program storage) as well as 512KB
of VRAM (double-buffed frame buffer, texture map, accu
mulation buffer) and 256KB of DRAM (z-buffer). Finally,
the pixel nodes were each connected to their four neigh
bours via a serial link.

For ray tracing and image processing, the pipe nodes were
mostly unused; the work was done by the pixel nodes.
When running ray tracing programs we found that we
could get two orders of magnitude performance improve
ment over the workstations that the PXMs were connected
to (in our case, a Sun 3/260).

Unfortunately, the PXM was expensive. A fully con fig
ured machine could cost up to to $150K; it was not some
thing every scientist could have in their office. It had sev
eral other limitations. The DSPs had a limited address
space. This fit into their original purpose (signal process
ing typically has small code) but we quickly ran into limi
tations when writing graphics programs with sophisticated
shading. More memory was needed for both programs and
data. The two-dimensional interleaved design of the PXM
had drawbacks. Scan converting small polygons meant
that each processor only drew a few pixels per polygon.
However, every processor has to do all the edge setup cal
culations and amortizing this over only a few pixels is
expensive. When performing interactive graphics the bot
tlenecks in the system would change depending on the
types of rendering involved. If there was texture mapping,
the pixel nodes were the bottleneck. If only simple shad
ing was performed, the pipe nodes were the bottleneck.

DESIGN GOALS

In the summer of 1989, after extensively using the PXM
for a variety of graphics research projects at AT&T Bell
Labs, we decided to design a similar machine that we
could afford to place in each of our offices. As well, Pixel
Machine's next generation machine was ambitious and late
and we wanted to offer them an option . The stress was on
low cost, flexibility and power.

Like the PXM we wanted the new machine to be flexible;
we wanted something to perform both interactive graphics
and ray tracing fast. Our interactive performance goal was
over lOOK independent polygons/sec. t Our ray tracing
goal was a performance level over one order of magnitude
faster than the workstations that it would be connected to.

t Performance for independent polygons was important as some of
our graphics research on BSP trees generated them.

156

It had to be cheap; the target was a list price of $25K. Ide
ally, it would be a single board that would fit into our
workstations.

It needed lots of memory; we had already run out of mem
ory for programs and needed more for textures and models.

Finally, we wanted to explore a minimalist design; Gordon
Bell has said that "the cheapest, fastest and most reliable
components of of computer system are those that aren't
there." We wanted to see if we could apply this to graphics
hardware.

DIFFERENT ARCHITECTURES

Figure 1 illustrates the typical graphics subsystem [4, 5].

Figure 1

The host traverses the model data base and sends the
graphics primitives to the graphics pipeline. The front end,
which performs a series of geometric operations, is typi
cally implemented as a pipeline of floating-point ALUs
(labeled G). (The FIFOs typically found between stages
are left out of the diagrams) Mterwards, the trans
formed/shaded primitives are sent to the back end which
performs rasterization and visibility operations. Because
interactive rasterization requires a great deal of pixel

Graphics Interface ' 93

througbput, parallel access to the frame buffer is required;
the back end is typically implemented with multiple raster
ization processors (labeled R) eacb being responsible for a
portion of the frame buffer.

A variant approacb, illustrated in figure 2, is increasingly
being explored [6, 7, 8].

Figure 2

Here, the front end, instead of being a pipeline of very sim
ple processors, has become populated with more powerful
processors, each capable of performing all the required
front-end operations on a single primitive. Grapbics primi
tives are distributed in a round-robin manner to eacb front
end processor, processed, and then broadcast to the back
end. Because the processor is more powerful, better sbad
ing algorithms can be utilized. Also, more powerful grapb
ics primitives can be dealt with (splines, for example) and
tessellation can occur further down the pipe. As well, there
is less data movement amongst the various stages in the
pipe (analysis of the PXM indicated that the pipe nodes
spent a significant amount of time on this). Several proces
sors are typically required to keep performance up and care
must be taken to make sure primitives stay in priority
order.

The general outline of our new minimalist architecture is
found in figure 3. Here, the functions of the front and back
ends are collapsed onto the same processors. In this case,
the bost distributes primitives in a round-robin manner to
eacb of the processors. Eacb processor performs the front
end tasks of transforming/clipping/Iighting/perspective for
the primitives. It then broadcasts the results to the other

157

processors to perform the back end operations of rasteriza
tion. Because, the primitives are distributed in this manner,
eacb processor does the same back-end operations as in
previous designs but only lInth of the front-end operations
(assuming there are n processors).

Figure 3

There are several advantages to this approach. First, the
design is auto load balancing. For example, if there is a lot
of texture mapping, the processors spend most of their time
on this. If most of the primitives are simple, then the pro
cessors spend the majority of their time on the front end
computation. Alternately, if the computation is ray tracing,
no front-end processors are wasted idling. Second, the
approach tends to be simpler, requiring powerful general
purpose processors instead of special-purpose grapbics
hardware. Because VLSI technology is making these sin
gle-chip microprocessors increasingly available this results
in a smaller, simpler board layout. Finally, it is a more
flexible approach. Since the hardware pipeline is not opti
mized for a particular algorithm, there is a lot of freedom
to change or enhance capabilities. For example, bigber
order primitives can be used (NURBS). If necessary, the
model can be distributed amongst the processors (assuming
that they bave the memory) without introducing inefficient
asynunetries.

THE PXMjr DESIGN

As mentioned earlier, we wanted to produce an inexpen
sive version of the PXM and began in the summer of 1989.
We gave the new design the name Pixel Macbine Junior
(PXMjr). Like the PXM the PXMjr would be a peripberal;
this would keep the design simple and would allow it to be
connected to a variety of workstations. Tbis would also
result in a fast turnaround time from design to production.

Graphics Interface '93 ~.<i)

We also decided that to keep it simple and small, we pre
ferred fewer, more powerful processors. Thus we could
have more memory per processor without incurring high
costs.

The new design would require more memory for each pro
cessor; a lot of memory is needed as textures and geomet
ric models, if they are stored locally, are space intensive.
As well, program space needs to be larger as each proces
sor does more work. To keep costs down, we wanted to
eliminate the need for SRAM, and use DRAM instead.
DRAM also has the advantage that a lot more memory can
be placed per unit area. Unfortunately, DRAM is slower.
To get back the speed, we wanted the processor to have an
on-chip cache. Because of typical DRAM chip layouts and
bus widths (64 bits), we would need at least 16 chips (nib
ble data paths). This would result in either of 2 MB (1Mb
chips) or 8 MB (4Mb chips) per processor. A similar num
ber of VRAM chips would be required for the distributed
frame buffer. At the time 4Mb VRAM chips weren't avail
able; otherwise we would have considered just using
VRAM. We felt that the simplified design and halfed chip
count may have been worth it.

After exploring several DSP microprocessors, we decided
on the Intel i860. It is a powerful general-purpose micro
processor optimized for graphics. According to Intel engi
neers we could expect 20-2SK poly/sec from each proces
sor. It has both a powerful floating-point unit (80 MFlops
peak) and on-chip caches. We realized that this was a
change from the DSP32s in the PXM but since most of our
software was written in e, we felt that we could make this
change without a big penalty.

The processors would be connected to each other and the
host via a bidirectional FIFO connected to a message pass
ing bus. These FIFOs would help keep each processor
busy and help perform the necessary multicasting without
processor intervention. The message bus has the capability
of both high and low priority packets (the need for which
we will describe later).

Like the PXM, the host sees a set of registers in its address
space which implement a bidirectional FIFO and control
the PXMjr. It can tell if its input FIFO is empty, its output
FIFO is full and can read and write from the FIFOs. It can
also reset the PXMjr and there is a mechanism for syncing
with the processors (to synchronize the completion of each
frame). The host interface was kept simple so that it could
easily be adapted to multiple host types.

A general outline of the new design is found in figure 4. It
consisted of 8 i860 processors, each with 2 MB of VRAM

158

and either 2 or 8 MB of DRAM.

HostBw

MessageBw

0000

I
I
I
I
I
I
I
I
I
I
I
I

I I

·-----------T--------------------------~

ID~AI
Figure 4

THE FRAME BUFFER

There is a virtual 2Kx2Kx32 frame buffer distributed
amongst the 8 processors in a column interleaved manner.
The video rate is programmable from RS-I70A (NTSe
resolution) to 1280xI024 non-interlaced.

1024

1280 768

I
I
I
I
I
I
I
I ___________ ~------- 2048

2048

I
I
I
I
I
I
I
I
I

Figure 5

As it is column interleaved, the frame buffer reduces the
pixel rate from the individual VRAMs by a factor of 8.
Also, it was found that in the original PXM there was sig
nificant wasted computation because the edge set-up costs

~ Graphics Interface '93

for polygon scan conversion were not amortized over
enough pixels. By interleaving in only one dimension,
amortization is increased. Finally, it simplifies anti
aliasing.

Each processor has 2 MB of VRAM (l6xlMb nible-mode
chips). The 2Kx2K allows for double buffering at
1280xl024 resolution. As well, the extra 768 pixels in
each scan line can store a 16 bit z-buffer (see figure 5). By
careful optimization we can use the VRAM serial buffer to
reset the frame buffer to the background colour and reset
the z-buffer during vertical blanking. This is done in con
junction with the i860 executing a very tight loop to gener
ate the appropriate addresses on the local bus.

THE BUS

The message bus is a conservative design. Originally
designed to match the VME bus, and then the S-bus, it is
32 bits wide; running at 10 MHz it provides a raw transfer
rate of 40 MB/sec.

The bus transfers fixed-length packets of 32 32-bit words.
The size was chosen so that triangles and quadrilaterals
would fit into one packet and a constant-size packet simpli
fied the design. The first word in the packet indicates the
destination. With 1 bit per processor, it allows for multi
casting. There are two types of packets: high and Iow pri
ority packets. Low priority packets get onto the bus only if
no high-priority packets are waiting to be sent in any of the
other FIFOs. As well, there is a fair scheduling policy in
which a second packet from any FIFO cannot get onto the
bus until all other FIFOs are first given a chance to send
theirs.

Running at 10MHz, 2 time slots are required for arbitra
tion. This results in a maximum flow rate of 294K packets
per second. Since each polygon would have to traverse the
bus twice, the maximum number of polygons that can be
handled is about 145K. This fits well with the lOOK
poly/second design goal.

The FIFOs can be implemented with two lKx18 bidirec
tional FIFO chips [9]. These chips can be programmed
during reset so that they raise signals at various levels of
filling. (This will be used to detect if a full packet is ready
and in the deadlock prevention scheme described below).
There is room for 32 packets in each FIFO. This allows
for considerable incoming work.

159

INTERACTIVE GRAPHICS

To help understand our design let us describe what would
happen when rendering polygons interactively.

The host busy-waits until its output FIFO has space and
then starts sending packets containing polygons. These are
sent in a round-robin fashion to each of the processors (the
i860s). The host continues until it completes traversing the
model and then waits until the processors are finished.

Each processor waits for packets in its input FIFO. Pack
ets containing polygons come in two ftavors: geometry
messages (GM) and rendering messages (RM). The GMs
come from the host and their polygons are transformed,
clipped, shaded and then sent out as RMs via the output
FIFO to the other processors. When a processor receives a
RM it scan converts the polygon and draws it in its frame
buffer.

Since processors complete their tasks of converting GMs
into RMs at different rates it is possible that RMs arrive at
processor in the wrong priority order. The processor has to
sort this out; it may have to store up to 7 RMs (this is as
far off as the ordering can get).

DEADLOCK

Since every processor can write into every other proces
sor's input FIFO at the same time there is a remote possi
bility of deadlock. Consider the following scenario: The
host is so fast that it fills all the input FIFOs of all the pro
cessors with GM packets. Each processor converts the GM
into a RM and puts it in its output FIFO. Their output
FIFOs start to fill . What happens if its output FIFO
becomes full? If the input FIFO has a RM it is consumed
(good). However, if the next packet is a GM it must even
tually be sent out and the processor blocks because there is
no more room in its output FIFO. If something like this
happens at several processors deadlock occurs.

The best way to handle deadlock is to design it out in the
first place. In our design we can guarantee that no dead
lock will occur if the output FIFO at each processor is not
full. We have to make sure that this never happens. RM
packets are consumed; they will not cause trouble. It is the
GM packets that must be taken care of.

As was mentioned earlier packets on the bus have two pri
orities, low and high. low priority packets cannot get onto
the bus if high priority packets are waiting. If we map
GMs to low priority packets and RMs to high priority
packets then the solution is in sight.

Graphics Interface '93 ~

The worst possible scenario is when every input queue is
full of GMs. As soon as one of these GMs turns into a RM
it shuts down further introduction of GMs from the host.
The current GMs are slowly turned into RMs and wait in
the output FIFOs. As long as the output FIFOs are at least
as big as the input FIFOs then each processor can do useful
work. Wbenever space appears at any input FIFa it is the
RMs that are delivered to it. Eventually, all the GMs will
be turned into RMs and will be delivered into their appro
priate input FIFOs. Now, when all the output FIFOs are
empty and the processors are working on the remaining
RMs in their input FIFOs can the host begin to deliver
GMs again. What will eventually happen is that each pro
cessor will oscillate between working on RMs and GMs; in
both cases, it will be doing useful work. The long FIFOs
(room for 32 packets) make sure that the processors are
kept busy.

PACKAGING

The preliminary design called for a single 9VME board
(wby pay for cabinet/power supplies?). But because of
changing environments (fewer people were purchasing
large-cbassis workstations) a "pizza box" design was cho
sen. The case, 16"xI6"x3", was designed to fit under a
SPARCstation, with a ribbon cable extending into an S-Bus
slot in the SPARCstation. (Because of the simple host
interface, adapters were contemplated for other machines).
In the chassis there would be room for one large circuit
board, along with power supply and fan . The preliminary
design also called for the possibility of a daughter board
with 8 more processors but power dissipation and com
plexity problems stopped this at an early stage. There is
analog RGB and sync out and genlock in.

CONCLUSION

In this paper we have introduced an architecture that allows
for simple, flexible yet powerful graphics hardware for
both interactive graphics (polygon scan conversion) and
more advanced graphics (ray tracing, radiosity). This is
accomplished by not dedicating hardware to specific tasks
but allowing processors to both transform and rentler poly
gons. As well, a design, consisting of eight i860s, with
local memory, and a double-buffered 1280xI024 frame
buffer was outlined. This design was finished in the spring
of 1990 and a small prototype was built. However by this
time the first author had left AT&T and Pixel Machines
Inc. decided not to continue with development.

We would like to thank Don Mitchell anti Bruce Naylor for
many valuable suggestions.

160

References

1. J.D. Foley, A. Van Dam, S.K. Feiner, and J.F.
Hugbes, Computer Graphics: Principles and Experi
ence, Addison-Wesley Publisbing Co, Reading
Mass, 1990.

2. T. Myer and I Sutherland, "On the Design of Dis
play Processors," Comm. of the ACM, vol. 11(6), pp.
410-414, June 1968.

3. J. Clack, "The Geometry Engine: A VLSI Geometry
System for Graphics," Computer Graphics, vol.
16(3), pp. 127-133, July 1982.

4. K. Akeley and T. Jermoluk, "High-Performance
Polygon Rendering," Computer Graphics, vol.
22(4), pp. 239-246, August 1988.

5. M. Potmesil and E.M. Hoffert, "The Pixel Machine:
A Parallel Image Computer," Computer Graphics,
vol. 23(3), pp. 69-78, July 1989.

6. J.G. Torborg, "A Parallel Processor Architecture for
Graphics Arithmentic Operations," Computer
Graphics, vol. 21(4), pp. 197-204, July 1987.

7. D. Kirk and D. Voorbies, "The Rendering Architec
ture of the DN1000VS," Computer Graphics, vol.
24(4), pp. 299-307, August 1990.

8. M. Mebl and H. Josepb, "GRACE: The Graphics
Coprocessor Engine of the EuroWorkStation
(EWS)," Eurographics '90: Proceedings of the
Graphics and Interaction in Esprit Sessions,
September 1990.

9. IDT72521, lKx18-Bit CMOS BiFIFO, Preliminary
Data Sheet, Integrated Device Technology, Inc, Jan
uary 1989.

~ ~ Graphics Interface '93

